A block coordinate variable metric forward-backward algorithm

Abstract : A number of recent works have emphasized the prominent role played by the Kurdyka-Lojasiewicz inequality for proving the convergence of iterative algorithms solving possibly nonsmooth/nonconvex optimization problems. In this work, we consider the minimization of an objective function satisfying this property, which is a sum of a non necessarily convex differentiable function and a non necessarily differentiable or convex function. The latter function is expressed as a separable sum of functions of blocks of variables. Such an optimization problem can be addressed with the Forward-Backward algorithm which can be accelerated thanks to the use of variable metrics derived from the Majorize-Minimize principle. We propose to combine the latter acceleration technique with an alternating minimization strategy which relies upon a flexible update rule. We give conditions under which the sequence generated by the resulting Block Coordinate Variable Metric Forward-Backward algorithm converges to a critical point of the objective function. An application example to a nonconvex phase retrieval problem encountered in signal/image processing shows the efficiency of the proposed optimization method.
Type de document :
Article dans une revue
Journal of Global Optimization, Springer Verlag, 2016, pp.1-29. 〈10.1007/s10898-016-0405-9〉
Liste complète des métadonnées

Littérature citée [43 références]  Voir  Masquer  Télécharger

Contributeur : Emilie Chouzenoux <>
Soumis le : jeudi 13 février 2014 - 11:25:33
Dernière modification le : vendredi 30 novembre 2018 - 01:14:41
Document(s) archivé(s) le : mardi 13 mai 2014 - 23:10:15


Fichiers produits par l'(les) auteur(s)


Distributed under a Creative Commons Paternité 4.0 International License



Emilie Chouzenoux, Jean-Christophe Pesquet, Audrey Repetti. A block coordinate variable metric forward-backward algorithm. Journal of Global Optimization, Springer Verlag, 2016, pp.1-29. 〈10.1007/s10898-016-0405-9〉. 〈hal-00945918〉



Consultations de la notice


Téléchargements de fichiers