INTEGRABILITY OF LIOUVILLE THEORY: PROOF OF THE DOZZ FORMULA

Abstract : Dorn and Otto (1994) and independently Zamolodchikov and Zamolodchikov (1996) proposed a remarkable explicit expression, the so-called DOZZ formula, for the 3 point structure constants of Liouville Conformal Field Theory (LCFT), which is expected to describe the scaling limit of large planar maps properly embedded into the Riemann sphere. In this paper we give a proof of the DOZZ formula based on a rigorous probabilistic construction of LCFT in terms of Gaussian Multiplicative Chaos given earlier by F. David and the authors. This result is a fundamental step in the path to prove integrability of LCFT, i.e. to mathematically justify the methods of Conformal Bootstrap used by physicists. From the purely probabilistic point of view, our proof constitutes the first rigorous integrability result on Gaussian Multiplicative Chaos measures.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [59 références]  Voir  Masquer  Télécharger

https://hal-upec-upem.archives-ouvertes.fr/hal-01587086
Contributeur : Rémi Rhodes <>
Soumis le : mercredi 13 septembre 2017 - 16:08:25
Dernière modification le : vendredi 15 septembre 2017 - 10:55:27

Fichiers

DOZZ_arxiv_firstversion.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01587086, version 1
  • ARXIV : 1707.08785

Citation

Antti Kupiainen, Rémi Rhodes, Vincent Vargas. INTEGRABILITY OF LIOUVILLE THEORY: PROOF OF THE DOZZ FORMULA. 2017. 〈hal-01587086〉

Partager

Métriques

Consultations de la notice

59

Téléchargements de fichiers

6