Skip to Main content Skip to Navigation
Conference papers

Efficient Robust Digital Annulus Fitting with Bounded Error

Abstract : A digital annulus is defined as a set of grid points lying between two circles sharing an identical center and separated by a given width. This paper deals with the problem of fitting a digital annulus to a given set of points in a 2D bounded grid. More precisely, we tackle the problem of finding a digital annulus that contains the largest number of inliers. As the current best algorithm for exact optimal fitting has a computational complexity in O(N 3 logN) where N is the number of grid points, we present an approximation method featuring linear time complexity and bounded error in annulus width, by extending the approximation method previously proposed for digital hyperplane fitting. Experiments show some results and runtime in practice.
Document type :
Conference papers
Complete list of metadatas

https://hal-upec-upem.archives-ouvertes.fr/hal-00827196
Contributor : Yukiko Kenmochi <>
Submitted on : Wednesday, May 29, 2013 - 4:16:23 AM
Last modification on : Wednesday, February 26, 2020 - 7:06:06 PM

Links full text

Identifiers

Citation

Son Minh Phan, Yukiko Kenmochi, Akihiro Sugimoto, Hugues Talbot, Eric Andres, et al.. Efficient Robust Digital Annulus Fitting with Bounded Error. 17th IAPR International Conference on Discrete Geometry for Computer Imagery, Mar 2013, Seville, Spain. pp.253-264, ⟨10.1007/978-3-642-37067-0_22⟩. ⟨hal-00827196⟩

Share

Metrics

Record views

616