Skip to Main content Skip to Navigation
Journal articles

QUASISTATIONARY DISTRIBUTIONS AND FLEMING-VIOT PROCESSES IN FINITE SPACES

Abstract : Consider a continuous-time Markov process with transition rates matrix Q in the state space Lambda boolean OR {0}. In In the associated Fleming-Viot process N particles evolve independently in A with transition rates matrix Q until one of them attempts to jump to state 0. At this moment the particle jumps to one of the positions of the other particles, chosen uniformly at random. When Lambda is finite, we show that the empirical distribution of the particles at a fixed time converges as N -> infinity to the distribution of a single particle at the same time conditioned on not touching {0}. Furthermore, the empirical profile of the unique invariant measure for the Fleming-Viot process with N particles converges as N -> infinity to the unique quasistationary distribution of the one-particle motion. A key element of the approach is to show that the two-particle correlations are of order 1/N.
Document type :
Journal articles
Complete list of metadatas

https://hal-upec-upem.archives-ouvertes.fr/hal-00692986
Contributor : Admin Lama <>
Submitted on : Tuesday, May 1, 2012 - 7:14:11 PM
Last modification on : Thursday, March 19, 2020 - 12:26:02 PM

Identifiers

  • HAL Id : hal-00692986, version 1

Citation

Amine Asselah, Pablo A. Ferrari, Pablo Groisman. QUASISTATIONARY DISTRIBUTIONS AND FLEMING-VIOT PROCESSES IN FINITE SPACES. Journal of Applied Probability, Applied Probability Trust, 2011, 48 (2), pp.322--332. ⟨hal-00692986⟩

Share

Metrics

Record views

261