Watershed of a Continuous Function

Abstract : The notion of watershed, used in morphological segmentation, has only a digital definition. In this paper, we propose to extend this definition to the continuous plane. Using this continuous definition, we present the watershed differences with classical edge detectors. We then exhibit a metric in the plane for which the watershed is a skeleton by influence zones and show the lower semicontinuous behaviour of the associated skeleton. This theoretical approach suggests an algorithm for solving the eikonal equation: ‖∇ƒ‖ = g. Finally, we end with some new watershed algorithms, which present the advantage of allowing the use of markers and/or anchor points, thus opening the way towards grey-tone skeletons.
Liste complète des métadonnées


https://hal-upec-upem.archives-ouvertes.fr/hal-00622129
Contributeur : Laurent Najman <>
Soumis le : vendredi 14 novembre 2014 - 16:24:02
Dernière modification le : mercredi 28 septembre 2016 - 16:04:45
Document(s) archivé(s) le : dimanche 15 février 2015 - 10:15:25

Fichier

lpe.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Laurent Najman, Michel Schmitt. Watershed of a Continuous Function. Signal Processing, Elsevier, 1994, 38 (1), pp.99-112. <10.1016/0165-1684(94)90059-0>. <hal-00622129>

Partager

Métriques

Consultations de
la notice

140

Téléchargements du document

294