Dual constrained TV-based regularization on graphs

Abstract : Algorithms based on Total Variation (TV) minimization are prevalent in image processing. They play a key role in a variety of applications such as image denoising, compressive sensing and inverse problems in general. In this work, we extend the TV dual framework that includes Chambolle's and Gilboa-Osher's projection algorithms for TV minimization. We use a flexible graph data representation that allows us to generalize the constraint on the projection variable. We show how this new formulation of the TV problem may be solved by means of fast parallel proximal algorithms. On denoising and deblurring examples, the proposed approach is shown not only to perform better than recent TV-based approaches, but also to perform well on arbitrary graphs instead of regular grids. The proposed method consequently applies to a variety of other inverse problems including image fusion and mesh filtering.
Type de document :
Article dans une revue
SIAM Journal on Imaging Sciences, Society for Industrial and Applied Mathematics, 2013, 6 (3), pp.246-1273. <10.1137/120895068>
Liste complète des métadonnées

https://hal-upec-upem.archives-ouvertes.fr/hal-00743968
Contributeur : Laurent Najman <>
Soumis le : samedi 20 avril 2013 - 18:24:30
Dernière modification le : jeudi 12 septembre 2013 - 15:10:03

Fichier

journal_DCTV.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Camille Couprie, Leo Grady, Laurent Najman, Jean-Christophe Pesquet, Hugues Talbot. Dual constrained TV-based regularization on graphs. SIAM Journal on Imaging Sciences, Society for Industrial and Applied Mathematics, 2013, 6 (3), pp.246-1273. <10.1137/120895068>. <hal-00743968v2>

Partager

Métriques

Consultations de
la notice

576

Téléchargements du document

275