Skip to Main content Skip to Navigation
Journal articles

On Hultman numbers

Abstract : Finding a sequence of transpositions that transforms a given permutation into the identity permutation and is of the shortest possible length is an important problem in bioinformatics. Here, a transposition consists in exchanging two contiguous intervals of the permutation. Bafna and Pevzner introduced the cycle graph as a tool for working on this problem. In particular, they took advantage of the decomposition of the cycle graph into so-called alternating cycles. Later, Hultman raised the question of determining the number of permutations with a cycle graph containing a given quantity of alternating cycles. The resulting number is therefore similar to the Stirling number of the first kind. We provide an explicit formula for computing what we call the Hultman numbers, and give a few numerical values. We also derive formulae for related cases, as well as for a much more general problem. Finally, we indicate a counting result related to another operation on permutations called the "block-interchange".
Document type :
Journal articles
Complete list of metadata

Cited literature [11 references]  Display  Hide  Download
Contributor : Anthony Labarre Connect in order to contact the contributor
Submitted on : Friday, September 7, 2012 - 9:08:17 AM
Last modification on : Tuesday, October 19, 2021 - 12:55:33 PM
Long-term archiving on: : Saturday, December 8, 2012 - 3:40:00 AM


Publisher files allowed on an open archive


  • HAL Id : hal-00728923, version 1



Jean-Paul Doignon, Anthony Labarre. On Hultman numbers. Journal of Integer Sequences, University of Waterloo, 2007, 10 (6), pp.13. ⟨hal-00728923⟩



Record views


Files downloads