Nested iterative algorithms for convex constrained image recovery problems

Abstract : The objective of this paper is to develop methods for solving image recovery problems subject to constraints on the solution. More precisely, we will be interested in problems which can be formulated as the minimization over a closed convex constraint set of the sum of two convex functions f and g, where f may be non-smooth and g is differentiable with a Lipschitz-continuous gradient. To reach this goal, we derive two types of algorithms that combine forward-backward and Douglas-Rachford iterations. The weak convergence of the proposed algorithms is proved. In the case when the Lipschitz-continuity property of the gradient of g is not satisfied, we also show that, under some assumptions, it remains possible to apply these methods to the considered optimization problem by making use of a quadratic extension technique. The effectiveness of the algorithms is demonstrated for two wavelet-based image restoration problems involving a signal-dependent Gaussian noise and a Poisson noise, respectively.
Type de document :
Article dans une revue
SIAM Journal on Imaging Sciences, Society for Industrial and Applied Mathematics, 2009, 2 (2), pp.730-762
Liste complète des métadonnées

https://hal-upec-upem.archives-ouvertes.fr/hal-00621932
Contributeur : Caroline Chaux <>
Soumis le : vendredi 14 décembre 2012 - 10:23:01
Dernière modification le : mercredi 15 avril 2015 - 16:06:35
Document(s) archivé(s) le : vendredi 15 mars 2013 - 03:45:48

Fichier

hal2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00621932, version 2

Citation

Caroline Chaux, Jean-Christophe Pesquet, Nelly Pustelnik. Nested iterative algorithms for convex constrained image recovery problems. SIAM Journal on Imaging Sciences, Society for Industrial and Applied Mathematics, 2009, 2 (2), pp.730-762. <hal-00621932v2>

Partager

Métriques

Consultations de
la notice

198

Téléchargements du document

66