E. P. Achterberg, . Van-den, C. M. Berg, M. Boussemart, and W. Davison, Speciation and cycling of trace metals in Esthwaite water: a productive English lake with seasonal deep-water anoxia, Geochim. Cosmochim. Acta, vol.61, pp.5233-5253, 1997.

D. D. Adams, M. T. Hurtgen, and B. B. Sageman, Volcanic triggering of a biogeochemical cascade during Oceanic Anoxic Event 2, Nat. Geosci, vol.3, pp.201-204, 2010.

J. M. Adelson, G. R. Helz, and C. V. Miller, Reconstructing the rise of recent coastal anoxia; molybdenum in Chesapeake Bay sediments, Geochim. Cosmochim. Acta, vol.65, pp.237-252, 2001.

M. Ader, P. Sansjofre, G. P. Halverson, V. Busigny, R. I. Trindade et al., Ocean redox structure across the Late Neoproterozoic Oxygenation Event: A nitrogen isotope perspective, Earth Planet. Sci. Lett, vol.396, pp.1-13, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01388690

M. Ader, C. Thomazo, P. Sansjofre, V. Busigny, D. Papineau et al., Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks: Assumptions and perspectives, Chem. Geol, vol.429, pp.93-110, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01453168

T. J. Algeo, P. H. Heckel, J. B. Maynard, R. C. Blakey, and H. Rowe, Modern and ancient epeiric seas and the super-estuarine circulation model of marine anoxia, Spec. Pap. -Geol. Assoc. Can, pp.7-38, 2008.

T. J. Algeo, G. M. Luo, H. Y. Song, T. W. Lyons, and D. E. Canfield, Reconstruction of secular variation in seawater sulfate concentrations, Biogeosciences, vol.12, pp.2131-2151, 2015.

T. J. Algeo and T. W. Lyons, Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions, Paleoceanography, vol.21, p.1016, 2006.

T. J. Algeo, T. W. Lyons, R. C. Blakey, and D. J. Over, Hydrographic conditions of the Devono-Carboniferous North American Seaway inferred from sedimentary Mo-TOC relationships, 2007.

, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.256, pp.204-230

T. J. Algeo and J. B. Maynard, Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems, Chem. Geol, vol.206, pp.289-318, 2004.

T. J. Algeo and J. B. Maynard, Trace-metal covariation as a guide to water-mass conditions in ancient anoxic marine environmentsTrace-metal covariation in paleoenvironmental analysis, Geosphere, vol.4, pp.872-887, 2008.

T. J. Algeo and H. Rowe, Paleoceanographic applications of trace-metal concentration data, Chem. Geol, vol.324, pp.6-18, 2012.

T. J. Algeo and N. Tribovillard, Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation, Chem. Geol, vol.268, pp.211-225, 2009.

R. C. Aller, V. Madrid, A. Chistoserdov, J. Y. Aller, and C. Heilbrun, Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: Implications for oceanic isotope cycles and the sedimentary record, Geochim. Cosmochim. Acta, vol.74, pp.4671-4692, 2010.

T. F. Anderson and R. Raiswell, Sources and mechanisms for the enrichment of highly reactive iron in euxinic Black Sea sediments, Am. J. Sci, vol.304, pp.203-233, 2004.

C. Archer and D. Vance, The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans, Nature Geosci, vol.1, pp.597-600, 2008.

M. Arnaboldi and P. A. Meyers, Trace element indicators of increased primary production and decreased water-column ventilation during deposition of latest Pliocene sapropels at five locations across the Mediterranean Sea, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.249, pp.425-443, 2007.

M. Arthur, H. Brumsack, H. Jenkyns, and S. Schlanger, Stratigraphy, geochemistry, and paleoceanography of organic carbon-rich cretaceous sequences, Cretac. Resour. events rhythms, p.304, 1990.

M. A. Arthur, W. E. Dean, and L. M. Pratt, Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary, Nature, vol.335, pp.714-717, 1988.

M. A. Arthur and I. Silva, Development of widespread organic carbon rich strata in the Mediterranean Tethys, in Nature and Origin of Cretaceous Carbon-Rich Facies, pp.7-54, 1982.

M. A. Arthur and B. B. Sageman, Marine Black Shales: Depositional Mechanisms and Environments of Ancient Deposits, Annu. Rev. Earth Planet. Sci, vol.22, pp.499-551, 1994.

M. A. Arthur and B. B. Sageman, Sea-Level Control on Source-Rock Development: Perspectives from the Holocene Black Sea, the Mid-Cretaceous Western Interior Basin of North America, and the Late Devonian Appalachian Basin, 2005.

M. A. Arthur, S. O. Schlanger, and H. C. Jenkyns, The Cenomanian-Turonian Oceanic Anoxic Event, II. Palaeoceanographic controls on organic-matter production and preservation, Geol. Soc. Lond. Spec. Publ, vol.26, pp.401-420, 1987.

M. A. Arthur and S. O. Schlanger, Cretaceous ' oceanic anoxic events' as causal factors in development of reef-reservoired giant oil fields, Am. Assoc. Pet. Geol. Bull, vol.63, pp.870-885, 1979.

R. K. Bambach, Phanerozoic Biodiversity Mass Extinctions, Annu. Rev. Earth Planet. Sci, vol.34, pp.127-155, 2006.

R. S. Barclay, J. C. Mcelwain, and B. B. Sageman, Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event 2, Nat. Geosci, vol.3, pp.205-208, 2010.

E. J. Barron, A warm, equable Cretaceous: The nature of the problem, Earth-Sci. Rev, vol.19, issue.83, pp.90001-90007, 1983.

E. J. Barron, P. J. Fawcett, W. H. Peterson, D. Pollard, and S. L. Thompson, A "simulation" of Mid-Cretaceous climate, Paleoceanography, vol.10, pp.953-962, 1995.

S. J. Batenburg, D. De-vleeschouwer, M. Sprovieri, F. J. Hilgen, A. S. Gale et al., Orbital control on the timing of oceanic anoxia in the Late Cretaceous, Clim. Past, vol.12, 1995.

F. Baudin, A Late Hauterivian short-lived anoxic event in the Mediterranean Tethys: the 'Faraoni Event, Comptes Rendus Geosci, vol.337, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00068772

F. Baudin and L. Riquier, The Late Hauterivian Faraoni 'Oceanic Anoxic Event': an update, Bull. Soc. Geol. Fr, vol.185, pp.359-377, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01102596

F. Behar, V. Beaumont, B. De, and H. L. Penteado, Rock-Eval 6 technology: performances and developments. Oil and gas science and technology, Rev. Inst.t Fr. Pét, vol.56, pp.111-134, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02053894

K. L. Bice, D. Birgel, P. A. Meyers, K. A. Dahl, K. Hinrichs et al., A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations, Paleoceanography, vol.21, p.2002, 2006.

K. L. Bice, B. T. Huber, and R. D. Norris, Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian ?18O record at Deep Sea Drilling Project Site 511, Paleoceanography, vol.18, p.1031, 2003.

C. J. Bjerrum, J. Bendtsen, and J. J. Legarth, Modeling organic carbon burial during sea level rise with reference to the Cretaceous, Geochem. Geophys. Geosystems, vol.7, 2006.

R. Blakey, Global paleogeography. NAU Geology, 2011.

C. L. Blättler, H. C. Jenkyns, L. M. Reynard, and G. M. Henderson, Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes, Earth Planet. Sci. Lett, vol.309, pp.77-88, 2011.

M. Blumenberg and F. Wiese, Imbalanced nutrients as triggers for black shale formation in a shallow shelf setting during the OAE 2 (Wunstorf, Germany), Biogeosciences, vol.9, pp.4139-4153, 2012.

B. Bomou, T. Adatte, A. A. Tantawy, H. Mort, D. Fleitmann et al., The expression of the Cenomanian-Turonian oceanic anoxic event in Tibet, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.369, pp.466-481, 2013.

V. Bout-roumazeilles, N. Combourieu-nebout, S. Desprat, G. Siani, J. Turon et al., Tracking atmospheric and riverine terrigenous supplies variability during the last glacial and the Holocene in central Mediterranean, Clim Past, vol.9, pp.1065-1087, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00861322

E. A. Boyle, F. R. Sclater, and J. M. Edmond, The distribution of dissolved copper in the Pacific, Earth Planet. Sci. Lett, vol.37, pp.38-54, 1977.

T. J. Bralower, P. D. Fullagar, C. K. Paull, G. S. Dwyer, and R. M. Leckie, Mid-Cretaceous strontiumisotope stratigraphy of deep-sea sections, GSA Bull, vol.109, pp.1421-1442, 1997.

T. J. Bralower, W. V. Sliter, M. A. Arthur, R. M. Leckie, D. Allard et al., Dysoxic/anoxic episodes in the Aptian-Albian (Early Cretaceous), pp.5-37, 1993.

T. J. Bralower and H. R. Thierstein, Low productivity and slow deep-water circulation in mid-Cretaceous oceans, Geology, vol.12, pp.614-618, 1984.

G. N. Breit and R. B. Wanty, Vanadium accumulation in carbonaceous rocks: a review of geochemical controls during deposition and diagenesis, Chem. Geol, vol.91, pp.83-97, 1991.

H. J. Brumsack, Geochemistry of Cretaceous black shales from the Atlantic Ocean (DSDP Legs 11, 14, 36, and 41), Chem. Geol, vol.31, pp.1-25, 1980.

H. J. Brumsack, The inorganic geochemistry of Cretaceous black shales (DSDP leg 41) in comparison to modern upwelling sediments from the Gulf of California, North Atlantic Palaeoceanography, vol.21, pp.447-462, 1986.

H. J. Brumsack, Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea, Geol. Rundsch, vol.78, pp.851-882, 1989.

H. Brumsack, The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.232, pp.344-361, 2006.

D. M. Buchs, A. C. Kerr, J. C. Brims, J. P. Zapata-villada, T. Correa-restrepo et al., Evidence for subaerial development of the Caribbean oceanic plateau in the Late Cretaceous and palaeo-environmental implications, Earth Planet. Sci. Lett, vol.499, pp.62-73, 2018.

J. A. Burnett, L. T. Gallagher, and M. J. Hampton, Upper Cretaceous, Calcareous nannofossil biostratigraphy, pp.132-199, 1998.

S. E. Calvert and T. F. Pedersen, Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record, Mar. Geol, vol.113, issue.93, p.90150, 1993.

S. E. Calvert and T. F. Pedersen, Chapter Fourteen Elemental Proxies for Palaeoclimatic and Palaeoceanographic Variability in Marine Sediments: Interpretation and Application, pp.567-644, 2007.

S. E. Calvert and D. Z. Piper, Geochemistry of ferromanganese nodules: multiple diagenetic metal sources in the deep sea, Geochim. Cosmochim. Acta, vol.48, issue.84, pp.90374-90374, 1984.

D. E. Canfield, A new model for Proterozoic ocean chemistry, Nature, vol.396, pp.450-453, 1998.

D. E. Canfield, T. W. Lyons, and R. Raiswell, A model for iron deposition to euxinic Black Sea sediments, Am. J. Sci, vol.296, pp.818-834, 1996.

D. E. Canfield, S. W. Poulton, A. H. Knoll, G. M. Narbonne, G. Ross et al., Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry, Science, vol.321, pp.949-952, 2008.

D. E. Canfield, R. Raiswell, and S. H. Bottrell, The reactivity of sedimentary iron minerals toward sulfide, Am. J. Sci, vol.292, pp.659-683, 1992.

D. E. Canfield, R. Raiswell, J. T. Westrich, C. M. Reaves, and R. A. Berner, The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales, Chem. Geol, vol.54, issue.86, pp.90078-90079, 1986.

D. E. Canfield, B. Thamdrup, and J. W. Hansen, The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction, Geochim. Cosmochim. Acta, vol.57, issue.93, pp.90340-90343, 1993.

M. L. Caplan and R. M. Bustin, Devonian-Carboniferous Hangenberg mass extinction event, widespread organic-rich mudrock and anoxia: causes and consequences, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.148, pp.187-207, 1999.

M. Caron, S. Dall'agnolo, H. Accarie, E. Barrera, E. G. Kauffman et al., High-resolution stratigraphy of the Cenomanian-Turonian boundary interval at Pueblo (USA) and wadi Bahloul (Tunisia): stable isotope and bio-events correlation, Geobios, vol.39, pp.171-200, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00357321

M. Caron, F. Robaszynski, F. Amedro, F. Baudin, J. Deconinck et al., Estimation de la duree de l'evenement anoxique global au passage Cenomanien/Turonien; approche cyclostratigraphique dans la formation Bahloul en Tunisie centrale, vol.170, pp.145-160, 1999.

G. Charbonnier, T. Adatte, J. E. Spangenberg, and K. B. Föllmi, The expression of early Aptian to latest Cenomanian oceanic anoxic events in the sedimentary record of the Briançonnais domain, Glob. Planet. Change, vol.170, pp.76-92, 2018.

G. Charbonnier, S. Boulila, J. E. Spangenberg, T. Adatte, K. B. Föllmi et al., Obliquity pacing of the hydrological cycle during the Oceanic Anoxic Event 2, Earth Planet. Sci. Lett, vol.499, pp.266-277, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02315499

H. Chen, P. Yeh, S. Song, S. Hsu, T. Yang et al., The Ti/Al molar ratio as a new proxy for tracing sediment transportation processes and its application in aeolian events and sea level change in East Asia, J. Asian Earth Sci, vol.73, pp.31-38, 2013.

L. J. Clarke and H. C. Jenkyns, New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere, Geology, vol.27, p.699, 1999.

M. O. Clarkson, C. H. Stirling, H. C. Jenkyns, A. J. Dickson, D. Porcelli et al., Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02360572

V. E. Courtillot and P. R. Renne, On the ages of flood basalt events, Comptes Rendus Geoscience, vol.335, pp.113-140, 2003.

R. E. Cranston and J. W. Murray, The determination of chromium species in natural waters, Anal. Chim. Acta, vol.99, pp.83568-83574, 1978.

J. Crumière, Crise anoxique à la limite Cénomanien-Turonien dans le bassin subalpin oriental, Les Evenements de la Partie Moyenne du Cretacé (Aptien à Turonien), vol.22, pp.189-203, 1989.

J. Crumière, C. Crumière-airaud, J. Espitalié, and P. Cotillon, Global and regional controls on potential source-rock deposition and preservation: The Cenomanian-Turonian Oceanic Anoxic Event (CTOAE) on the European Tethyan margin (southeastern France), in Deposition of Organic Facies, AAPG Stud. Geol, vol.30, pp.107-118, 1990.

J. P. Crumière, C. Crumière-airaud, and A. Schaaf, Les événements de la limite Cénomanien-Turonien dans le domaine subalpin méridional et en Provence, Livret-guide, vol.113, 1991.

J. Crusius, S. Calvert, T. Pedersen, and D. Sage, Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition, Earth Planet. Sci. Lett, vol.145, pp.65-78, 1996.

J. Danzelle, L. Riquier, F. Baudin, C. Thomazo, and E. Pucéat, Oscillating redox conditions in the Vocontian Basin (SE France) during Oceanic Anoxic Event 2 (OAE 2), Chem. Geol, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01828264

O. Dellwig, T. Leipe, C. März, M. Glockzin, F. Pollehne et al., A new particulate Mn-Fe-P-shuttle at the redoxcline of anoxic basins, Geochim. Cosmochim. Acta, vol.74, pp.7100-7115, 2010.

G. J. Demaison and G. T. Moore, Anoxic environments and oil source bed genesis, Org. Geochem, vol.2, pp.9-31, 1980.

L. A. Derry, A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly, Earth Planet. Sci. Lett, vol.294, pp.152-162, 2010.

D. Desmares, N. Crognier, J. Bardin, M. Testé, B. Beaudoin et al., A new proxy for Cretaceous paleoceanographic and paleoclimatic reconstructions: Coiling direction changes in the planktonic foraminifera Muricohedbergella delrioensis, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.445, pp.8-17, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01259877

D. Desmares, D. Grosheny, B. Beaudoin, S. Gardin, and F. Gauthier-lafaye, High resolution stratigraphic record constrained by volcanic ash beds at the Cenomanian-Turonian boundary in the Western Interior Basin, USA. Cretac. Res, vol.28, pp.561-582, 2007.
URL : https://hal.archives-ouvertes.fr/halsde-00178572

C. Deutsch, J. L. Sarmiento, D. M. Sigman, N. Gruber, and J. P. Dunne, Spatial coupling of nitrogen inputs and losses in the ocean, Nature, vol.445, pp.163-167, 2007.

C. Deutsch, D. M. Sigman, R. C. Thunell, A. N. Meckler, and G. H. Haug, Isotopic constraints on glacial/interglacial changes in the oceanic nitrogen budget, Glob. Biogeochem. Cycles, vol.18, 2004.

A. J. Dickson, H. C. Jenkyns, D. Porcelli, S. Van-den-boorn, and E. Idiz, Basin-scale controls on the molybdenum-isotope composition of seawater during Oceanic Anoxic Event 2 (Late Cretaceous), 2016.

, Geochim. Cosmochim. Acta, vol.178, pp.291-306

A. J. Dickson, M. Saker-clark, H. C. Jenkyns, C. Bottini, E. Erba et al., A Southern Hemisphere record of global trace-metal drawdown and orbital modulation of organic-matter burial across the Cenomanian-Turonian boundary, Kerguelen Plateau). Sedimentology, vol.64, pp.186-203, 2017.

A. J. Dickson, M. Saker-clark, H. C. Jenkyns, C. Bottini, E. Erba et al., A Southern Hemisphere record of global trace-metal drawdown and orbital modulation of organic-matter burial across the Cenomanian-Turonian boundary, Kerguelen Plateau). Sedimentology, vol.64, pp.186-203, 2017.

Y. Donnadieu, E. Pucéat, M. Moiroud, F. Guillocheau, and J. Deconinck, A better-ventilated ocean triggered by Late Cretaceous changes in continental configuration, Nat Commun, vol.7, p.10316, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01259857

D. Vivier, A. D. Selby, D. Condon, D. J. Takashima, R. Nishi et al., Pacific 187Os/188Os isotope chemistry and U-Pb geochronology: Synchroneity of global Os isotope change across OAE 2, Earth Planet. Sci. Lett, vol.428, pp.204-216, 2015.

D. Vivier, A. D. Selby, D. Sageman, B. B. Jarvis, I. Gröcke et al., Marine 187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2, Earth Planet. Sci. Lett, vol.389, pp.23-33, 2014.

D. Vivier, A. D. Jacobson, A. D. Lehn, G. O. Selby, D. Hurtgen et al., Ca isotope stratigraphy across the Cenomanian-Turonian OAE 2: Links between volcanism, seawater geochemistry, and the carbonate fractionation factor, Earth Planet. Sci. Lett, vol.416, pp.121-131, 2015.

L. E. Eary and D. Rai, Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide, Environ. Sci. Technol, vol.21, pp.1187-1193, 1987.

J. S. Eldrett, P. Dodsworth, S. C. Bergman, M. Wright, and D. Minisini, Water-mass evolution in the Cretaceous Western Interior Seaway of North America and equatorial Atlantic, Clim Past, vol.13, pp.855-878, 2017.

J. S. Eldrett, C. Ma, S. C. Bergman, B. Lutz, F. J. Gregory et al., An astronomically calibrated stratigraphy of the Cenomanian, Turonian and earliest Coniacian from the Cretaceous Western Interior Seaway, USA: Implications for global chronostratigraphy, Cretac. Res, vol.56, pp.316-344, 2015.

J. S. Eldrett, D. Minisini, and S. C. Bergman, Decoupling of the carbon cycle during Ocean Anoxic Event 2, Geology, vol.42, pp.567-570, 2014.

M. Elrick, R. Molina-garza, R. Duncan, and L. Snow, C-isotope stratigraphy and paleoenvironmental changes across OAE2 (mid-Cretaceous) from shallow-water platform carbonates of southern Mexico, Earth Planet. Sci. Lett, vol.277, pp.295-306, 2009.

E. Erba, Calcareous nannofossil palaeoecology and palaeocenographic reconstructions, Mar. Micropaleontol, vol.52, pp.85-106, 2004.

E. Erba, J. E. Channell, M. Claps, C. Jones, R. Larson et al., ); a reference section for the Barremian-Aptian interval at low latitudes, J. Foraminifer. Res, vol.29, pp.371-391, 1999.

J. Erbacher, O. Friedrich, P. A. Wilson, H. Birch, and J. Mutterlose, Stable organic carbon isotope stratigraphy across Oceanic Anoxic Event 2 of Demerara Rise, western tropical Atlantic: CARBON ISOTOPE STRATIGRAPHY, Geochem. Geophys. Geosystems, vol.6, 2005.

J. Erbacher, B. T. Huber, R. D. Norris, and M. Markey, Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period, Nature, vol.409, pp.325-327, 2001.

J. Erbacher and J. Thurow, Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys, Mar. Micropaleontol., InterRad VII, vol.30, pp.139-158, 1997.

B. E. Erickson and G. R. Helz, Molybdenum(VI) speciation in sulfidic waters, Geochim. Cosmochim. Acta, vol.64, pp.1149-1158, 2000.

J. Espitalié, G. Deroo, and F. Marquis, La pyrolyse Rock-Eval et ses applications, Première partie, Rev. Inst.t Fr. Pét, vol.40, pp.563-579, 1985.

J. Espitalié, G. Deroo, and F. Marquis, La pyrolyse Rock-Eval et ses applications, Deuxième partie, Rev. Inst.t Fr. Pét, vol.40, pp.755-784, 1985.

J. Espitalié, G. Deroo, and F. Marquis, La pyrolyse Rock-Eval et ses applications, Troisième partie, Rev. Inst.t Fr. Pét, vol.41, pp.73-89, 1986.

J. Espitalié, J. L. Laporte, M. Madec, F. Marquis, P. Leplat et al., Méthode rapide de caractérisation des roches mètres, de leur potentiel pétrolier et de leur degré d'évolution, Rev. Inst. Fr. Pétrole, vol.32, pp.23-42, 1977.

F. Falzoni, M. R. Petrizzo, H. C. Jenkyns, A. S. Gale, and H. Tsikos, Planktonic foraminiferal biostratigraphy and assemblage composition across the Cenomanian-Turonian boundary interval at Clot Chevalier (Vocontian Basin, SE France), Cret. Res, vol.59, pp.69-97, 2016.

A. G. Fernando, R. Takashima, H. Nishi, F. Giraud, and H. Okada, Calcareous nannofossil biostratigraphy of the Thomel Level (OAE2) in the Lambruisse section, 2009.
URL : https://hal.archives-ouvertes.fr/insu-00649506

, France = Biostratigraphie à nannofossiles calcaires du Niveau Thomel (OAE2) dans la coupe de Lambruisse, vol.43, pp.45-57

F. Fernex, G. Février, J. Benaïm, and A. Arnoux, Copper, lead and zinc trapping in Mediterranean deep-sea sediments: probable coprecipitation with manganese and iron, Chem. Geol, vol.98, pp.293-308, 1992.

D. A. Fike, A. S. Bradley, and C. V. Rose, Rethinking the Ancient Sulfur Cycle, Annu. Rev. Earth Planet. Sci, vol.43, pp.593-622, 2015.

A. G. Fischer and M. A. Arthur, Secular Variations in the Pelagic Realm, 1977.

K. B. Föllmi, The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits, Earth-Sci. Rev, vol.40, pp.55-124, 1996.

A. Forster, M. M. Kuypers, S. C. Turgeon, H. Brumsack, M. R. Petrizzo et al., The Cenomanian/Turonian oceanic anoxic event in the South Atlantic: New insights from a geochemical study of DSDP Site 530A, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.267, pp.256-283, 2008.

A. Forster, S. Schouten, K. Moriya, P. A. Wilson, and J. S. Sinninghe-damsté, Tropical warming and intermittent cooling during the Cenomanian/Turonian oceanic anoxic event 2: Sea surface temperature records from the equatorial Atlantic, Paleoceanography, vol.22, p.1219, 2007.

L. A. Frakes, Estimating the global thermal state from Cretaceous sea surface and continental temperature data, in: Special Paper 332: Evolution of the Cretaceous Ocean-Climate System, pp.49-57, 1999.

L. A. Frakes, J. E. Francis, and J. I. Syktus, Climate Modes of the Phanerozoic, 2005.

K. H. Freeman and J. M. Hayes, Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels, Global Biogeochem Cycles, vol.6, pp.185-198, 1992.

O. Friedrich, J. Erbacher, and J. Mutterlose, Paleoenvironmental changes across the Cenomanian/Turonian Boundary Event (Oceanic Anoxic Event 2) as indicated by benthic foraminifera from the Demerara Rise (ODP Leg 207), Rev. Micropaléontologie, vol.49, pp.121-139, 2006.

O. Friedrich, R. D. Norris, and J. Erbacher, Evolution of middle to Late Cretaceous oceans-a 55 my record of Earth's temperature and carbon cycle, Geology, vol.40, pp.107-110, 2012.

G. Frijia and M. Parente, Strontium isotope stratigraphy in the upper Cenomanian shallow-water carbonates of the southern Apennines: Short-term perturbations of marine 87Sr/86Sr during the oceanic anoxic event 2, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.261, pp.15-29, 2008.

A. S. Gale and W. K. Christensen, Occurrence of the belemnite Actinocamax plenus in the Cenomanian of SE France and its significance, Bull. Geol. Soc. Den, vol.43, pp.68-77, 1996.

A. Gale, H. C. Jenkyns, H. Tsikos, Y. Van-breugel, J. S. Sinninghe-damsté et al., High-resolution bio-and chemostratigraphy of an expanded record of Oceanic Anoxic Event 2 (Late Cenomanian-Early Turonian) at Clot Chevalier, 2018.

A. S. Gale, Cyclostratigraphy and correlation of the Cenomanian Stage in Western Europe, Geol. Soc. Lond. Spec. Publ, vol.85, pp.177-197, 1995.

A. S. Gale, H. C. Jenkyns, H. Tsikos, Y. Van-breugel, J. S. Sinninghe-damsté et al., High-resolution bio-and chemostratigraphy of an expanded record of Oceanic Anoxic Event 2 (Late Cenomanian-Early Turonian) at Clot Chevalier, 2018.

A. S. Gale, A. B. Smith, N. E. Monks, J. A. Young, A. Howard et al., Marine biodiversity through the Late Cenomanian-Early Turonian: palaeoceanographic controls and sequence stratigraphic biases, Journal of the Geological Society, vol.157, pp.745-757, 2000.

D. L. Gautier, Cretaceous shales from the western interior of North America: Sulfur/carbon ratios and sulfur-isotope composition, Geology, vol.14, pp.225-228, 1986.

G. A. Gill and W. F. Fitzgerald, Vertical mercury distributions in the oceans, Geochim. Cosmochim, vol.52, pp.1719-1728, 1988.

T. Goldberg, S. W. Poulton, T. Wagner, S. F. Kolonic, and M. Rehkämper, Molybdenum drawdown during Cretaceous Oceanic Anoxic Event 2, Earth Planet. Sci. Lett, vol.440, pp.81-91, 2016.

M. L. Gomes and M. T. Hurtgen, Sulfur isotope systematics of a euxinic, low-sulfate lake: Evaluating the importance of the reservoir effect in modern and ancient oceans, Geology, vol.41, pp.663-666, 2013.

M. L. Gomes, M. T. Hurtgen, and B. B. Sageman, Biogeochemical sulfur cycling during Cretaceous oceanic anoxic events: A comparison of OAE1a and OAE 2, Paleoceanography, vol.31, 2016.

D. Grosheny, B. Beaudoin, L. Morel, and D. Desmares, High-resolution biotratigraphy and chemostratigraphy of the Cenomanian/Turonian boundary event in the Vocontian Basin, southeast France, Cretac. Res, vol.27, pp.629-640, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00110752

D. Grosheny, S. Ferry, C. Lécuyer, A. Thomas, and D. Desmares, The Cenomanian-Turonian Boundary Event (CTBE) on the southern slope of the Subalpine Basin (SE France) and its bearing on a probable tectonic pulse on a larger scale, Cretac. Res, vol.72, pp.39-65, 2017.

K. S. Habicht, M. Gade, B. Thamdrup, P. Berg, and D. E. Canfield, Calibration of sulfate in the Archean ocean, Science, vol.298, pp.2372-2374, 2002.

B. U. Haq, J. Hardenbol, and P. R. Vail, Chronology of Fluctuating Sea Levels Since the Triassic, Science, vol.235, pp.1156-1167, 1987.

T. Hasegawa, Cenomanian-Turonian carbon isotope events recorded in terrestrial organic matter from northern Japan, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.130, pp.251-273, 1997.

T. Hasegawa, J. S. Crampton, P. Schiøler, B. Field, K. Fukushi et al., Carbon isotope stratigraphy and depositional oxia through Cenomanian/Turonian boundary sequences (Upper Cretaceous) in New Zealand, Cret. Res, vol.40, pp.61-80, 2013.

G. H. Haug, T. F. Pedersen, D. M. Sigman, S. E. Calvert, B. Nielsen et al., Glacial/interglacial variations in production and nitrogen fixation in the Cariaco Basin during the last 580 kyr, Paleoceanography, vol.13, pp.427-432, 1998.

W. W. Hay, Can humans force a return to a 'Cretaceous' climate?, Sedimentary Geology, vol.235, pp.5-26, 2011.

W. W. Hay and S. Floegel, New thoughts about the Cretaceous climate and oceans, Earth-Science Reviews, vol.115, pp.262-272, 2012.

J. M. Hayes, H. Strauss, and A. J. Kaufman, The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma, Chem. Geol, vol.161, pp.103-125, 1999.

U. Heimhofer, N. Wucherpfennig, T. Adatte, S. Schouten, E. Schneebeli-hermann et al., Vegetation response to exceptional global warmth during Oceanic Anoxic Event 2, Nat. Commun, vol.9, p.3832, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01884719

G. R. Helz, C. V. Miller, J. M. Charnock, J. L. Mosselmans, R. A. Pattrick et al., Mechanisms of molybdenum removal from the sea and its concentration in black shales: EXAFS evidences, Geochim. Cosmochim. Acta, vol.60, pp.3631-3642, 1996.

J. P. Herbin, E. Masure, J. S. Roucach, and . Wise, Cretaceous formations from the lower continental rise off Cape Hatteras: Organic geochemistry, dinoflagellate cysts, and the Cenomanian/Turonian Boundary Event at Sites 603 (Leg 93) and 105 (Leg 11 ), In: Initial Reports, DSDP, vol.93, pp.1139-1162, 1987.

J. O. Herrle, P. Kößler, O. Friedrich, H. Erlenkeuser, and C. Hemleben, High-resolution carbon isotope records of the Aptian to Lower Albian from SE France and the Mazagan Plateau (DSDP Site 545): a stratigraphic tool for paleoceanographic and paleobiologic reconstruction, Earth Planet. Sci. Lett, vol.218, pp.149-161, 2004.

J. O. Herrle, C. J. Schröder-adams, W. Davis, A. T. Pugh, J. M. Galloway et al., Mid-Cretaceous High Arctic stratigraphy, climate, and Oceanic Anoxic Events, Geology, vol.43, pp.403-406, 2015.

A. Hetzel, M. E. Böttcher, U. G. Wortmann, and H. Brumsack, Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207), Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.273, pp.302-328, 2009.

A. Hetzel, C. März, C. Vogt, and H. Brumsack, Geochemical environment of Cenomanian -Turonian black shale deposition at Wunstorf (northern Germany), Cretac. Res, vol.32, pp.480-494, 2011.

M. B. Higgins, R. S. Robinson, J. M. Husson, S. J. Carter, and A. Pearson, Dominant eukaryotic export production during ocean anoxic events reflects the importance of recycled NH4+, Proc Natl Acad Sci U S A, vol.109, pp.2269-2274, 2012.

A. Holbourn and W. Kuhnt, Cenomanian-Turonian palaeoceanographic change on the Kerguelen Plateau: a comparison with Northern Hemisphere records, Cretac. Res, vol.23, pp.333-349, 2002.

H. D. Holland, The Chemical Evolution of the Atmosphere and Oceans, 1984.

H. D. Holland, The oxygenation of the atmosphere and oceans, Philos Trans R Soc Lond B Biol Sci, vol.361, pp.903-915, 2006.

C. Holmden, A. D. Jacobson, B. B. Sageman, and M. T. Hurtgen, Response of the Cr isotope proxy to Cretaceous Ocean Anoxic Event 2 in a pelagic carbonate succession from the Western Interior Seaway, Geochim. Cosmochim. Acta, 2016.

R. M. Hotinski, K. L. Bice, L. R. Kump, R. G. Najjar, and M. A. Arthur, Ocean stagnation and end-Permian anoxia, Geology, vol.29, pp.7-10, 2001.

B. T. Huber, D. A. Hodell, and C. P. Hamilton, Middle-Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients, GSA Bull, vol.107, pp.1164-1191, 1995.

B. T. Huber, R. D. Norris, and K. G. Macleod, Deep-sea paleotemperature record of extreme warmth during the Cretaceous, Geology, vol.30, pp.123-126, 2002.

M. A. Huerta-diaz and J. W. Morse, Pyritization of Trace Metals in Anoxic Marine Sediments, Geochim. Cosmochim. Acta, vol.56, pp.2681-2702, 1992.

E. Ingall and R. Jahnke, Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters, Geochim. Cosmochim. Acta, vol.58, pp.90033-90040, 1994.

E. Ingall, L. Kolowith, T. Lyons, and M. Hurtgen, Sediment carbon, nitrogen and phosphorus cycling in an anoxic fjord, Am. J. Sci, vol.305, pp.240-258, 2005.

I. Jarvis, W. C. Burnett, Y. Nathan, F. S. Almbaydin, A. K. Attia et al., Phosphorite geochemistry-state-of-the-art and environmental concerns, Eclogae Geol. Helv, vol.87, pp.643-700, 1994.

I. Jarvis, G. A. Carson, M. K. Cooper, M. B. Hart, P. N. Leary et al., Microfossil Assemblages and the Cenomanian-Turonian (late Cretaceous) Oceanic Anoxic Event, Cretac. Res, vol.9, pp.3-103, 1988.

I. Jarvis, A. S. Gale, H. C. Jenkyns, and M. A. Pearce, Secular variation in Late Cretaceous carbon isotopes: a new ?13C carbonate reference curve for the Cenomanian-Campanian, 2006.

, Geol. Mag, vol.143, pp.561-608

I. Jarvis, J. S. Lignum, D. R. Gröcke, H. C. Jenkyns, and M. A. Pearce, Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian Oceanic Anoxic Event, Paleoceanography, vol.26, p.3201, 2011.

R. P. Jefferies, The stratigraphy of the Actinocamax plenus Subzone (Turonian) in the Anglo-Paris Basin, Proceedings of the Geologists' Association, vol.74, pp.80011-80016, 1963.

D. H. Jenkyns, The early Toarcian and Cenomanian-Turonian anoxic events in Europe: comparisons and contrasts, Geol. Rundsch, vol.74, pp.505-518, 1985.

H. C. Jenkyns, The early Toarcian (Jurassic) anoxic event; stratigraphic, sedimentary and geochemical evidence, Am. J. Sci, vol.288, pp.101-151, 1988.

H. C. Jenkyns, Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world, Philos. Trans. R. Soc. Math. Phys. Eng. Sci, vol.361, pp.1885-1916, 2003.

H. C. Jenkyns, Geochemistry of oceanic anoxic events, Geochem. Geophys. Geosyst, vol.11, 2010.

H. C. Jenkyns, A. J. Dickson, M. Ruhl, and S. H. Van-den-boorn, Basalt-seawater interaction, the Plenus Cold Event, enhanced weathering and geochemical change: deconstructing Oceanic Anoxic Event 2 (Cenomanian-Turonian, Late Cretaceous), Sedimentology, vol.64, pp.16-43, 2017.

H. C. Jenkyns, A. Forster, S. Schouten, and J. S. Sinninghe-damsté, High temperatures in the Late Cretaceous Arctic Ocean, Nature, vol.432, pp.888-892, 2004.

H. C. Jenkyns, A. S. Gale, and R. M. Corfield, Carbon-and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance, Geol. Mag, vol.131, 1994.

H. C. Jenkyns, A. Matthews, H. Tsikos, and Y. Erel, Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the Cenomanian-Turonian oceanic anoxic event, Paleoceanography, vol.22, p.3208, 2007.

D. T. Johnston, F. Wolfe-simon, A. Pearson, and A. H. Knoll, Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age, PNAS, vol.106, pp.16925-16929, 2009.

B. Jones and D. A. Manning, Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones, Chem. Geol, vol.111, p.90085, 1994.

C. E. Jones and H. C. Jenkyns, Seawater Strontium Isotopes, Oceanic Anoxic Events, and Seafloor Hydrothermal Activity in the Jurassic and Cretaceous, Am J Sci, vol.301, pp.112-149, 2001.

B. B. Jorgensen, A theoretical model of the stable sulfur isotope distribution in marine sediments, Geochim. Cosmochim, vol.43, pp.363-374, 1979.

C. K. Junium and M. A. Arthur, Nitrogen cycling during the Cretaceous, Cenomanian-Turonian Oceanic Anoxic Event II, Geochem. Geophys. Geosyst, vol.8, p.3002, 2007.

K. Kaiho, O. Fujiwara, and I. Motoyama, Mid-Cretaceous faunal turnover of intermediate-water benthic foraminifera in the northwestern Pacific Ocean margin, Mar. Micropaleontol, vol.23, issue.93, p.90052, 1993.

V. Karakitsios, H. Tsikos, Y. Breugel, . Van, L. Koletti et al., First evidence for the Cenomanian-Turonian oceanic anoxic event (OAE2, Int. J. Earth Sci, vol.96, pp.343-352, 2006.

D. Karl, A. Michaels, B. Bergman, D. Capone, E. Carpenter et al., Dinitrogen fixation in the world's oceans, Biogeochemistry, vol.57, pp.47-98, 2002.

R. F. Keeling, A. Körtzinger, and N. Gruber, Ocean Deoxygenation in a Warming World, Annual Review of Marine Science, vol.2, pp.199-229, 2010.

G. Keller, Cretaceous climate, volcanism, impacts, and biotic effects, Cret. Res, vol.29, pp.754-771, 2008.

G. Keller, Z. Berner, T. Adatte, and D. Stueben, Cenomanian-Turonian and ?13C, and ?18O, sea level and salinity variations at, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.211, pp.19-43, 2004.

W. J. Kennedy, I. Walaszczyk, and W. A. Cobban, The global boundary stratotype section and point for the base of the Turonian stage of the cretaceous, 2005.

A. C. Kerr, Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary?, J. Geol. Soc, vol.155, pp.619-626, 1998.

C. G. Kingsbury, S. L. Kamo, R. E. Ernst, U. Söderlund, and B. L. Cousens, U-Pb geochronology of the plumbing system associated with the Late Cretaceous Strand Fiord Formation, J. Geodyn, 2017.

G. P. Klinkhammer and M. R. Palmer, Uranium in the oceans: where it goes and why, Geochim. Cosmochim. Acta, vol.55, pp.1799-1806, 1991.

M. E. Kohnen, J. S. Damsté, A. C. Kock-van-dalen, H. L. Haven, J. Rullkötter et al., Origin and diagenetic transformations of C25 and C30 highly branched isoprenoid sulfur compounds: Further evidence for the formation of organically bound sulfur during early diagenesis, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.54, pp.59-67, 1988.

S. Kolonic, J. S. Damsté, M. E. Böttcher, M. M. Kuypers, W. Kuhnt et al., Geochemical Characterization of Cenomanian/Turonian Black Shales from the Tarfaya Basin (sw Morocco), Journal of Petroleum Geology, vol.25, pp.325-350, 2002.

S. Kolonic, T. Wagner, A. Forster, J. S. Sinninghe-damsté, B. Walsworth-bell et al., Black shale deposition on the northwest African Shelf during the Cenomanian/Turonian oceanic anoxic event: Climate coupling and global organic carbon burial, Paleoceanography, vol.20, p.1006, 2005.

P. Kraal, C. P. Slomp, A. Forster, and M. M. Kuypers, Phosphorus cycling from the margin to abyssal depths in the proto-Atlantic during oceanic anoxic event 2, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.295, pp.42-54, 2010.

W. Kuhnt, J. P. Herbin, J. Thurow, J. Wiedmann, and A. Y. Huc, Distribution of Cenomanian-Turonian organic facies in the western Mediterranean and along the adjacent Atlantic margin, Deposition of organic facies, vol.30, pp.133-160, 1990.

W. Kuhnt, A. E. Holbourn, S. Beil, M. Aquit, T. Krawczyk et al., Unraveling the onset of Cretaceous Oceanic Anoxic Event 2 in an extended sediment archive from the Tarfaya-Laayoune Basin, Morocco. Paleoceanography, vol.32, pp.923-946, 2017.

W. Kuhnt, F. Luderer, S. Nederbragt, J. Thurow, and T. Wagner, Orbital-scale record of the late Cenomanian-Turonian oceanic anoxic event (OAE-2) in the Tarfaya Basin (Morocco), Int. J. Earth Sci, vol.94, pp.147-159, 2004.

W. Kuhnt, A. Nederbragt, and L. Leine, Cyclicity of Cenomanian-Turonian organic-carbon-rich sediments in the Tarfaya Atlantic Coastal Basin (Morocco), Cretac. Res, vol.18, pp.587-601, 1997.

J. Kuroda, N. O. Ogawa, M. Tanimizu, M. F. Coffin, H. Tokuyama et al., Contemporaneous massive subaerial volcanism and late cretaceous Oceanic Anoxic Event 2, Earth Planet. Sci. Lett, vol.256, pp.211-223, 2007.

M. M. Kuypers, L. J. Lourens, W. I. Rijpstra, R. D. Pancost, I. A. Nijenhuis et al., Orbital forcing of organic carbon burial in the proto-North Atlantic during oceanic anoxic event 2, Earth Planet. Sci. Lett, vol.228, pp.465-482, 2004.

M. M. Kuypers, Y. Breugel, . Van, S. Schouten, E. Erba et al., N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events, Geology, vol.32, pp.853-856, 2004.

M. M. Kuypers, R. D. Pancost, I. A. Nijenhuis, and J. S. Sinninghe-damsté, Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event, Paleoceanography, vol.17, p.1051, 2002.

M. M. Kuypers, A. O. Sliekers, G. Lavik, M. Schmid, B. B. Jørgensen et al., Anaerobic ammonium oxidation by anammox bacteria in the Black Sea, Nature, vol.422, pp.608-611, 2003.

R. L. Larson, Latest pulse of Earth: Evidence for a mid-Cretaceous superplume, Geology, vol.19, pp.547-550, 1991.

R. L. Larson and E. Erba, Onset of the Mid-Cretaceous greenhouse in the Barremian-Aptian: Igneous events and the biological, sedimentary, and geochemical responses, Paleoceanography, vol.14, pp.663-678, 1999.

R. M. Leckie, T. J. Bralower, and R. Cashman, Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous, Paleoceanography, vol.17, pp.13-14, 2002.

M. Lenniger, H. Nøhr-hansen, L. V. Hills, and C. J. Bjerrum, Arctic black shale formation during Cretaceous Oceanic Anoxic Event 2, Geology, vol.42, pp.799-802, 2014.

Y. Li, I. P. Montañez, Z. Liu, and L. Ma, Astronomical constraints on global carbon-cycle perturbation during Oceanic Anoxic Event 2 (OAE2), Earth Planet. Sci. Lett, vol.462, pp.35-46, 2017.

T. K. Lowenstein, L. A. Hardie, M. N. Timofeeff, and R. V. Demicco, Secular variation in seawater chemistry and the origin of calcium chloride basinal brines, Geology, vol.31, pp.857-860, 2003.

C. M. Lowery, R. M. Leckie, R. Bryant, K. Elderbak, A. Parker et al., The Late Cretaceous Western Interior Seaway as a model for oxygenation change in epicontinental restricted basins, Earth-Sci. Rev, vol.177, pp.545-564, 2018.

Z. Lu, H. C. Jenkyns, and R. E. Rickaby, Iodine to calcium ratios in marine carbonate as a paleoredox proxy during oceanic anoxic events, Geology, vol.38, pp.1107-1110, 2010.

S. Lüning, S. Kolonic, E. M. Belhadj, Z. Belhadj, L. Cota et al., Integrated depositional model for the Cenomanian-Turonian organic-rich strata in North Africa, Earth-Sci. Rev, vol.64, pp.51-117, 2004.

T. W. Lyons, Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black Sea, Geochim. Cosmochim, vol.61, pp.174-183, 1997.

T. W. Lyons, A. D. Anbar, S. Severmann, C. Scott, and B. C. Gill, Tracking Euxinia in the Ancient Ocean: A Multiproxy Perspective and Proterozoic Case Study, Annu. Rev. Earth Planet. Sci, vol.37, pp.507-534, 2009.

T. W. Lyons, C. T. Reinhard, and N. J. Planavsky, The rise of oxygen in Earth/'s early ocean and atmosphere, Nature, vol.506, pp.307-315, 2014.

T. W. Lyons and S. Severmann, A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins, Geochim. Cosmochim., A Special Issue Dedicated to Robert A. Berner, vol.70, pp.5698-5722, 2006.

T. W. Lyons, J. P. Werne, D. J. Hollander, and R. Murray, Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Chem. Geol, vol.195, issue.1, pp.131-157, 2003.

C. Ma, S. R. Meyers, B. B. Sageman, B. S. Singer, and B. R. Jicha, Testing the astronomical time scale for oceanic anoxic event 2, and its extension into Cenomanian strata of the Western Interior Basin (USA), GSA Bulletin, vol.126, pp.974-989, 2014.

K. G. Macleod, E. E. Martin, and S. W. Blair, Nd isotopic excursion across Cretaceous ocean anoxic event 2 (Cenomanian-Turonian) in the tropical North Atlantic, Geology, vol.36, pp.811-814, 2008.

S. Manabe and K. Bryan, CO2-induced change in a coupled ocean-atmosphere model and its paleoclimatic implications, J. Geophys. Res. Oceans, vol.90, pp.11689-11707, 1985.

D. J. Marais, Isotopic Evolution of the Biogeochemical Carbon Cycle During the Precambrian, Rev. Mineral. Geochem, vol.43, pp.555-578, 2001.

E. E. Martin, K. G. Macleod, A. Berrocoso, and E. Bourbon, Water mass circulation on Demerara Rise during the Late Cretaceous based on Nd isotopes, Earth Planet. Sci. Lett. 327, vol.328, 2012.

C. März, S. W. Poulton, B. Beckmann, K. Küster, T. Wagner et al., Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters, Geochim. Cosmochim. Acta, vol.72, pp.3703-3717, 2008.

S. M. Mclennan, Relationships between the trace element composition of sedimentary rocks and upper continental crust, Geochem. Geophys. Geosyst, vol.2, p.1021, 2001.

J. Mcmanus, W. M. Berelson, G. P. Klinkhammer, K. S. Johnson, K. H. Coale et al., Geochemistry of barium in marine sediments: implications for its use as a paleoproxy, Geochim. Cosmochim. Acta, vol.62, pp.3453-3473, 1998.

J. Mcmanus, W. M. Berelson, S. Severmann, R. L. Poulson, D. E. Hammond et al., Molybdenum and uranium geochemistry in continental margin sediments: Paleoproxy potential, Geochim. Cosmochim, vol.70, pp.4643-4662, 2006.

K. M. Meyer and L. R. Kump, Oceanic Euxinia in Earth History: Causes and Consequences, Annu. Rev. Earth Planet. Sci, vol.36, pp.251-288, 2008.

P. A. Meyers, Preservation of elemental and isotopic source identification of sedimentary organic matter, Chem. Geol, vol.114, pp.289-302, 1994.

P. A. Meyers, Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes, Org. Geochem, vol.27, pp.213-250, 1997.

P. A. Meyers, Paleoceanographic and paleoclimatic similarities between Mediterranean sapropels and Cretaceous black shales, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.235, pp.305-320, 2006.

P. A. Meyers, J. Yum, and S. W. Wise, Origins and maturity of organic matter in mid-Cretaceous black shales from ODP Site 1138 on the Kerguelen Plateau, Mar. Pet. Geol, vol.26, pp.909-915, 2009.

P. A. Meyers, S. M. Bernasconi, and J. Yum, 20My of nitrogen fixation during deposition of mid-Cretaceous black shales on the Demerara Rise, equatorial Atlantic Ocean, Org. Geochem, vol.40, pp.158-166, 2009.

S. R. Meyers, Production and preservation of organic metter: The significance of iron, Paeleoceanography, vol.22, p.4211, 2007.

S. R. Meyers, S. E. Siewert, B. S. Singer, B. B. Sageman, D. J. Condon et al., Intercalibration of radioisotopic and astrochronologic time scales for the Cenomanian-Turonian boundary interval, Geology, vol.40, pp.7-10, 2012.

S. R. Meyers, B. B. Sageman, and M. A. Arthur, Obliquity forcing and the amplification of highlatitude climate processes during Oceanic Anoxic Event 2, Paleoceanography, vol.27, 2012.

M. Minagawa and E. Wada, Nitrogen isotope ratios of red tide organisms in the East China Sea: A characterization of biological nitrogen fixation, Mar. Chem, vol.19, issue.86, pp.90026-90031, 1986.

R. N. Mitchell, D. M. Bice, A. Montanari, L. C. Cleaveland, K. T. Christianson et al., Oceanic anoxic cycles? Orbital prelude to the Bonarelli Level (OAE 2), Earth Planet. Sci. Lett, vol.267, pp.1-16, 2008.

F. M. Monteiro, R. D. Pancost, A. Ridgwell, and Y. Donnadieu, Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian-Turonian oceanic anoxic event (OAE2): Model-data comparison, Paleoceanography, vol.27, p.4209, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02902769

L. Morel, Stratigraphie à haute résolution du passage Cénomanien-Turonien, vol.224, p.pp, 1998.

J. L. Morford and S. Emerson, The geochemistry of redox sensitive trace metals in sediments, Geochim. Cosmochim, vol.63, pp.1735-1750, 1999.

J. L. Morford, W. R. Martin, R. François, and C. M. Carney, A model for uranium, rhenium, and molybdenum diagenesis in marine sediments based on results from coastal locations, Geochim. Cosmochim, vol.73, pp.2938-2960, 2009.

J. L. Morford, A. D. Russell, and S. Emerson, Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Mar. Geol, vol.174, pp.355-369, 2001.

J. W. Morse and G. W. Luther, Chemical influences on trace metal-sulfide interactions in anoxic sediments, Geochim. Cosmochim. Acta, vol.63, pp.3373-3378, 1999.

H. P. Mort, T. Adatte, K. B. Föllmi, G. Keller, P. Steinmann et al., Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2, Geology, vol.35, pp.483-486, 2007.

H. Mort, O. Jacquat, T. Adatte, P. Steinmann, K. Föllmi et al., The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and Spain: enhanced productivity and/or better preservation?, Cret. Res, vol.28, pp.597-612, 2007.

H. P. Mort, T. Adatte, G. Keller, D. Bartels, K. B. Föllmi et al., Organic carbon deposition and phosphorus accumulation during Oceanic Anoxic Event 2 in Tarfaya, Morocco. Cret. Res, vol.29, pp.1008-1023, 2008.

T. J. Nameroff, L. S. Balistrieri, and J. W. Murray, Suboxic trace metal geochemistry in the Eastern Tropical North Pacific, Geochim. Cosmochim, vol.66, pp.843-845, 2002.

H. W. Nesbitt, C. M. Fedo, and G. M. Young, Quartz and Feldspar Stability, Steady and Non-steady-State Weathering, and Petrogenesis of Siliciclastic Sands and Muds, J. Geol, vol.105, pp.173-192, 1997.

C. L. O'brien, S. A. Robinson, R. D. Pancost, J. S. Sinninghe-damsté, S. Schouten et al., Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes, Earth-Science Reviews, vol.172, pp.224-247, 2017.

A. M. Oehlert and P. K. Swart, Interpreting carbonate and organic carbon isotope covariance in the sedimentary record, Nat. Commun, vol.5, 2014.

N. Ohkouchi, Y. Kashiyama, J. Kuroda, N. O. Ogawa, and H. Kitazato, The importance of diazotrophic cyanobacteria as primary producers during Cretaceous Oceanic Anoxic Event 2, Biogeosciences, vol.3, pp.467-478, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00297578

N. Ohkouchi, K. Kawamura, Y. Kajiwara, E. Wada, M. Okada et al., Sulfur isotope records around Livello Bonarelli (northern Apennines, Italy) black shale at the Cenomanian-Turonian boundary, Geology, vol.27, pp.535-538, 1999.

C. J. Orth, M. Attrep, L. R. Quintana, W. P. Elder, E. G. Kauffman et al., Elemental abundance anomalies in the late Cenomanian extinction interval: a search for the source(s), Earth Planet. Sci. Lett, vol.117, issue.93, p.90126, 1993.

C. M. Ostrander, J. D. Owens, and S. G. Nielsen, Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ~94 Ma), Sci Adv, vol.3, 2017.

J. D. Owens, B. C. Gill, H. C. Jenkyns, S. M. Bates, S. Severmann et al., Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.18407-18412, 2013.

J. D. Owens, T. W. Lyons, D. S. Hardisty, C. M. Lowery, Z. Lu et al., Patterns of local and global redox variability during the Cenomanian-Turonian Boundary Event (Oceanic Anoxic Event 2) recorded in carbonates and shales from central Italy, Sedimentology, vol.64, pp.168-185, 2017.

J. D. Owens, T. W. Lyons, X. Li, K. G. Macleod, G. Gordon et al., Iron isotope and trace metal records of iron cycling in the proto-North Atlantic during the Cenomanian-Turonian oceanic anoxic event (OAE-2), Paleoceanography, vol.27, p.3223, 2012.

R. D. Pancost, N. Crawford, S. Magness, A. Turner, H. C. Jenkyns et al., Further evidence for the development of photic-zone euxinic conditions during Mesozoic oceanic anoxic events, J.Geol. Soc. London, vol.161, pp.353-364, 2004.

M. Parente, G. Frijia, M. Di-lucia, H. C. Jenkyns, R. G. Woodfine et al., Stepwise extinction of larger foraminifers at the Cenomanian-Turonian boundary: A shallow-water perspective on nutrient fluctuations during Oceanic Anoxic Event 2 (Bonarelli Event), Geology, vol.36, p.715, 2008.

V. Pasquier, P. Sansjofre, M. Rabineau, S. Revillon, J. Houghton et al., Pyrite sulfur isotopes reveal glacial-interglacial environmental changes, P. Natl. Acad. Sci. USA, vol.114, issue.23, pp.5941-5945, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01592589

C. R. Paul, M. A. Lamolda, S. F. Mitchell, M. R. Vaziri, A. Gorostidi et al., ): a proposed European reference section, The Cenomanian-Turonian boundary at Eastbourne, vol.150, pp.9-16, 1999.

M. A. Pearce, I. Jarvis, and B. A. Tocher, The Cenomanian-Turonian boundary event, OAE2 and palaeoenvironmental change in epicontinental seas: New insights from the dinocyst and geochemical records, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.280, pp.207-234, 2009.

T. F. Pedersen and S. E. Calvert, Anoxia vs productivity; what controls the formation of organiccarbon-rich sediments and sedimentary rocks?, vol.74, pp.454-466, 1990.

L. M. Percival, H. C. Jenkyns, T. A. Mather, A. J. Dickson, S. J. Batenburg et al., Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of Oceanic Anoxic Event 2 and the end-Cretaceous to other Mesozoic events, Am. J. Sci, vol.318, pp.799-860, 2018.

L. M. Percival, M. L. Witt, T. A. Mather, M. Hermoso, H. C. Jenkyns et al., Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo-Ferrar Large Igneous Province, Earth Planet. Sci. Lett, vol.428, pp.267-280, 2015.

K. Peters, Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis, 1986.

B. Peucker-ehrenbrink and G. Ravizza, The marine osmium isotope record, Terra Nova, vol.12, pp.205-219, 2000.

J. Philip, J. F. Babinot, G. Tronchetti, E. Fourcade, R. Guiraud et al., Late Cenomanian (94-92 Ma), in: Atlas Tethys Palaeoenvironmental Maps. Explanatory Notes, pp.153-178, 1993.

D. Z. Piper and S. E. Calvert, A marine biogeochemical perspective on black shale deposition, Earth Sci. Rev, vol.95, pp.63-96, 2009.

D. Z. Piper and R. B. Perkins, A modern vs. Permian black shale-the hydrography, primary productivity, and water-column chemistry of deposition, Chem. Geol, vol.206, pp.177-197, 2004.

N. J. Planavsky, The elements of marine life, Nat. Geosci, vol.7, p.855, 2014.

N. J. Planavsky, P. Mcgoldrick, C. T. Scott, C. Li, C. T. Reinhard et al., Widespread iron-rich conditions in the mid-Proterozoic ocean, Nature, vol.477, pp.448-451, 2011.

P. A. Pogge-von-strandmann, H. C. Jenkyns, and R. G. Woodfine, Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2, Nat. Geosci, vol.6, pp.668-672, 2013.

B. N. Popp, E. A. Laws, R. R. Bidigare, J. E. Dore, K. L. Hanson et al., Effect of Phytoplankton Cell Geometry on Carbon Isotopic Fractionation, Geochim. Cosmochim. Acta, vol.62, pp.69-77, 1998.

B. Porthault, Le Crétacé supérieur de la Fosse vocontienne et des régions limitrophes : (France sud-est), micropaléontologie, stratigraphie, paléogéographie (phdthesis), 1974.

D. Postma and C. A. Appelo, Reduction of Mn-oxides by ferrous iron in a flow system: column experiment and reactive transport modeling, Geochim. Cosmochim. Acta, vol.64, pp.1237-1247, 2000.

C. J. Poulsen, E. J. Barron, M. A. Arthur, and W. H. Peterson, Response of the Mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings, Paleoceanography, vol.16, pp.576-592, 2001.

S. W. Poulton and D. E. Canfield, Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates, Chem. Geol, vol.214, pp.209-221, 2005.

S. W. Poulton and D. E. Canfield, Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History, Elements, vol.7, pp.107-112, 2011.

S. W. Poulton, S. Henkel, C. März, H. Urquhart, S. Flögel et al., A continental-weathering control on orbitally driven redox-nutrient cycling during Cretaceous Oceanic Anoxic Event 2, Geology, vol.43, pp.963-966, 2015.

S. W. Poulton, M. D. Krom, and R. Raiswell, A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide, Geochim. Cosmochim. Acta, vol.68, pp.3703-3715, 2004.

S. W. Poulton and R. Raiswell, The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition, Am. J. Sci, vol.302, pp.774-805, 2002.

L. M. Pratt and C. N. Threlkeld, Stratigraphic Significance of 13C/12C Ratios in Mid-Cretaceous Rocks of the Western Interior, pp.305-312, 1984.

E. Pucéat, C. Lécuyer, S. M. Sheppard, G. Dromart, S. Reboulet et al., Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels, Paleoceanography, vol.18, p.1029, 2003.

A. T. Pugh, C. J. Schröder-adams, E. S. Carter, J. O. Herrle, J. Galloway et al., Cenomanian to Santonian radiolarian biostratigraphy, carbon isotope stratigraphy and paleoenvironments of the Sverdrup Basin, Palaeogeogr. Palaeoclimatol. Palaeoecol. Complete, pp.101-122, 2014.

R. Raiswell and D. E. Canfield, Sources of iron for pyrite formation in marine sediments, Am. J. Sci, vol.298, issue.3, pp.219-245, 1998.

R. Raiswell, F. Buckley, R. A. Berner, and T. F. Anderson, Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation, J. Sediment. Res, vol.58, pp.812-819, 1988.

R. Raiswell and D. E. Canfield, Sources of iron for pyrite formation in marine sediments, Am. J. Sci, vol.298, pp.219-245, 1998.

G. H. Rau, M. A. Arthur, and W. E. Dean, 15N/14N variations in Cretaceous Atlantic sedimentary sequences: implication for past changes in marine nitrogen biogeochemistry, Earth Planet. Sci. Lett, vol.82, pp.90201-90210, 1987.

D. M. Raup and J. J. Sepkoski, Mass Extinctions in the Marine Fossil Record, Science, vol.215, pp.1501-1503, 1982.

D. M. Raup and J. J. Sepkoski, Periodic extinction of families and genera, Science, vol.231, pp.833-836, 1986.

M. R. Raven, D. A. Fike, M. L. Gomes, S. M. Webb, A. S. Bradley et al., Organic carbon burial during OAE 2 driven by changes in the locus of organic matter sulfurization, Nat. Commun, vol.9, p.3409, 2018.

C. T. Reinhard, N. J. Planavsky, L. J. Robbins, C. A. Partin, B. C. Gill et al., Proterozoic ocean redox and biogeochemical stasis, PNAS, vol.110, pp.5357-5362, 2013.
URL : https://hal.archives-ouvertes.fr/insu-00815464

M. Reuschel, V. Melezhik, and H. Strauss, Sulfur isotopic trends and iron speciation from the c, vol.2, p.0, 2012.

, Ga Pilgujärvi Sedimentary Formation, NW Russia. Precamb. Res, vol.196, pp.193-203

L. Riquier, N. Tribovillard, O. Averbuch, X. Devleeschouwer, and A. Riboulleau, The Late Frasnian Kellwasser horizons of the Harz Mountains (Germany): Two oxygen-deficient periods resulting from different mechanisms, Chem. Geol, vol.233, pp.137-155, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00511955

F. Robaszynski and M. Caron, Foraminifères planctoniques du Crétacé: commentaire de la zonation Europe-Méditerranée, Bull. Soc. Géol. Fr, vol.166, pp.681-692, 1995.

S. A. Robinson, D. P. Murphy, D. Vance, and D. J. Thomas, Formation of "Southern Component Water" in the Late Cretaceous: Evidence from Nd-isotopes, Geology, vol.38, pp.871-874, 2010.

D. L. Royer, M. Pagani, and D. J. Beerling, Geobiological constraints on Earth system sensitivity to CO2 during the Cretaceous and Cenozoic, Geobiology, vol.10, pp.298-310, 2012.

J. Rullkötter, R. Littke, M. Radke, U. Disko, B. Horsfield et al., Petrography and geochemistry of organic matter in Triassic and Cretaceous sediments from the Wombat and Exmouth Plateau, Petrogr. Geochem. Org. Matter Triassic Cretac. Deep-Sea Sediments Wombat Exmouth Plateaus Nearby Abyssal Plains Northwest Aust, vol.122, pp.317-333, 1992.

R. Baroni, I. Topper, R. P. Van-helmond, N. A. Brinkhuis, H. Slomp et al., Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input, Biogeosciences, vol.11, pp.977-993, 2014.

R. Baroni, I. Van-helmond, N. A. Tsandev, I. Middelburg, J. J. Slomp et al., The nitrogen isotope composition of sediments from the proto-North Atlantic during Oceanic Anoxic Event 2, Paleoceanography, vol.30, 2015.

R. Baroni, I. Van-helmond, N. A. Tsandev, I. Middelburg, J. J. Slomp et al., The nitrogen isotope composition of sediments from the proto-North Atlantic during Oceanic Anoxic Event 2, Paleoceanography, vol.30, 2015.

B. B. Sageman, S. R. Meyers, and M. A. Arthur, Orbital time scale and new C-isotope record for Cenomanian-Turonian boundary stratotype, Geology, vol.34, pp.125-128, 2006.

B. B. Sageman, A. E. Murphy, J. P. Werne, C. A. Ver-straeten, D. J. Hollander et al., A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin, Chem. Geol, pp.229-273, 2003.

J. Sanfourche and F. Baudin, La genèse des évènements anoxiques de la période moyenne du Crétacé. Examen de l'hypothèse du mécromictisme océanique, Ann. Soc Geol. du Nord, T, vol.8, pp.107-119, 2001.

P. Sans-jofre, L' environnement post-marinoen (ca. 635 ma) : une étude multi-proxy de la plateforme carbonatée du Groupe d'Araras (Mato Grosso, Brésil) (thesis), 2011.

L. Sauvage, L. Riquier, C. Thomazo, F. Baudin, and M. Martinez, Oceanic Anoxic Event" at Río Argos (southern Spain): An assessment on the level of oxygen depletion, Chem. Geol, vol.340, pp.77-90, 2013.

J. D. Scaife, M. Ruhl, A. J. Dickson, T. A. Mather, H. C. Jenkyns et al., Sedimentary Mercury Enrichments as a Marker for Submarine Large Igneous Province Volcanism? Evidence From the Mid-Cenomanian Event and Oceanic Anoxic Event 2 (Late Cretaceous), Geochem. Geophys. Geosystems, vol.18, pp.4253-4275

S. O. Schlanger, M. A. Arthur, H. C. Jenkyns, and P. A. Scholle, The Cenomanian-Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine ?13C excursion, Geol. Soc. Lond. Spec. Publ, vol.26, pp.371-399, 1987.

S. O. Schlanger and H. C. Jenkyns, Cretaceous anoxic events: causes and consequences, Geol. Mijnb, vol.55, pp.179-184, 1976.

P. A. Scholle and M. A. Arthur, Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool, AAPG Bull, vol.64, pp.67-87, 1980.

G. Scopelliti, A. Bellanca, R. Coccioni, V. Luciani, R. Neri et al., High-resolution geochemical and biotic records of the Tethyan 'Bonarelli Level' (OAE2, latest Cenomanian) from the Calabianca-Guidaloca composite section, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.208, pp.293-317, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00021497

G. Scopelliti, A. Bellanca, E. Erba, H. C. Jenkyns, R. Neri et al., Cenomanian-Turonian carbonate and organic-carbon isotope records, biostratigraphy and provenance of a key section in NE Sicily, Italy: Palaeoceanographic and palaeogeographic implications, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.265, pp.59-77, 2008.

G. Scopelliti, A. Bellanca, E. Erba, H. C. Jenkyns, R. Neri et al., Cenomanian-Turonian carbonate and organic-carbon isotope records, biostratigraphy and provenance of a key section in NE Sicily, Italy: Palaeoceanographic and palaeogeographic implications, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.265, pp.59-77, 2008.

G. Scopelliti, A. Bellanca, R. Neri, F. Baudin, and R. Coccioni, Comparative high-resolution chemostratigraphy of the Bonarelli Level from the reference Bottaccione section (Umbria-Marche Apennines) and from an equivalent section in NW Sicily: Consistent and contrasting responses to the OAE2, Chem. Geol, vol.228, pp.266-285, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00080973

J. Sepúlveda, J. Wendler, A. Leider, H. Kuss, R. E. Summons et al., Molecular isotopic evidence of environmental and ecological changes across the Cenomanian-Turonian boundary in the Levant Platform of central Jordan, Org. Geochem, vol.40, pp.553-568, 2009.

N. J. Shackleton, S. J. Crowhurst, G. P. Weedon, and J. Laskar, Astronomical calibration of Oligocene--Miocene time, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.357, pp.1907-1929, 1999.

D. M. Sigman, J. Granger, P. J. Difiore, M. M. Lehmann, R. Ho et al., Coupled nitrogen and oxygen isotope measurements of nitrate along the eastern North Pacific margin: N and O isotopes of nitrate along the North Pacific margin, Glob. Biogeochem. Cycles, vol.19, 2005.

D. M. Sigman, K. L. Karsh, and K. L. Casciotti, Nitrogen Isotopes in the Ocean, Encyclopedia of Ocean Sciences, pp.40-54, 2009.

J. S. Sinninghe-damsté and J. Köster, A euxinic southern North Atlantic Ocean during the Cenomanian/Turonian oceanic anoxic event, Earth Planet. Sci. Lett, vol.158, pp.165-173, 1998.

J. S. Sinninghe-damsté, E. C. Van-bentum, G. Reichart, J. Pross, and S. Schouten, A CO2 decrease-driven cooling and increased latitudinal temperature gradient during the mid-Cretaceous Oceanic Anoxic Event 2, Earth Planet. Sci. Lett, vol.293, pp.97-103, 2010.

J. S. Sinninghé-damsté, M. M. Kuypers, R. D. Pancost, and S. Schouten, The carbon isotopic response of algae, (cyano)bacteria, archaea and higher plants to the late Cenomanian perturbation of the global carbon cycle: Insights from biomarkers in black shales from the Cape Verde Basin (DSDP Site 367), Org. Geochem., Stable Isotopes in Biogeosciences (II), vol.39, pp.1703-1718, 2008.

C. W. Sinton and R. A. Duncan, Potential links between ocean plateau volcanism and global ocean anoxia at the Cenomanian-Turonian boundary, Econ. Geol, vol.92, pp.836-842, 1997.

W. Sissingh, Biostratigraphy of Cretaceous calcareous nannoplankton, Geologie en Mijnbouw, vol.56, pp.37-65, 1977.

L. J. Snow, R. A. Duncan, and T. J. Bralower, sedimentary section and their relationship to Caribbean plateau construction and oxygen anoxic event 2, Paleoceanography, vol.20, p.3005, 2005.

M. Soua and N. Tribovillard, Modèle de dépôt pour le passage Cénomanien-Turonien: exemple de la formation Bahloul en Tunisie, Comptes Rendus Géosciences, vol.339, pp.692-701, 2007.

G. Stampfli, Le Briançonnais, terrain exotique dans les Alpes? Eclogae geol, Helv. 86, vol.1, pp.1-45, 1993.

G. M. Stampfli, J. Mosar, D. Marquer, R. Marchant, T. Baudin et al., Subduction and obduction processes in the Swiss Alps, Tectonophysics, vol.296, issue.98, pp.142-147, 1998.

K. L. Straub, W. A. Schönhuber, B. E. Buchholz-cleven, and B. Schink, Diversity of Ferrous Iron-Oxidizing, Nitrate-Reducing Bacteria and their Involvement in Oxygen-Independent Iron Cycling, Geomicrobiol. J, vol.21, pp.371-378, 2004.

R. A. Summons, J. M. Hayes, and C. Klein, In The Proterozoic Biosphere -A Multidisciplinary Study, édité par Schopf, pp.83-93, 1992.

T. C. Sweere, A. J. Dickson, H. C. Jenkyns, D. Porcelli, M. Elrick et al., Isotopic evidence for changes in the zinc cycle during Oceanic Anoxic Event 2 (Late Cretaceous), Geology, vol.46, pp.463-466, 2018.

R. Takashima, R. Coccioni, H. Nishi, and K. Hayashi, Mid-Cretaceous Oceanic Anoxic Events recorded in SE France and central Italy, Jour. Geol. Soc. Japan, vol.113, 2007.

R. Takashima, H. Nishi, K. Hayashi, H. Okada, H. Kawahata et al., Litho-, bio-and chemostratigraphy across the Cenomanian/Turonian boundary (OAE 2) in the Vocontian Basin of southeastern France, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.273, pp.61-74, 2009.

R. Takashima, H. Nishi, B. Huber, and R. M. Leckie, Greenhouse World and the Mesozoic Ocean, Oceanography, vol.19, pp.82-92, 2006.

R. Takashima, H. Nishi, T. Yamanaka, T. Tomosugi, A. G. Fernando et al., Prevailing oxic environments in the Pacific Ocean during the mid-Cretaceous Oceanic Anoxic Event 2, Nat. Commun, vol.2, p.234, 2011.

S. R. Taylor and S. M. Mclennan, The Geochemical Evolution of the Continental-Crust, Rev. Geophys, vol.33, pp.241-265, 1995.

S. R. Taylor and S. M. Mclennan, The continental crust: its composition and evolution, vol.312, 1985.

C. Tegner, M. Storey, P. M. Holm, S. B. Thorarinsson, X. Zhao et al., Magmatism and Eurekan deformation in the High Arctic Large Igneous Province: 40Ar-39Ar age of Kap Washington Group volcanics, North Greenland. Earth Planet. Sci. Lett, vol.303, pp.203-214, 2011.

J. Tesdal, E. D. Galbraith, and M. Kienast, Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records, Biogeosciences, vol.10, pp.101-118, 2013.

C. Thomazo, M. Ader, and P. Philippot, Extreme 15N-enrichments in 2.72-Gyr-old sediments: evidence for a turning point in the nitrogen cycle, Geobiology, vol.9, pp.107-120, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00567491

C. Thomazo, A. Brayard, S. Elmeknassi, E. Vennin, N. Olivier et al., Multiple sulfur isotope signals associated with the late Smithian event and the Smithian/Spathian boundary, Earth-Sci. Rev, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02270774

J. Thurow, H. Brumsack, J. Rullkötter, R. Littke, P. Meyers et al., The Cenomanian/Turonian Boundary Event in the Indian Ocean: a Key to Understand the Global Picture, Synthesis of Results from Scientific Drilling in the Indian Ocean, pp.253-273, 1992.

D. Tiraboschi, E. Erba, and H. C. Jenkyns, Origin of rhythmic Albian black shales (Piobbico core, central Italy): Calcareous nannofossil quantitative and statistical analyses and paleoceanographic reconstructions, Paleoceanography, vol.24, 2009.

R. P. Topper, J. Trabucho-alexandre, E. Tuenter, and P. T. Meijer, A regional ocean circulation model for the mid-Cretaceous North Atlantic Basin: implications for black shale formation, Clim. Past, vol.7, pp.277-297, 2011.

J. Trabucho-alexandre, E. Tuenter, G. A. Henstra, K. J. Van-der-zwan, R. S. Van-de-wal et al., The mid-Cretaceous North Atlantic nutrient trap: Black shales and OAEs, Paleoceanography, vol.25, p.4201, 2010.

N. Tribovillard, T. J. Algeo, F. Baudin, and A. Riboulleau, Analysis of marine environmental conditions based on molybdenum-uranium covariation-Applications to Mesozoic paleoceanography, Chem. Geol, pp.46-58, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00730851

N. Tribovillard, T. J. Algeo, T. Lyons, and A. Riboulleau, Trace metals as paleoredox and paleoproductivity proxies: An update, Chem. Geol, vol.232, pp.12-32, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00351351

N. Tribovillard, E. Hatem, O. Averbuch, F. Barbecot, V. Bout-roumazeilles et al., Iron availability as a dominant control on the primary composition and diagenetic overprint of organic-matter-rich rocks, Chem. Geol, vol.401, pp.67-82, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01140047

N. Tribovillard, A. Riboulleau, T. Lyons, and F. Baudin, Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales, Chem. Geol, vol.213, pp.385-401, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00021503

N. Tribovillard, A. Trentesaux, A. Ramdani, F. Baudinet, and A. Riboulleau, Controls on organic accumulation in late Jurassic shales of northwestern Europe as inferred from trace-metal geochemistry, Bull. Soc. géol. Fr, pp.491-506, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00351375

N. Tribovillard, A. Desprairies, E. Lallier-vergès, P. Bertrand, N. Moureau et al., Geochemical study of organic-matter rich cycles from the Kimmeridge Clay Formation of Yorkshire (UK): productivity versus anoxia, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.108, pp.165-181, 1994.

I. Tsandev and C. P. Slomp, Modeling phosphorus cycling and carbon burial during Cretaceous Oceanic Anoxic Events, Earth Planet. Sci. Lett, vol.286, pp.71-79, 2009.

H. Tsikos, H. C. Jenkyns, B. Walsworth-bell, M. R. Petrizzo, A. Forster et al., Carbon-isotope stratigraphy recorded by the Cenomanian-Turonian Oceanic Anoxic Event: correlation and implications based on three key localities, J. Geol. Soc, vol.161, pp.711-719, 2004.

S. Turgeon and H. Brumsack, Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian-Turonian Boundary Event (Cretaceous) in the Umbria-Marche Basin of central Italy, Chem. Geol, vol.234, pp.321-339, 2006.

S. C. Turgeon and R. A. Creaser, Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode, Nature, vol.454, pp.323-326, 2008.

T. Tyrrell, The relative influences of nitrogen and phosphorus on oceanic primary production, Nature, vol.400, pp.525-531, 1999.

R. V. Tyson and T. H. Pearson, Modern and ancient continental shelf anoxia: an overview, Geol. Soci. London. Spec. Publ, vol.58, pp.1-26, 1991.

E. C. Van-bentum, A. Hetzel, H. Brumsack, A. Forster, G. Reichart et al., Reconstruction of water column anoxia in the equatorial Atlantic during the Cenomanian-Turonian oceanic anoxic event using biomarker and trace metal proxies, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.280, pp.489-498, 2009.

E. C. Van-bentum, G. Reichart, A. Forster, and J. S. Sinninghe-damsté, Latitudinal differences in the amplitude of the OAE-2 carbon isotopic excursion: pCO2 and paleo productivity, Biogeosciences, vol.9, pp.717-731, 2012.

. Van-bentum, C. Elisabeth, G. Reichart, and J. S. Sinninghe-damsté, Organic matter provenance, palaeoproductivity and bottom water anoxia during the Cenomanian/Turonian oceanic anoxic event in the Newfoundland Basin (northern proto North Atlantic Ocean), Org. Geochem, vol.50, pp.11-18, 2012.

P. Van-cappellen and E. D. Ingall, Benthic phosphorus regeneration, net primary production, and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and phosphorus, Paleoceanography, vol.9, pp.677-692, 1994.

P. Van-cappellen, E. Viollier, A. Roychoudhury, L. Clark, E. Ingall et al., Biogeochemical Cycles of Manganese and Iron at the Oxic?Anoxic Transition of a Stratified Marine Basin (Orca Basin, Gulf of Mexico), Environ. Sci. Technol, vol.32, pp.2931-2939, 1998.

N. A. Van-helmond, I. Baroni, A. Sluijs, J. S. Sinninghe-damsté, and C. P. Slomp, Spatial extent and degree of oxygen depletion in the deep proto-North Atlantic basin during Oceanic Anoxic Event 2, Geochem. Geophys. Geosyst, vol.15, pp.4254-4266, 2014.

N. A. Van-helmond, . Van, A. Sluijs, G. Reichart, J. S. Damsté et al., A perturbed hydrological cycle during Oceanic Anoxic Event 2, Geology, vol.42, pp.123-126, 2014.

N. A. Van-helmond, A. Sluijs, N. M. Papadomanolaki, A. G. Plint, D. R. Gröcke et al., Equatorward phytoplankton migration during a cold spell within the Late Cretaceous supergreenhouse, Biogeosciences, vol.13, pp.2859-2872, 2016.

N. A. Van-helmond, A. Sluijs, J. S. Sinninghe-damsté, G. Reichart, S. Voigt et al., Freshwater discharge controlled deposition of Cenomanian-Turonian black shales on the NW European epicontinental shelf, 2015.

, Clim. Past, vol.11, pp.495-508

B. A. Van-mooy, R. G. Keil, and A. H. Devol, Impact of suboxia on sinking particulate organic carbon: Enhanced carbon flux and preferential degradation of amino acids via denitrification, Geochim. Cosmochim, vol.66, pp.457-465, 2002.

J. Veizer and A. Prokoph, Temperatures and oxygen isotopic composition of Phanerozoic oceans, Earth-Sci. Rev, vol.146, pp.92-104, 2015.

G. J. Vermeij, Economics, volcanoes, and Phanerozoic revolutions, Paleobiology, vol.21, pp.125-152, 1995.

P. R. Vogt, Volcanogenic upwelling of anoxic, nutrient-rich water: A possible factor in carbonatebank/reef demise and benthic faunal extinctions?, vol.101, pp.1225-1245, 1989.

S. Voigt, J. Erbacher, J. Mutterlose, W. Weiss, T. Westerhold et al., The Cenomanian -Turonian of the Wunstorf section -(North Germany): global stratigraphic reference section and new orbital time scale for Oceanic Anoxic Event 2, Newsl. Stratigr, vol.43, pp.65-89, 2008.

S. Voigt, A. S. Gale, and S. Flögel, Midlatitude shelf seas in the Cenomanian-Turonian greenhouse world: Temperature evolution and North Atlantic circulation, Paleoceanography, vol.19, p.4020, 2004.

S. Voigt, A. S. Gale, and T. Voigt, Sea-level change, carbon cycling and palaeoclimate during the Late Cenomanian of northwest Europe; an integrated palaeoenvironmental analysis, Cretac. Res, vol.27, pp.836-858, 2006.

T. Wagner, J. S. Sinninghe-damsté, P. Hofmann, and B. Beckmann, Euxinia and primary production in Late Cretaceous eastern equatorial Atlantic surface waters fostered orbitally driven formation of marine black shales, Paleoceanography, vol.19, p.3009, 2004.

M. Wagreich, OAE 3"-regional Atlantic organic carbon burial during the Coniacian-Santonian, Clim. Past, vol.8, pp.1447-1455, 2012.

C. S. Wang, X. M. Hu, L. Jansa, X. Q. Wan, and R. Tao, The Cenomanian-Turonian anoxic event in southern Tibet, Cretac. Res, vol.22, pp.481-490, 2001.

Y. Wang and P. Van-cappellen, A multicomponent reactive transport model of early diagenesis: application to redox cycling in coastal marine sediments, Geochim. Cosmochim. Acta, vol.60, pp.2993-3014, 1996.

R. B. Wanty and R. Goldhaber, Thermodynamics and kinetics of reactions involving vanadium in natural systems: accumulation of vanadium in sedimentary rock, Geochim. Cosmochim. Acta, vol.56, pp.171-183, 1992.

B. B. Ward, A. H. Devol, J. J. Rich, B. X. Chang, S. E. Bulow et al., Denitrification as the dominant nitrogen loss process in the Arabian Sea, Nature, vol.461, pp.78-81, 2009.

K. H. Wedepohl, The composition of the continental crust, Geochim. Cosmochim. Acta, vol.59, pp.1217-1232, 1995.

R. Wehausen and H. Brumsack, Cyclic variations in the chemical composition of eastern Mediterranean Pliocene sediments: a key for understanding sapropel formation, Mar. Geol, vol.153, pp.161-176, 1999.

S. Westermann, M. Caron, N. Fiet, D. Fleitmann, V. Matera et al., Evidence for oxic conditions during oceanic anoxic event 2 in the northern Tethyan pelagic realm, Cret. Res, vol.31, pp.500-514, 2010.

S. Westermann, D. Vance, V. Cameron, C. Archer, and S. A. Robinson, Heterogeneous oxygenation states in the Atlantic and Tethys oceans during Oceanic Anoxic Event 2, Earth Planet. Sci. Lett, vol.404, pp.178-189, 2014.

P. B. Wignall, Large igneous provinces and mass extinctions, Earth-Science Reviews, vol.53, pp.1-33, 2001.

M. Wilpshaar, H. Leereveld, and H. Visscher, Early Cretaceous sedimentary and tectonic development of the Dauphinois Basin (SE France), Cret. Res, vol.18, pp.457-468, 1997.

U. G. Wortmann and A. Paytan, Rapid variability of seawater chemistry over the past 130 million years, Science, vol.337, pp.334-336, 2012.

K. M. Yarincik, R. W. Murray, and L. C. Peterson, Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Paleoceanography, vol.578, pp.210-228, 2000.

A. L. Zerkle, C. K. Junium, D. E. Canfield, and C. H. House, Production of 15N-depleted biomass during cyanobacterial N2-fixation at high Fe concentrations, J. Geophys. Res. Biogeosciences, vol.113, 2008.

X. Zhang, Y. Gao, X. Chen, D. Hu, M. Li et al., Nitrogen isotopic composition of sediments from the eastern Tethys during Oceanic Anoxic Event 2, Palaeogeogr. Palaeoclimatol. Palaeoecol, 2018.

X. Zhang, D. M. Sigman, F. M. Morel, and A. M. Kraepiel, Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia, Proc. Natl. Acad. Sci, vol.111, pp.4782-4787, 2014.

X. Zheng, H. C. Jenkyns, A. S. Gale, D. J. Ward, and G. M. Henderson, Changing ocean circulation and hydrothermal inputs during Ocean Anoxic Event 2 (Cenomanian-Turonian): Evidence from Nd-isotopes in the European shelf sea, Earth Planet. Sci. Lett, vol.375, pp.338-348, 2013.

X. Zheng, H. C. Jenkyns, A. S. Gale, D. J. Ward, and G. M. Henderson, A climatic control on reorganization of ocean circulation during the mid-Cenomanian event and Cenomanian-Turonian oceanic anoxic event (OAE 2): Nd isotope evidence, Geology, vol.44, pp.151-154, 2016.

Y. Zheng, R. F. Anderson, A. Van-geen, and M. Q. Fleisher, Remobilization of authigenic uranium in marine sediments by bioturbation, Geochim. Cosmochim. Acta, vol.66, pp.1759-1772, 2002.

Y. Zheng, R. F. Anderson, A. Van-geen, and J. Kuwabara, Authigenic molybdenum formation in marine sediments: a link to pore water sulfide in the Santa Barbara Basin, Geochim. Cosmochim. Acta, vol.64, pp.4165-4178, 2000.

X. Zhou, H. C. Jenkyns, J. D. Owens, C. K. Junium, X. Zheng et al., Upper ocean oxygenation dynamics from I/Ca ratios during the Cenomanian-Turonian OAE 2, Paleoceanography, vol.30, 2015.

R. Le-passage-cénomanien-turonien, ) et de spéciation du fer atteste d'une oscillation entre des conditions suboxiques et anoxiques au sein des domaines profonds du Bassin Vocontien, au cours de l'OAE 2. Les enrichissements faibles en éléments indicateurs de productivité primaire (P, Ni, Cu, Ba), suggèrent cependant que celle-ci fut relativement modeste pour ce bassin. Ces conditions appauvries en oxygène furent interrompues par une phase d'intense réoxygénation, appelée Plenus Cold Event (PCE), semblant correspondre à une chute de la pCO2 induite par le piégeage massif du CO2 au sein de la matière organique dans les sédiments et par une consommation accrue CO2 par altération continentale. Les valeurs d'enrichissements relatifs en Mo et en U indiquent, par ailleurs, un faible renouvellement des eaux profondes, confirmant le caractère semi-confiné du Bassin Vocontien à cette période et suggère une mise en place d'une stratification de la colonne d'eau. L'évolution du signal isotopique de l'azote dans les sédiments atteste de périodes d'intensification de la fixation de N2 atmosphérique par des bactéries diazotrophes, Cet évènement est caractérisé par la présence d'enregistrements sédimentaires présentant un contenu en matière organique élevé, à l'origine d'une large excursion positive du signal de ? 13 C à l'échelle globale. Des indices géochimiques et biologiques indiquent que ces enregistrements sédimentaires sont associés à une diminution de la quantité d'O2 dans les sédiments et la colonne d'eau

, lié à la pyrite, marquée par une large excursion négative, suppose un développement de conditions sulfidiques depuis les sédiments vers la limite avec la colonne d'eau, voire au sein de la colonne d'eau. La sulfato-réduction microbienne s'effectuant dans un système « ouvert » par rapport au réservoir de sulfates marin, il est proposé que celle-ci fût alimentée par un apport de soufre issu d'émissions d'origine volcanique, Ces conditions sulfidiques ont pu induire un recyclage du phosphore dans la colonne d'eau

. Ainsi, développement de conditions appauvries en oxygène en favorisant la mise en place d'une stratification de la colonne d'eau. L'émission de CO2 et de soufre d'origine volcanique dans les océans, induisant une cascade de rétroactions positives affectant les cycles biogéochimiques, semble être l'élément déclencheur de la désoxygénation à l'échelle du Bassin Vocontien comme à l'échelle globale. Les bassins ayant enregistré les conditions de désoxygénation de la colonne d'eau les plus sévères, comme l'Atlantique Central ou les bassins profonds de l'Ouest-Téthys, sont caractérisés par un faible renouvellement des eaux profondes, mais également par des conditions de forte productivité primaire, associées à des apports de nutriments importants