Skip to Main content Skip to Navigation
Journal articles

A direct link between microstructure and acoustical macro-behavior of real double porosity foams

Abstract : The acoustical macro-behavior of mineral open-cell foam samples is modelled from microstructure morphology using a three-dimensional idealized periodic unit-cell (3D-PUC). The 3D-PUC is based on a regular arrangement of spheres, allowed to interpenetrate during the foaming process. Identi cation and sizing of the 3D-PUC is made from X-ray computed microtomography and manufacturing process information. In addition, the 3D-PUC used allows to account for two scales of porosity: the interconnected network of bubbles (meso-porosity) and the inter-crystalline porosity of a gypsum matrix (micro-porosity). Transport properties of the micro- and the meso- scales are calculated from fi rst principles and a hybrid micro-macro method is used in order to determine the frequency-dependent visco-thermal dissipation properties. The double porosity theory provides the visco-thermal coupling between the meso- and micro- scales [J. Acoust. Soc. Am. 114, 7389 (2003)]. Finally, the results are successfully compared with experiments for two di erent mineral foam samples. The main originality of this work is to maintain a direct link between the microstructure morphology and the acoustical macro-behavior all along the multi-scale modelling process, without any adjusted parameter.
Complete list of metadatas
Contributor : Camille Perrot <>
Submitted on : Tuesday, April 23, 2013 - 4:02:39 PM
Last modification on : Thursday, March 19, 2020 - 11:52:02 AM
Long-term archiving on: : Thursday, July 25, 2013 - 11:26:34 AM


Files produced by the author(s)




Fabien Chevillotte, Camille Perrot, Emmanuel Guillon. A direct link between microstructure and acoustical macro-behavior of real double porosity foams. Journal of the Acoustical Society of America, Acoustical Society of America, 2013, 134 (6), pp.4681-4690. ⟨10.1121/1.4824842⟩. ⟨hal-00817040v1⟩



Record views


Files downloads