Mutational equations of the morphological dilation tubes

Abstract : The present paper provides some differential results dealing with the morpho-logical dilation of a compact set in the nonregular case. Indeed the evolution of dilated sets with respect to time is characterized through mutational equa-tions which are new mathematical tools extending the concept of differential equations to the metric space of all nonempty compact sets of IR n . Using this new tool, we prove that the mutation of the dilation is the normal cone which is a generalization of the classical notion of normal. This result clearly establishes that the dilation transforms this initial set in the direction of the normal at any point of the set. Furthermore, it does not require any regularity assumptions on the compact set.
Type de document :
Article dans une revue
Journal of Mathematical Imaging and Vision, Springer Verlag, 1995, 5 (3), pp.219 - 230. <10.1007/BF01248373>
Liste complète des métadonnées


https://hal-upec-upem.archives-ouvertes.fr/hal-00622457
Contributeur : Laurent Najman <>
Soumis le : vendredi 14 novembre 2014 - 17:25:38
Dernière modification le : mercredi 28 septembre 2016 - 16:02:44
Document(s) archivé(s) le : dimanche 15 février 2015 - 11:25:22

Fichier

mut.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Luc Doyen, Laurent Najman, Juliette Mattioli. Mutational equations of the morphological dilation tubes. Journal of Mathematical Imaging and Vision, Springer Verlag, 1995, 5 (3), pp.219 - 230. <10.1007/BF01248373>. <hal-00622457>

Partager

Métriques

Consultations de
la notice

322

Téléchargements du document

89