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Abstract

Noise pollution has become one of the major issues of modern times. Acoustical panels made

of solid foamy materials can be used to absorb the noise in a speci�c frequency range. Mod-

eling the acoustic properties of real foam-based absorbers from the description of their local

geometry is essential to achieve desired acoustic target and enable design of these materials

from the manufacturing process.

This work is mainly concerned with the determination of the acoustic properties of

foams. This is a project carried out as part of a collaboration between a team of physico-

chemistry of foams in charge of the development of model materials (Navier laboratory UMR

8205 CNRS) and a team of acousticians responsible for the study of their acoustic properties

(MSME laboratory UMR 8208 CNRS). This thesis is structured around three main parts,

the content of which is summarized below. 1) The �rst part deals with the generation of

response surfaces by polynomial approximations, in order to have an intermediate model

between the micro-macro �nite element model and the macroscopic response. Instead of

calling the �nite element model systematically in an optimization work, we use the response

surface that contains the information associated with �nite element calculation points and

the corresponding interpolations. This manuscript was published in the AAuA journal as a

fast track publication. 2) The second part deals with a �nite element calculation in which

a large number of realizations are carried out in order to take into account all the possible

combinations when one has �ne experimental characterization at the microstructure scale

and that one seek to determine the properties of the foam with precision. The manuscript

is in preparation and a possible journal for the publication of this manuscript is the journal

Materials and Design. 3) The third part focuses on the development of a semi-analytical

model de�ned from an available formula to predict the permeability of a circular ori�ce in

a thin plate. This model, used in an appropriate way, makes it possible to calculate the

permeability of foams with a constant bubble size but a tuned membrane content. Numerical

validations by �nite element computations are proposed. The article has been accepted

for publication in the journal Physical Review E. A general introduction (statement of the

problem, theoretical and methodological framework, continuity and complementarity of the

papers) and a general conclusion complete these three parts, and make it possible to discuss

these contributions.
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R�esum�e

La pollution sonore est devenue l'un des probl�emes majeurs des temps modernes. Des iso-

lations acoustiques de protection, telles que des mat�eriaux moussants solides, peuvent être

utilis�ees pour absorber le bruit dans une gamme de fr�equences sp�eci�que a�n de garantir

le silence requis. La mod�elisation des propri�et�es acoustiques des absorbeurs r�eels �a base de

mousse �a partir de la description de leur g�eom�etrie locale est essentielle pour atteindre la

cible acoustique souhait�ee, tandis que la conception de ces mat�eriaux �a partir du proc�ed�e de

fabrication est encore une tâche di�cile.

Ce travail concerne principalement la d�etermination des propri�et�es acoustiques de

mousses. Il s'agit d'un projet men�e dans le cadre d'une collaboration entre une �equipe

de physico-chimie des mousses charg�ee de l'�elaboration de mat�eriaux mod�eles (Laboratoire

Navier UMR 8205 CNRS) et une �equipe d'acousticiens charg�ee de l'�etude de leurs propri�et�es

acoustiques (Laboratoire MSME UMR 8208 CNRS). Cette th�ese s'articule essentiellement

autour de trois parties principales, dont le contenu est r�esum�e ci-dessous. 1) La premi�ere

partie porte sur la g�en�eration de surfaces de r�eponse par des approximations polynomiales,

dans le but de disposer d'un mod�ele interm�ediaire entre le mod�ele �el�ements �nis micro-macro

et la r�eponse macroscopique. Au lieu d'appeler le mod�ele �el�ements �nis syst�ematiquement

dans un travail d'optimisation, on a recourt �a la surface de r�eponse qui contient l'information

associ�ee aux points de calcul �el�ements �nis ainsi que les interpolations correspondantes. Ce

manuscrit a �et�e publi�e dans le journal AAuA sous forme de communication rapide. 2) La

deuxi�eme partie, porte sur un calcul �el�ements �nis dans lequel un grand nombre de r�ealisations

sont men�ees de mani�ere �a prendre en compte l'ensemble des combinaisons possibles lorsque

on dispose de caract�erisation exp�erimentales �nes �a l'�echelle de la microstructure et que l'on

souhaite connaitre la r�eponse de la mousse avec pr�ecision. Le manuscrit est en pr�eparation et

la revue vis�ee pour ce dernier manuscrit est le journal Materials and Design. 3) La troisi�eme

partie porte sur la mise au point d'un mod�ele semi-analytique d�e�nit �a partir d'une formule

disponible pour pr�edire la perm�eabilit�e d'une plaque in�nie perc�ee par un trou de surface

connue. Ce mod�ele, utilis�e de mani�ere appropri�ee, permet de calculer la perm�eabilit�e de

mousses dont la taille de bulles est constante et le taux de fermeture de membranes variable.

Des validations num�eriques par �el�ements �nis et exp�erimentales sont propos�ees. L'article a

�et�e accept�e pour publication dans la revue Physical Review E. Une introduction g�en�erale
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(probl�ematique, cadre th�eorique et m�ethodologique, continuit�e et compl�ementarit�e des ar-

ticles) et une discussion g�en�erale compl�etent ces trois parties, et permettent de mettre en

perspectives ces contributions par rapport �a la litt�erature existante sur le sujet.

Mots-cl�es: Membrane, mousses monodispers�ees, mat�eriaux absorbants, transports, acous-

tique, m�ethode multi-�echelle, simulation de pores-r�eseaux, mod�eles de substitution.
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Chapter I

General introduction

I.1 Introduction

\No one on our planet can escape the unwanted sound that we call noise� a disturbance to

our environment escalating so rapidly as to become one of the major threats to the quality of

our lives" (Chapter 1, The impact of noise pollution: A socio-technological introduction[1]).

Noise is de�ned as unwanted or harmful outdoor sounds caused mainly by mechanical ma-

chines, industrial and daily activities [2,3] that a�ect both health and human behavior [3,4].

Additionally, technological and industrial development brings about in noise pollution, which

currently entails growing environmental problems. Both the social direct and indirect im-

pacts could be of major economic importance today. Overall, the costs arising from harm

caused by noise are enormous, estimated to be around 13 billione per year in the EU[5].

It is well known that the knowledge that is being developed by scientists in the �elds

of acoustics could contribute to the redesigning of noisy machinery and processes, or/and

the elaboration of the recommendations and solutions in the �eld of noise abatement. It is

particularly highlighted in the continuous growth of patents and research work published in

a number of peer-reviewed journals in this area.

To deal with the problems of noise, sound absorbing materials are one of the potentially

major original remedies. Academics and scientists are progressively interested in �nding an

answer to the question of how materials are to the best of their sound absorption ability.

Basically, a sound absorbing material, having a porous structure, is composed of a matrix

based on solid skeleton[6] and a pore space (e.g., cavities, channels or interstices[7]) so that

sound waves are able to propagate through them. Due to the combination of dissipation

mechanisms when the air propagates within a porous medium, its freely propagating sound

energy is absorbed[8]. The acoustic performance of absorbing materials is governed by the

mechanisms of acoustic energy dissipation during wave propagation in these media. The

acoustic dissipation can be decomposed into two predominant mechanisms[9]: dissipation by
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visco-inertial e�ects and dissipation by thermal conduction.

In acoustics, di�erent approaches have been developed to predict a link between mi-

crostructure properties and macroscopic acoustical performance of porous media[10]. They

can be categorized into three main types: (i) theoretical method[11{16] , which focuses on �nd-

ing a theoretical understanding, leading to better understand the mathematical and physical

bases of the macroscopic equations governing acoustic dissipation phenomena; (ii) experimen-

tal method [17,18], which involves conducting a lot of laboratory measurements on samples of

varying microstructural parameters; (iii) numerical method [19{25] , whereby the studies are

mainly based on simulations centered on a combination of a numerical framework with an

advanced computing method. Besides, recent studies include hybrid approaches combining

numerical or/and analytical estimations of key physical parameters used as input data in

empirical/semi-phenomenological models[26{28] .

Considering microstructural con�gurations, porous absorbing materials can be classi�ed

into three main types [29]: cellular foam [Figures I.1(a) and I.7(a)], �brous material [Figures

I.1(b) and I.7(b)], and granular media [Figure I.1(c)], (also see legends within detailed im-

ages in Figure I.3). In some speci�c industrial applications, thin panels made of functional

foams [i.e., epoxy foam, Figure I.1(d)] or microperforated structures [Figure I.1(e)] are also

considered for their potential acoustic absorption.

Figure I.1: (Color online) Di�erent acoustical material samples: polymer foam (a), �brous

material (b), granular layer (c), epoxy foam panel (d), and microperforated panel (MPP) (e).

For acoustical materials, a common property of interest is their sound absorption co-

e�cient (SAC). This parameter is used to refer to the proportion of the sound energy that

an acoustical layer is able to absorb. The absorption coe�cient is related to the re
ection

coe�cient at the surface of a layer, in which the re
ection factor is the ratio of the pressures

created by the outgoing and the ingoing waves at the surface of the layer[9] (see Figure I.2).

One may observe that the absorption coe�cient varies from 0 (total re
ection) to 1 (total

absorption). In the literature, based on considering the angular� of the outgoing waves, two

versions of the sound absorption coe�cient are presented[29]: the SAC at normal incidence

with � = 0 � , and the SAC at oblique incidence with � ranging from � min to � max (see e.g.,

[0� ; 90� ] [30]).
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Figure I.2: (Color online) The ingoing and the outgoing plane waves at a plane interface

between air and a porous material: the material is �xed to an impervious rigid wall (a), and

there is a gap of air of thicknessda between the material and the rigid wall (b). M, M' and

M1 indicate the locations measured the pressures related to estimations of SAC.

Figure I.3: (Color online) Measured sound absorption coe�cients at normal incidence of

various acoustic material samples shown in Figure I.1. The results are shown for: polymer

foam (black), �brous (yellow), MPP (gray), granular sample (magenta), and epoxy panel

(green), and the corresponding thicknesses of [20, 20, 1, 20 and 3] mm, respectively. Noted

that all measurements were performed by using a three-microphone standing impedance tube

shown in Figure I.11(a). Here, there is only a cavity depthda of 7 mm used in the case of

MPP panel.
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For illustration purposes about the materials as well as the functional properties of

acoustic absorption, Figure I.3 presents the corresponding sound absorption coe�cient at

normal incidence of the material samples provided in Figure I.1. The frequency range of

interest is from 4 to 4500 Hz. It may be seen that, for a layer with the same thickness of 20 mm,

the typical absorbers (e.g., cellular foam, �brous and granular materials) show di�erently their

interesting acoustic absorbing performances. Note that the polymer foam, MPP and granular

sample absorption spectra show quarter compressional wavelength resonances. Because of

the rigid backing, the particle velocity at the wall is zero (node). Therefore, the maximum

velocity (in absolute value) of the air occurs at the interface between the air and the porous

media (M and M') in the impedance tube (antinode). At the air/porous medium interface,

because the particle velocity oscillations correspond to an extremum, the losses due to viscous

e�ects are maximized. Such a phenomenon corresponds to a peak in the sound absorption

spectra, whose position therefore depends at a given sample thickness only on the sound speed

(complex valued) within the materia. In order to understand how e�ectively these materials

work in their acoustical properties, we need to investigate the microstructure in
uence on the

macroscopic acoustical properties of absorbing-based materials. Consequently, the present

work focusing on acoustical foams is mainly concerned with this main aim.

Figure I.4: (Color online) Morphology of membrane foam structure.

In the following of the manuscript, we are interested in studying the sound absorption

properties of cellular foam. Foam is dispersion of gas in liquid or solid matrix. Its structure

is made of membranes (also called �lms or liquid foams), ligaments or Plateau's borders,
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(junction of three membranes) and vertices or nodes (junction of four ligaments), see Figure

I.4. Whereas closed membranes are necessary to ensure the mechanical stability of liquid

foam[31], membranes can be open or totally absent in solid foams, allowing for the foam cells

(pores) to be connected through windows.

Acoustical foams have been more interested in applications as advanced materials be-

cause they are less energy-consuming during their production, energy-saving during their use,

and more e�cient in the recycling process. However, lack of knowledge about relationships

between micro-geometry and functional macroscopic properties of cellular foams is a recent

scienti�c and technical barrier.

I.2 Study objectives and thesis organization

I.2.1 Study objectives

The general objective of this thesis is to model the acoustic behavior of a foam-based

material through the multiscale modeling approach in order to investigate the dependence of

transports and acoustical properties of elaborated materials on their geometric parameters.

To achieve this goal, the following steps are necessary:

} Modeling microstructural foam structure and computing macroscopic properties.

� Reconstruction of the representative elementary volume (REV) of both or-

dered and disordered cellular foam structures.

� Computations of e�ective parameters of foam materials based on both direct

and hybrid approaches.

} Construction of multiscale surrogates for optimization of acoustical materials.

� Performing multiscale computations for reference macroscopic responses as

a function of microstructural properties.

� Building a surrogate model in order to speed up the optimization with re-

spect to macroscopic properties based on polynomial chaos expansion tech-

nique.

} Experimental characterization of elaborated material samples.

� Morphological characterization of several foam samples elaborated with the

same density and the same monodisperse pore size but di�erent values of

the closure rate of the windows separating the foam pores.

� Performing a set of experimental measurements to determine the air 
ow

resistivity and acoustical properties of foam samples.

Van Hai TRINH
Multiscale Modeling and Simulation Laboratory, Paris� Est University

5



GENERAL INTRODUCTION

} Characterization of a link between microstructure and macro-scale behavior.

� Application of equivalent con�guration frameworks to numerical estimations

of non-acoustical and acoustical properties of studied materials, these results

are then compared to experimentally measured values.

� Investigation of e�ects of membrane levels on the macroscopic properties.

} Numerical and semi-analytical predicting permeability of membrane foams.

� Permeability estimations of partly open-cell foams.

� Use of pore-network simulation and self-consistent model to investigate

global permeability of membrane foams.

Note that this thesis is a part of an academic collaboration between four institutions:

� Multiscale Modeling and Simulation Laboratory (UMR 8208 CNRS), Paris-Est Marne-

La-Vall�ee University, France.

� Geomaterials and Environment Laboratory (EA 4508), Paris-Est Marne-La-Vall�ee Uni-

versity, France.

� Navier Laboratory (UMR 8205-CNRS), IFSTTAR Institute, France.

� Department of Civil and Environmental Engineering, Duke University, Durham, NC

27708, USA.

The work of the doctoral student is supported by a fellowship awarded by the Govern-

ment of Vietnam (Project 911). This work was part of a project supported by the French

National Research Agency under Grants No. ANR-13-RMNP-0003-01 and No. ANR-13-

RMNP-0003-03.

I.2.2 Thesis organization

The dissertation proceeds in the following way.

To begin with, we present a brief introduction about the sound absorbing materials and

their acoustic absorption property. In the second section, a literature review on some existing

empirical/semi-phenomenological models of acoustic materials and surrogate-based technique

is introduced. We describe also some imaging techniques to clarify morphology of porous

materials, and elaborated methods widely used to measure some macroscopic qualities (e.g.,

transports). In the third section, we provide a brief description of the numerical approach

for modeling cellular material, which is later used as our numerical tool to carry out this

project. We �rst describe a con�guration of the representative element volume based on the

6
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space-�lling pattern of equal volume cells. Both existing numerical methods in the acoustic

characterization of the porous material as an equivalent 
uid are then introduced.

The main contributions of this thesis are structured around three papers presented as

three following chapters. Chapter II deals with the optimizing problems of acoustic materi-

als. The main di�culty in that context is the need to construct a direct map from the key

microstructural features to the macroscopic response of homogenized acoustical properties.

We investigate the potential of surrogate models (polynomial chaos expansions) to accurately

approximate this mapping. The present approach uses Legendre orthogonal polynomials and

enables appropriate convergence over the parameter space to be ensured. Chapter III is

devoted to simulating the acoustic macro-behavior of partially closed-cell polymeric foams,

typically their absorption coe�cient by using numerical homogenization techniques at mi-

crostructure scale. This link is realized through the scaling of an idealized 3D PUC, which

represents statistically the pore shape as a regular array of polyhedrons including membranes

interconnecting the pores in the actual foam morphology. Multiscale computations are carried

out in order to determine the intrinsic parameters of the foam samples, by solving asymptot-

ically the viscous Navier-Stokes 
ow at low frequencies, the inertial Laplace potential 
ow at

high frequencies, and the thermal conduction at low frequencies. In Chapter IV, we focus our

interest on studying the permeability which is one of the most interesting physical parameters

of cellular porous materials. We study the e�ects of membranes separating the foam pore

connectivity on permeability. We begin with �nite element model of partly open cell foams

in order to �nd a local link between permeability and the membrane aperture size. With this

local law, pore-network simulations and e�ective medium model are conducted to reproduce

the �nite element results and handle the permeability and percolation problem with foam

structure on various lattices. The obtained results clarify the e�ect of the presence of mem-

branes on foam permeability. In Chapter V, we further consider random foam structures.

The local geometrical property of slightly and highly disordered foams is reconstructed as a

representative element volume based on Voronoi patterns. A numerical example is provided

in order to show the consistent results between the direct and hybrid numerical approach and

con�rm the advantages of the hybrid framework in terms of computational e�ciency.

Finally, we present a general conclusion of the dissertation as well as include some

directions for future work. Last but not least, Appendix A contains our preliminary results

as a full paper in the sixth Biot Conference on Poromechanics, July 9� 13th, 2017.

I.3 Literature review

In this section, a review of the literature on models of acoustical properties of acoustic

absorbing materials and on characterizations of porous media is provided. In the �rst part,

we present a bibliographical revision about empirical and semi-phenomenological models of
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acoustic absorbing materials. Concerning the surrogate-based frameworks, the second part

includes a short introduction to some selected methods that have been regularly used to

reconstruct multiscale surrogate responses based on a given sampling of reference functions.

In the third part, we brie
y describe the morphology characterization by several advanced

image techniques, and the experimentally characterizing of material behavior as physical

properties (e.g., transports) by using some direct and indirect approaches.

I.3.1 Models of acoustical porous materials

Phenomenological approaches aim at looking for acoustic models for complex geometries,

starting from solutions associated with simpler geometries for which analytical solutions

exist, by introducing one or more shape factors depending on the local geometry. Inspired

by Kircho�'s theory [32], one of the �rst phenomenological models is that of Zwikker and

Kosten (1949)[33] with the hypothesis that the porous material consists of a network of

parallel circular cylindrical pores, treating viscous e�ects and thermal conductivity separately.

Equivalent to the model of Zwikker and Kosten, Biot (1956a,1956b)[34,35] developed a theory

on the propagation of elastic waves in a saturated porous medium. The equivalent works

of Zwikker and Kosten and Biot are basic phenomenological models. Subsequently, several

other models have proposed to modify these basic theories in order to extend their �elds

of application [13,36{39] . These phenomenological approaches serve an important foundation

in terms of principle understanding. However, they are more or less inaccurate or limited

according to the applied types of materials. Nowadays, the semi-phenomenological models,

more precise and predictive, are the most used. Focusing on motionless assuming of skeleton

materials, di�erent levels of modeling the acoustics of porous media will be presented in the

forthcoming parts. It should be remarked that since only sound absorption is considered in

the Thesis, the elasticity of polymer foams is not very important. It is likely to be more

important for transmission or when foams are used for vibration absorption.

I.3.1.1 Empirical model

Methodologically, empirical modeling is one of the most common ways used for �nding a

general behavior on the basis of observations and experiments. Originally Delany-Bazley

(1970)[40] proposed an empirical model to describe sound propagation in highly porous ma-

terials (e.g., a �brous material with porosity close to 1). This empirical law has been widely

used in acoustic material characterizations because of two features that the equations are

simple, and only one resistivity parameter is needed. After numerous measurements for ma-

terials of varying resistivity and a speci�c frequency range, Delany and Bazley established

the laws which estimate the characteristic impedanceZc and the complex wave numberk as

8
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a function of material 
ow resistivity.

Zc = � 0c0

h�
1 + C11X � n11

�
� jC 12X � n12

i
;

k =
!
c0

h�
1 + C21X � n21

�
� jC 22X � n22

i
;

(I.1)

in which � 0 is the air density, c0 is the sound speed in air,X = � 0f=� with f and ! the

frequency and the angular frequency of the sound waves,� is the air
ow resistivity and j

is the imaginary unit, j =
p

� 1. The authors also mentioned a range of validity for their

empirical law as 0:01 � X � 1.

Table I.1: Coe�cients in the Delany-Bazley, Miki, Mechel-Ver, and Allard-Champoux em-

pirical models.

Coe�cients Delany-Bazley Miki model [41] Mechel-Ver model[42] Allard-Champoux

model[40] X � 0:025 X > 0:025 model[43]

C11 0.0585 0.0700 0.0668 0.0235 0.0571

n11 0.750 0.632 0.707 0.887 0.754

C12 0.0878 0.1070 0.196 0.0875 0.0870

n12 0.730 0.632 0.549 0.770 0.732

C21 0.0975 0.1090 0.1350 0.1020 0.0978

n21 0.700 0.618 0.646 0.705 0.700

C22 0.1948 0.1600 0.3960 0.1790 0.1890

n22 0.590 0.618 0.458 0.674 0.595

The Miki [41] and Mechel-Ver[42] models are also well-known empirical laws with con-

ventional predictions of acoustic property. In the Miki study, the Delany-Bazley model was

modi�ed to obtain a real positive value at a wider frequency range and generalized with the

models with respect to porosity, tortuosity and the pore shape factor ratio. The equations of

Delany-Bazley were also corrected by Mechel and Ver as functions of a dimensional parame-

ter, density by the quotient, between frequency and resistivity. Three models have the same

formula structure as presented in Eq. (I.1), but the di�erent values of coe�cients are listed in

Table I.1. Following the Delany and Bazley model, a number of empirical models were pro-

posed for either some speci�c frequency ranges and/or di�erent types of materials[17,18,44{46]

Allard and Champoux (1992)[43] developed an empirical model in which the dynamic

density and the dynamic compressibility are de�ned with an additional validation at low

frequencies where the equations of Delany and Bazley provide unphysical predictions (i.e.,

the negative real parts of the surface impedance and of the complex density, see Ref.[47]). In

the Allard and Champoux empirical model, two dynamic parameters are given as follows,
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� (! ) = � 0

�
1 +

1
j 2�

1
X

G1(X )
�

;

K (! ) = 
P 0

0

@
 �

 � 1

1 +
�

1
.

j 8�N pr

�
X � 1G2(X )

1

A

� 1

;
(I.2)

where G1(X ) and G2(X ) are the functions of X as G1(X ) =
p

1 + j�X and G2(X ) =

4�N pr G1 with X as indicated in Eq. (I.1), Npr is the Prandtl number, 
 is the speci�c heat

ratio of air and P0 is the air equilibrium pressure.

It may be noted that, for air at normal temperature and atmospheric pressure� 0 = 1 :2

kg=m3, Npr = 0 :702, 
 = 1 :4, P0 = 101 320 N=m2, and using k = !
p

� (! )=K (! ) and

Zc =
p

� (! )K (! ), the Allard-Champoux model has also the two quantities are calculated

with the same expressions of Delany and Bazley as Eq. (I.1), but the coe�cients are di�erent

as listed in Table I.1.

Several other empirical models suggesting a relationship between acoustic parameters

and structural characteristics can be found in several works of �brous materials[48{50] . In se-

ries of works related to cellular acoustic foams with and without membranes[27], Doutres and

co-workers proposed a combining method based on several empirical laws (estimated both

analytically and experimentally) of non-acoustic parameters as a function of local geometri-

cal features (e.g., porosity, cell size, reticulated rate of membranes). Under these observed

laws, the authors used semi-phenomenological acoustic models (see Subsection I.3.1.2) to

successfully characterize the acoustical properties of the foamy porous material.

It may be stated that, recently, these empirical models could be including limitations

on the modeling of acoustic porous materials having advanced morphologies (e.g., complexity

of membrane content[46,51], polydispersity of �bers [52]).

I.3.1.2 Semi-phenomenological model

In order to give a physical basis to the description of sound propagation in porous media,

we proposed a brief description, in the frequency domain, selected semi-phenomenological

models involving several physical parameters. The air in the porous frame is replaced by

an equivalent 
uid that presents the same bulk modulus K (! ) as the saturating air and a

dynamic density � (! ) that takes into account the viscous and the inertial interaction with

the frame. Using this pair of dynamic parameters, the wave numberk and the characteristic

impedanceZc may be estimated to describe the acoustical properties of a medium[9].

Johnson et al. (1987)[12] presented a semi-phenomenological model with four macro-

scopic parameters (the resisitivity � , the open porosity � , the high frequency tortuosity � 1 ,

the viscous characteristic length �). Johnson et al. developed a formula to describe the

complex density. They studied the viscous dissipation e�ects of a Newtonian 
uid saturating
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a rigid and isotropic porous medium subjected to a pressure gradient oscillating through

the sample. They further assumed that the wavelength is much greater than the pore size

and that the thermal conductivity of the 
uid is negligible. Later, this model was modi�ed

and improved by other authors to introduce new parameters related to the �ner account of

physics.

Based on the Johnson et al. work, Champoux and Allard (1991)[13] introduced an ex-

pression for the dynamic bulk modulus involving the e�ects of heat dissipation. To take these

e�ects into account, Champoux and Allard proposed a new model by adding a parameter

characterizing the high frequency asymptotic behavior of the thermal response named the

thermal characteristic length � 0. The approach followed by Champoux and Allard is similar

to that of Johnson and co-workers[13] in in treating viscous e�ects. The thermal characteristic

length is an intrinsic parameter of the material which is purely geometrical, it coincides with

the viscous length in the case of a material composed of uniform and non-intersected pores.

From this, the visco-inertial dissipative and thermal e�ects match the dynamic density and

the dynamic bulk modulus, respectively, as given by

� (! ) = � 0� 1

"

1 +
��

j!� 0� 1

s

1 + j
4� 2

1 �� 0!
� 2� 2� 2

#

; (I.3a)

and

K (! ) = 
P 0

"


 � (
 � 1)

 

1 � j
8�

� 02Cp� 0!

r

1 + j
� 02Cp� 0!

16�

!# � 1

: (I.3b)

Lafarge (1993,1997)[15,53] modi�ed the Champoux and Allard model (1991) concerning

heat dissipation by introducing a new parameter, the static thermal permeability k0
0. This

factor is used to characterize thermal dissipation phenomena at low frequencies. This leads

to a modi�ed expression of the dynamic bulk modulus as compared with the original work

by Champoux and Allard (1991), it is given as

K (! ) = 
P 0

2

4
 � (
 � 1)

0

@1 � j
8��

k0
0Cp� 0!

s

1 + j
4k02

0 Cp� 0!
� � 02�

1

A

3

5

� 1

: (I.4)

Pride et al. (1993)[16] found that the imaginary part of the dynamic tortuosity (or

dynamic viscous permeability) in the Johnson et al. model[12] is underestimated in the case

of a 
uid subjected to strong variations of sections along the acoustic wave path. Therefore

a new macroscopic parameter, the low-frequency viscous tortuosity, was proposed to improve

the low-frequency asymptotic behavior of viscous dissipations. Similarly, Lafarge (1997)[15]

re�ned their model by correcting the low frequency behavior of heat dissipation by adding

the low frequency thermal tortuosity. As a result, the enhanced version of two dynamic
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parameters is given in the forms,

� (! ) = � 0� 1

"

1 +
��

j!�� 1

 

1 � P + P

s

1 + j
M

2P2

� 1 � 0!
��

! #

; (I.5a)

and

K (! ) = 
P 0

"


 � (
 � 1)

 

1 � j
8��

k0
0Cp� 0!

 

1 � P0+ P0

s

1 + j
M 0

2P02

k0
0Cp� 0!

��

! !# � 1

;

(I.5b)

where four non-dimensional shape factors are de�ned as a function of material parameters,

M =
8�� 1

� � 2�
; M 0 =

8k0
0

� 02�
; P =

M
4(� 0=� 1 � 1)

; P0 =
M 0

4(� 0
0 � 1)

: (I.6)

In summary, the three semi-phenomenological models previously described may be used

to estimate the frequency dependent visco-inertial and thermal responses of porous media.

The Johnson-Champoux-Allard (JCA) model involves 5 parameters (� , � , � 1 , �, and � 0), the

Johnson-Champoux-Allard-Lafarge (JCAL) model is adding parameterk0
0, and the Johnson-

Champoux-Allard-Pride-Lafarge (JCAPL) model uses a set of 8 parameters (� , � , � 1 , �,

� 0, k0
0, � 0 and � 0

0).

Recently, these semi-phenomenological models are being widely used to characterize

various acoustical materials. Their input parameters can be estimated experimentally as

mentioned previously. Alternatively, they can be computed by solving numerically several

governing equations over a representative element volume of porous media (see Section I.4).

I.3.2 Surrogate-based modeling methodology

Theoretical modeling and computational simulations are key ingredients to understand a

complex system, entity, phenomenon or process. An increase in model runtime generally

requires degrading the �delity of the model, either in the numerical solver (using, e.g., a

coarser discretization) or by introducing a low-�delity approximation of the physical model.

In this context, surrogate models are computationally tractable, cheaper models designed to

approximate (in some sense) the dominant features of a complex model. These models are

also known as metamodels[54], reduced models[55], response surfaces[56], model emulators[57],

proxy models[58], and lower �delity models [59]. Metamodels can be used, for instance, to

approximate cost or state functions in optimization loops. More speci�cally, consider a com-

putational model associated with a given system, and denote bym the vector of input pa-

rameters. Assume thatm belongs to some admissible closed setSm = � n
i =1 [ai ; bi ] in Rn , and

let q 2 Sq � Rd be a d� dimensional quantity of interest. Assume now that one is interested

in optimizing a given functional m 7! J (q(m )), the evaluation of which is computationally

expensive. In order to simplify exposure at this stage, assume thatJ (q(m )) = q(m ). A
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classical remedy to circumvent the computational burden then consists in constructing a sur-

rogate mappingq̂ that properly approximates q (that is, the map m 7! q̂(m ) approaches the

solution map m 7! q(m ) in some sense). Several approaches were proposed in the last two

decades to construct surrogates. Among them, we may list here the radial basis functions[60],

the weighted trigonometric approximation [61], high-dimensional model representation[62,63],

Kriging models[64], moving least square approximation method[65], methods of separated

variables representations[66], or arti�cial neural networks [67]. For smooth reference maps,

polynomial series are natural candidates[68{70] and will be considered thereafter.

Let us illustrate this approach on a basic example. Upon introducing the normalized

vector-valued parameter � such that [� 1; 1] 3 � i := 2=(bi � ai )mi + ( ai + bi )=(ai � bi ) for

1 � i � n, the surrogate modelq̂ is then sought for as a polynomial map in� :

q̂(� ) =
X

�

q̂� P� (� ) ; (I.7)

where � is a multi-index in Nn , P� is the multidimensional Legendre polynomial de�ned

as P� (� ) =
Q n

i =1 P� i (� i ), and P� i is the univariate Legendre polynomial of order � i . The

Legendre polynomialsf P� (� )g� � 1 satisfy the following recurrence relation[71]:

P� +1 (� ) =
2� + 1
� + 1

�P � (� ) �
�

� + 1
P� � 1(� ); (I.8)

in which P0(� ) = 1 and P1(� ) = � for all � 2 [� 1; 1]. From the orthogonality of these basic

polynomials, namely

< P � ; P� > :=
1
2n

Z

([ � 1;1])n
P� (x ) P� (x ) dx =

nY

i =1

� � i � i

2� i + 1
; (I.9)

where � is the Kronecker delta, it follows that

q̂� =

 
nY

i =1

(2� i + 1)

!

< q̂; P� > : (I.10)

The choice of this polynomial basis ensures that the surrogate is uniformly accurate

over the parameter space, so that no bias (noise) is generated in the evaluation of the cost

function. The computation of the coe�cients q̂� requires the evaluation of n-dimensional

integrals, and various techniques have been proposed in the literature to address this issue.

Standard or enhanced (i.e., nested, sparse, etc.) quadrature rules may be invoked for small

values ofn, while (advanced) Monte Carlo simulation techniques may be used for much higher

dimensions (see, e.g., Ref.[72]). Below, a Gauss-Legendre quadrature rule (withNQ points)

is used for illustration purposes.

It follows from Eq. (I.7) that the approximant, truncated at order p, is given by

q̂p(� ) :=
pX

� 2 Nn ; j� j=0

q̂� P� (� ) =
pX

� 2 Nn ; j� j=0

q̂� P� 1 (� 1)P� 2 (� 2) ; :::; P� n (� n ); (I.11)
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where � = ( � 1; � 2; :::; � n ) and j� j :=
P n

i =1 � i . The coe�cients are then estimated [see

Eq. (I.10)] as

q̂� �
nY

i =1

2� i + 1
2n

NQX

i =1

wi q̂(� (i ) )P� (� (i ) ) ; (I.12)

in which f wi g
NQ
i =1 and f � (i )gNQ

i =1 are the weights and points of the quadrature rule. In practice,

the evaluation of the multiscale model at the quadrature points is obtained by mapping back

the reduced variables onto the physical ones, and convergence must be characterized with

respect to both p (which controls the global order of the polynomial series) andnQ = ( NQ )1=2

(which controls the convergence of the quadrature rule, for a �xed order of expansionp). Note

that the convergence analyses with respect to the parameters of the formulation, namely the

order p of the expansion and the total numbernQ of quadrature points, must be carried out.

For demonstration purposes, consider the following two-dimensional example in which

the target function is de�ned as a combination of Legendre polynomials:

q(� 1; � 2) = P6(� 1)P9(� 2) + 3 P10(� 1)P5(� 2); (I.13)

The results shown in Fig. I.5 con�rm that the reference response can properly be

reproduced with an error close to 10� 14, using a sampling of 122 = 144 evaluations of the

reference map.

I.3.3 Characterization of porous media

I.3.3.1 Morphology characterization

In material engineering and science, the interest in studying the morphological property has

been arising among industrial and academic communities over the past century. The study of

local geometry material plays a very important role in the science of materials mainly because

the macroscopic material properties are highly dependent on the local microstructural fea-

tures. Knowledge of the material microstructures allows to interpret and explain their physi-

cally functional properties. In this respect, a comprehensive study of morphology can provide

essential information for the advanced numerical simulations at some scales to determine and

predict their macroscopic characteristics. Based on this micro-macro link, it is convenient to

de�ne a geometrical con�guration for a speci�c target of the macroscopic parameter. Thanks

to the recent advances in technology it became possible to switch to techniques that provide

two-dimensional and three-dimensional images of material microstructures such as porous

media for example. The microstructure is widely characterized at di�erent scales by con-

ventional two-dimensional imaging techniques: optical microscopy and electron microscopy,

which have been completed recently by more advanced three-dimensional imaging techniques

such as the di�erent types of tomography and especially the X-ray microtomography. These

methods can produce digital images which may be extracted from quantitative parameters
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Figure I.5: The approximate solution map (� 1; � 2) 7! q̂p(� 1; � 2) (middle) is compared with

the reference solution map (� 1; � 2) 7! q(� 1; � 2) (left), these results are shown for p = 15

and nQ = 12. The corresponding relative error is measured asDp(� 1; � 2) = jq(� 1; � 2) �

q̂p(� 1; � 2)j=jq(� 1; � 2)j (right).

of the microstructure. It should be noted that here we narrow the scope to the image tech-

niques for man-made porous materials withmacropores (with sizes > 50 nm). Although a

large number of di�erent types of microscopes have been developed and applied in di�erent

applications, the following brie
y presents the image techniques that are commonly used for

the characterization of porous materials.

Two-dimensional image techniques:

So far, many advanced scanning techniques were put into practice; however, 2D imaging

techniques such as optical microscopy, scanning and transmission electron microscopy, and

scanning probe microscopy are quite well developed[73]. In porous media imaging feild, both

optical and electron microscopy techniques are very useful in characterizing tools for a variety

of scales[74] as well as materials[75{77] . Figure I.6 presents photos of (left) a S-3000N Hitachi

Scanning Electronics Microscope (available at the Centre characterization of materials (CCM)

at the Universit�e de Sherbrooke, Canada), and (right) a LEICA MZ6 Binocular Microscope

(available at the Navier Laboratory at the Paris-Est University, France). In general, two-

dimensional images may be used for characterizing a number of microstructural features

such as porosity, speci�c surface area, and pore and particle sizes of a porous medium. In
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researches on geometry, transports, and acoustics of typical porous materials, 2D image

techniques are widely used for varirous structures: liquid foams[78], solid foams[26,28,75,79],

�brous materials [77,80], granular media[76,81,82]. Figure I.7 shows two scanning electronic

micrographs of common absorbing materials [i.e., foam structure (left image) and �brous

structure (right image)]. Based on the observed images, some mictrostrutural qualities of

these porous materials may be characterized (i.e., cell size, and anisotropy degree of foam

structures[79,83], �brous angular orientation in �brous materials [77]).

Figure I.6: Photos of a Hitachi S-3000N variable-pressure Scanning Electron Microscope

(VP-SEM) (a) and a LEICA MZ6 Binocular Microscope (b).

Figure I.7: Photographs of the local microstructures of a real cellular foam (a) and a �brous

material sample (b).

To demonstrate the characterizing process, we experimentally measure two morpho-

logical parameters from a set of �fteen foam images with a calibration as shown in Figure

I.7(a). The observed ellipses surrounding cell vertices in the observation plane can provide

information about the cell size and its anisotropy degree. Over these �tting ellipses, the dis-

tributions of anisotropy degree and normalized cell size are obtained. As illustrated in Figure
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Figure I.8: Distributions of anisotropy degree (a) and normalized cell size (b) as experi-

mentally determined by scanning electron microscopy.

I.8, the sample has a shape anisotropy degree with a Gama distribution having a mean value

of roughly 1.15. In terms of polydisperse level, the normalized cell size result shows a good

�tting to a normal distribution having a mean of 1 and a standard deviation of 0.16.

In comparison with recent advanced techniques, it is seen that the 2D image micro-

scopic techniques have the advantages of being rapid and inexpensive and easy to implement.

However, porous medium characterization working based on 2D images requires some post-

processing steps in order to obtain essential information or representative models.

Three-dimensional image techniques:

Three-dimensional scanning is an advanced technique for capturing the 3D shape of an ob-

ject and storing the data as a three-dimensional model (virtual model) in which, the scanned

virtual 3D model is almost ready for further using purposes. In porous media character-

ization, three-dimensional microscopic reconstruction typically requires a stack of 2D data

which is obtained by using X-ray microtomography such as tomography and X-ray computed

tomography. A stochastically equivalent 3D reconstruction of porous media can be rebuilt

from 2D image data by various techniques such as the Joshi-Quiblier-Adler approach[84{87] ,

the single cut-Gaussian Random �eld approach[88], and the Karhunen-loeve expansion-based

approach[89].

A realistic structure representing a real medium with the detailed description can be
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Figure I.9: 1172 X-ray Microtomograph Skyscan[94].

obtained by a scanner machine with a given resolution. This may be encountered when

studying the representative elementary volume of a porous material is generally characterized

by advanced imaging techniques [i.e., micro-computed tomography (� CT)] associated with

statistical tools originating from mathematical morphology [90] used in order to generate a

porous sample statistically identical to the real one such that the disordered nature of porous

media is preserved[91{93] .

Figure I.10: Main steps of the reconstruction process by x-ray micro computed tomog-

raphy[25]: (left) Acquisition of classical radiographies, or \x-ray shadow images" of the real

sample; (middle) Reconstruction of bidimensional cross sections of the real sample showing (i)

\ring artifacts" and (ii) \starburst artifacts"; (right) Reconstruction of the three-dimensional

image of an axial portion of the real sample, after binarisation of the two-dimensional images.

For foams without membranes, using X-ray microtomography allows reconstructing

the microstructure of open-cell metal foams[25,93]. Figure I.10 shows a typical reconstructing

process by using 3D scanning technique with the SkyScan 1172 scanner (Figure I.9[94]). For

materials made of �bers, their representative 3D microstructure models can be achieved also

by computed tomography using X-ray absorption contrast[92,95]. Recently, micro-computed

tomography was used as a tool to characterize granular materials with various shapes of a
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particle such as spherical �llers, 
ake �llers, and rod �llers [96]. It should be noted that the

requirement of operating parameters of a 3D machine is dependent on the contrast between

material phases (e.g., 
uid and solid phases of the porous sample) and the ratio scale between

their components. A partially open-cell foam has very thin membranes (e.g., �lm thickness,

less than 1.5� m, is about 1/500 times the cell scale of 810� m [83]), or a hollow-�ber structure

has a very small ratio between �brous thickness and radius, such materials require either a

scanner having a corresponding high resolution or a reduction of imaging sample size.

Obviously, 3D scanning techniques provide a number of advantages such as an accurate

and detailed representation of the scanned volume, and require of little to no pre-processing.

Once the scanning microstructures are available, they may be used for computing at a global

scale for computing at global scale a number of macroscopic material properties such as per-

meability, capillary pressure, heat transfer coe�cient, acoustic absorption, e�ective elastic

parameter, etc. In addition, working on the 3D reconstructed volume allows varying system-

atically characteristics of the microstructure in order to simulate or predict the behavior of

materials. However, because the structures are more realistic they may also be actually more

di�cult to parametrize so that it is hardly possible to study how the microstructural features

are related to the macro-performances and to clearly identify the optimal con�gurations.

I.3.3.2 Physical property characterization

In acoustics, one of the available models applied to predict the macroscopic performance of

porous materials was proposed originally by Biot (1956a, 1956b)[34,35]. This consists of a set

of �ve parameters known as the Biot parameters: the porosity, the air
ow resistivity, the

tortuosity, the thermal characteristic length, and the viscous characteristic length. Various

methods have been developed to measure and estimate these parameters (see Refs.[97{99] for

a survey).

The porosity � of a porous medium is a fraction of the continuous 
uid volume (e.g.,

air) over the total volume. This parameter may be measured by several methods. A simple

method is proposed by Beranek, (1942)[100], in which the porous material is saturated with

water and placed in an airtight chamber that ic connected to a manometer. Another simple

method is to directly measure the medium's total volume Vt , the porous material is then

crushed to remove all the void space, and the volumeVs of the solid phase is measured. The

porosity is then given by � = 1 � Vs=Vt . Alternatively, the solid volume can be measured

through as Vs = ms=� s, in which ms and � s are the mass and the density of solid materials,

respectively. Following the Beranek's principle, Champoux et al. (1991)[101] developed a very

elaborate device involving a micrometre and a di�erential pressure transducer. Salissou and

Panneton, (2008)[102] proposed a method using the perfect gas law where the open porosity

is deduced from the measured sample mass at four static pressures. It can be also mentioned

the ASTM D6226� 05 standard test[103] as an alternative method that can measure porosity
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by using a gas pycnometer.

In porous materials, tortuosity � 1 is an intrinsic characteristic which usually is de�ned

as the ratio of the actual length of the pores to the body length of the material[33]. This

factor can be deduced experimentally through an electrical method based on the resistivity

of the material upon saturation with a conducting 
uid when the �eld of the current and

the microscopic speed of the 
uid are equivalent[11,12]. A method using ultrasound wave,

proposed by Fellah et al. (2003a, 2003b)[104,105], can measure both� and � 1 . This ultrasound

method, however, is only suitable for materials with rigid structures, so for a non-rigid frame

in order to reduce the vibration of the frame skeleton a temperaturen controlled chamber

(i.e., at � 20� C [51]) or steel nails[106,107] should be used. Allard et al. (1994)[108] developed

a method to determine tortuosity based on the determination of the high-frequency limit for

the complex phase velocity.

The static air
ow resistivity � , an important physical property of porous materials, is

de�ned as the pressure di�erence over 
ow velocity per unit length. For a certain microstruc-

tural material, this parameter may be measured by several approaches[109]. The original

works focusing on the determination and the measurements of resistance to air 
ow through

to porous material were proposed by Beranek (1942)[100], and Brown and Bolt, (1942) [110].

Their method uses a vacuum to produce a pressure drop across a specimen of porous material

for which there is no temporal variation under steady-state conditions. Two parameters, the

pressure drop between two faces of the tested specimen and the volumetric air
ow rate, are

measured. More commonly, a measurement of 
ow resistivity may be found in the standard

test method ASTM C� 522, ISO 9053[111], and Stinson and Daigle (1988)[112]. A photo of a

device for measurements of air
ow resistivity is shown in the right part of Figure I.11.

The characteristic lengths referering to the thermal � 0 and viscous � characteristic

length of a porous material take the thermal and viscous dissipation into account, respectively.

In porous media, the energy loss through heat occurs in the part where the cells are stretched,

and the energy loss by viscosity occurs in the narrow part. These lengths are therefore related

to the shape of the apertures inside the porous material. The length �0 de�ned as twice

the average volume-to-surface ratio of the pores, has been evaluated through a non-acoustic

method from the measurement of the speci�c area using the standard Brunauer-Emmet-Teller

(BET) technique which involves gas molecule measurements of the skeleton pores. Based on

the BET technique, Lemarinier et al. (1995)[113] and Henry et al. (1995)[114] used krypton

gas in order to increase the precision of the measurement. An ultrasonic attenuation can

also be used to measure both characteristic lengths by the saturating 
uid for the porous

material [115,116]. This method determines the viscous � and thermal � 0 characteristic lengths

from the exploitation of the dispersion curves in air� and helium� �lled materials. Moussatov

et al. (2001)[117] developed an ultrasonic method that considers the evolution of the speed

of sound and the attenuation inside the material due to changing of the static pressure of

the gas saturating the material. The method allows an estimation of three parameters of the
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sample materials: the tortuosity, and the viscous and thermal characteristic lengths.

Figure I.11: Picture of a standing impedance tube which can be used to measure the

acoustic absorption coe�cient at normal incidence and characterize material parameters of

a semi-phenomenological model (a), picture of a device for measuring of the static air
ow

resistivity of porous materials (b).

Figure I.12: Comparison between measured (line) and characterized (marker) results of

normalized e�ective density (left part) and the normalized e�ective bulk modulus (right

part). The results are obtained from a three-microphone standing tube measurement on the

granular layer shown in Figure I.1(c).

Besides the laboratory approaches stated above, some alternative indirect methods are

also widely used. Two geometry parameters (�; � 0) can be de�ned by using image technique

with the reconstruction of local geometrical features (e.g., an original and simple idea of image
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processing with a hit list [118]). Having the representative element volume reconstructed by

2D or 3D image techniques, these factors and other morphology properties may be estimated

numerically with their mathematical de�nitions.

Alternatively, Panneton and Olny [107,119,120] proposed an indirect characterization method

for determining the intrinsic parameters of porous materials by means of a standing three-

microphone tube test (see the left part of Figure I.11). The dynamic density� (! ) and bulk

modulus K (! ) properties of tested materials are estimated according to experimental data

with two measured pressure transfer functions. Based on the JCAL model, the static air 
ow

resistivity, the high frequency tortuosity, and the viscous characteristic length are estimated

from the measured data of the dynamic mass density, and the measured dynamic bulk mod-

ulus allows to deduce the thermal characteristic length and the thermal permeability. The

following table give the example of a granular layer. Based on the data of the impedance

tube experiment, Table I.2 presents the results of characterized transport properties.

Table I.2: The characterized parameters of the granular material sample.

Parameter � 0 � � k 0
0 � 1

(� m) ( � m) (Nm � 4s) (� 10� 10m2) ( � )

Value 1050� 74 545� 46 1500� 115 78� 10 1:65� 0:21

As may be seen in Figure I.12, the characterized e�ective properties of the equivalent


uid for the porous granular sample are in very good agreement with experimental data.

I.4 Numerical approach for modeling acoustical cellular ma-

terials

This section presents a basic approach applied to model numerically acoustical cellular ma-

terials. Firstly, the reconstruction task of local geometrical of foam-based materials having

regular structures is carried out based on an ordered packing of space-�lling cells. Using

homogeneous techniques of representative elementary volumes, the transports and e�ective

properties of an equivalent 
uid of studied materials are then estimated using two existing

numerical frameworks named as direct method and hybrid method.

I.4.1 Reconstruction of local ordered foam structures

In the 1960s, various simple idealized open and closed cell structures were used to model

the physical behavior of cellular materials and to derive respective constitutive equations

to predict their behavior: open cell of rubber foams[121], open foamed elastic materials[122],
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(a) (b)

Figure I.13: The structural candidates (middle and right panels) of foam based on the ideal

space-�lling cell (left panels). The Kelvin tetrakaidecahedron array (a), the Weaire-Phelan

structure based on two kinds of cells, one is an irregular dodecahedron and the other is a

hexagonal trapezohedron (b).

closed-cell structures[123], cancellous bone[124]. The idealized periodic unit cell is often con-

sidered in the simpli�ed shape (e.g., hexagonal tiling[125], cube[126], tetrakaidecahedron[25],

irregular dodecahedron-tetrakaidecahedron[127]). A tetrakaidecahedra pattern based on the

space partition of equal-volume cells was proposed in 1887 by Lord Kelvin[128]. This ide-

alized structure based on tetrakaidecahedric cells reconstructed by translations of the clas-

sical body-centered cubic lattice. The Kelvin cell [see Figure I.13(a)] has been successfully

used for idealizing foams. For isotropic structures, the ligament length of the Kelvin cell is

equal to L l , that is determined by the cell size of Db = 2
p

2L l . The number of faces per

cell is 14 (six squares and eight hexagons), and the number of edges per face is equal to

5:14 � (6 � 4 + 8 � 6)=14. These values seem to be close to the main distribution of 14-faced

cells and 5-edged faces presented in previous works Matzke (1946)[78] and Kraynik et al.

(2003)[129]. An observed good agreement between predicted and measured results of sound

absorption coe�cients (i.e., results from acoustic modeling of several series samples of highly

porous polyurethane foam[26,27,130]) shows that Kelvin packing as a good periodic unit cell

may be used to simulate and understand the acoustic performance of these materials.

However, a series of works related to foam morphology[78,129,131,132] indicated also that

the proportion of 5-edged faces is more than 50%. The resulting length distribution in the

foam generated by minimum energy approach showed that the length varying from to 0.75

to 1.25 of the average length, and the maximum occurrence of the average length is around

30% even in a relaxed structure[129,132]. These features of morphology can be covered by

a structure named the Weaire-Phelan structure consisting of eight equal volume cells [two

irregular dodecahedron and six like-tetrakaidecahedron, Figure I.13(b)] proposed by Denis

Weaire and Robert Phelan in the year of 1994[133]. This equal volume cell pattern could be

a good candidate of an idealized unit cell for foaming structures[127].
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Figure I.14: The idealized framework of foaming skeleton based on the Kelvin (top) and the

Weaire-Phelan (bottom) pattern. The struts are treated as a cylindrical shape and connected

to each other at a spherical node. The thin membrane (right parts) in closed-cell foams is

idealized by an aperture �lm having a given closing rate at all cell windows.

It is seen that not only the cell shape but strut or ligament shape is also interested in

various works associated with cellular morphology and properties. In real cellular foams, the

ligaments seem to have a concave or Plateau border shape [Figure I.15(b)], however this can

be treated as several simple cross-sections such as circle [Figures I.14(a) and I.14(c)], triangle

[Figure I.15(a)], square, or some polygons[134]. In practice, some frameworks based on struts

with simple shapes could not be a di�cult task by using CAD software or directly generating

in the commercial �nite element software packages (e.g., COMSOL, ABAQUS, etc.), whereas

it might not be easy to create ligament shape that mimics with the real morphology of

materials. For an example of concave shape [Figure I.15(b)], this shape can be evolved from an

original equilateral triangular one [Figure I.15(a)] by using Surface Evolver[135]. Figure I.15(c)

also depicts a skeleton of Kelvin unit cell based on cylindrical ligaments having a variation

of the cross-sectional area along the length, such a shape was used to study Aluminium foam

morphology[136].

In terms of membrane cellular foams, thin membranes or solid �lms have an interesting

in
uence on acoustical performance[28,75,79,130,137]. At a certain cell scale, membranes may

close partly or fully the pore cells[27,83], so that the morphology connectivity of the closed-cell

structure is sometimes still more di�erent from the case of open-cell in terms of modeling
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Figure I.15: The cell unit in Kelvin structure with di�erent ligament shapes: equilateral

triangular (left), concave (middle), and circular a variation of cross sectional area along the

length (right).

and characterizing. Membrane connectivity may change the propagation behavior of the

sound wave in such cellular materials. To take the membrane level into account, several

parameters are provided such as membrane closed rate[130,138], reticulated ratio [27,79], cell

openness[28,139]. The Kelvin and Weaire-Phelan unit cells with a membrane closing rate in

cell walls are shown in the right parts of Figure I.14.

I.4.2 Numerical estimations of macroscopic properties

Multiscale asymptotic modeling is a homogenization technique which is suitable for analysing

of wave propagation in porous materials[140]. In the simpli�ed case where the porous solid

phase is assumed to be perfectly rigid, one may consider the porous medium as an equivalent


uid subject to visco-thermal dissipations through two parameters: the e�ective mass density

and the e�ective bulk modulus. Numerically, two following numerical approaches are most

used to compute these e�ective qualities based on the up-scaling homogeneous technique of

representative elementary volumes. These two numerical models of interest are introduced as

the `hybrid' (i.e., e�ective 
uid at very low and high frequency regimes) and `direct', where

`direct' means completely numerical at each frequency of interest.

I.4.2.1 Direct approach

In order to describe the linear acoustic phenomena occurring in a porous medium, a direct

approach is used to solve the frequency-domain viscous-thermal governing equations and

associated boundary conditions for harmonic waves characterized by frequency.

In a porous medium with an assumption that its solid skeleton is rigid perfectly, the

governing equations of 
uid properties in the pore domain 
 f and on the 
uid-solid interface

@
 may be written by,
p
P0

=
�
� 0

+
�
� 0

in 
 f ; (I.14a)

� 0j! v = � r p + ( � + � )r (r :v) + � � v in 
 f ; (I.14b)
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j!
�
� 0

= � r :v in 
 f ; (I.14c)

� 0j!C p� = j! p + � � � in 
 f ; (I.14d)

v = 0 ; � = 0 on @
 ; (I.14e)

in which p, � , v , and � are respectively the 
uid pressure, temperature, velocity, and density

�elds. The shear and bulk viscosities, speci�c heats at constant pressure, and heat conduc-

tivity are denoted by � , � , Cp, and � , respectively.

Let us introduce two scales: the unit length l of the periodicity of a periodic structure

on the micro-scale, and the frequency-dependent wavelengthL . Assuming that the two scales

di�er signi�cantly and that the scale ratio " = l=L is much smaller than 1. A space variable

on macro-scalex and a space variable on micro-scaley are introduced in the asymptotic

method. Following Sanchez-Palencia[140], the asymptotic expansions of physical variables (v,

p, and � ) are given below:

v = v (0) (x; y) + "v (1) (x; y) + "2v (2) (x; y) + ::: ;

p = p (0) (x; y) + "p(1) (x; y) + "2p(2) (x; y) + ::: ;

� = � (0) (x; y) + "� (1) (x; y) + "2� (2) (x; y) + ::: :

(I.15)

We also have the forms of the gradient and Laplacian operators as follows:

r = r x +
1
"

r y ; � = � x +
2
"

� xy +
1
"2 � y : (I.16)

Rescaling the viscosity and conductivity coe�cients by "2 in order to consider the

viscous-thermal e�ects to occur at the micro-scale[141], the momentum balance Eq. (I.14b)

and energy equations Eq. (I.14d) can be rewritten as,

� 0j! v = � r p + "2(� + � )r (r :v) + "2� � v ; (I.17a)

� 0j!C p� = j! p + "2� � �: (I.17b)

Substituting the asymptotic series of physical variables in Eqs. (I.14c), (I.17a), (I.17b),

these equations may be expressed in the following forms,

j!

 
p(0) + "p(1) + :::

P0
�

� (0) + "� (1) + :::
T0

!

= �
�

r x +
1
"

r y

�
:
�

v (0) + "v (1) + :::
�

; (I.18a)

� 0j!
�

v (0) + "v (1) + :::
�

= �
�

r x +
1
"

r y

� �
p(0) + "p(1) + :::

�
+

"2(� + � )
�

r x +
1
"

r y

� ��
r x +

1
"

r y

�
:
�

v (0) + "v (1) + :::
� �

+

"2�
�

� x +
2
"

� xy + � y

�
:
�

v (0) + "v (1) + :::
�

;

(I.18b)
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� 0j!C p

�
� (0) + "� (1) + :::

�
= j!

�
p(0) + "p(1) + :::

�
� "2

�
� x +

2
"

� xy + � y

� �
� (0) + "� (1) + :::

�
:

(I.18c)

Separating orders, at order" � 1, it is implied that the 
uid velocity may be considered

as locally incompressible (r y :u (0) = 0), and the macro-scale pressure is constant at the

micro-scale (r yp(0) = 0). At order "0, it is found that

j!
�

p(0) =P0 � � (0) =T0

�
= � r x :v (0) � r y :v (1) ; (I.19a)

� 0j! v (0) = � r yp(1) � r xp(0) + � � yv (0) ; (I.19b)

� 0j!C p� (0) = j! p(0) + � � y � (0) : (I.19c)

At a given frequency, the following linear relationships are obtained[15],

v (0) (x; y) = �
k(y; ! )

�
:r xp(0) ; p(1) (x; y) = � � (y; ! ):r xp(0) + p̂ (1) (x); (I.20a)

� (0) (x; y) = �
k0(y; ! )

�
j!� (0) (x): (I.20b)

Substituting two formulae of Eq. (I.20a) into Eq. (I.19b), and using r yp̂(1) = 0, we

obtain the micro-scale dynamic viscous permeability,

� 0j!
k (y; ! )

�
+ r y � (y; ! ) � � yk(y; ! ) = I : (I.21)

Similarly, the micro-scale dynamic thermal permeability is governed as,

� 0j!C p
k0(y; ! )

�
� � yk0(y; ! ) = 1 : (I.22)

In summary, by employing the multi-scale asymptotic method, one can obtain the

following decoupled set of partial di�erential equations (PDEs) [24,142]:

(i) Momentum equation with no-slip boundaries,

j!
� 0

�
k + r � � �k = I with r :k = 0 in 
 f ; (I.23a)

k = 0 on @
 ; (I.23b)

k and � : 
 � periodic: (I.23c)

(ii) Energy equation with isothermal boundaries,

� 0Npr

�
j!� 0k0� � k0 = 1 in 
 f ; (I.24a)

k0 = 0 on @
 ; (I.24b)

k0 : 
 � periodic: (I.24c)
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We can determine directly the macro-scale e�ective density and e�ective buck modulus,

� (! ) =
��
j!

k � 1;

K (! ) = 
P 0

�

 � (
 � 1)

� 0Npr

�
j!k 0

�

� � 1

;
(I.25)

where Npr is the Prantdl number, and the dynamic viscous permeability k and thermal

permeability k0 are estimated as follows,

k = � hk i ; k0 = �


k0� : (I.26)

The notion h�i refers to an averaging operator over the domain of interest, in the 
uid

phaseh�i
 f
=

R

 f

(�)dV
. R


 f
dV.

I.4.2.2 Hybrid approach

From a macroscopic perspective, the 
uid equivalent approach is applied where a rigid porous

medium is substituted by an e�ective 
uid characterized by the dynamic density and bulk

modulus. The frequency-dependent function of e�ective density and bulk modulus of the air

in pores are related to dynamic tortuosity ~� (! ) and dynamic compressibility ~� (! ) as follows:

� (! ) = � 0 ~� (! ); K (! ) =
K a

~� (! )
; (I.27)

where � 0 is the density of air at rest, K a = 
P 0 is the air adiabatic bulk modulus, P0 is the

atmospheric pressure,
 = Cp=Cv is the speci�c heat ratio at constant temperature with Cp

and Cv being the speci�c heat capacity at constant pressure and volume, respectively.

The dynamic viscous tortuosity de�ned by analogy with the response of an ideal (non-

viscous) 
uid whose components are real-valued and frequency independent,

� 0 ~� ij (! )
@hvj i

@t
= � Gj : (I.28)

~� ij (! ) is related to the dynamic viscous permeability ~kij (! ) by ~� ij (! ) = ��=j! ~kij (! )

in which, � = �=� 0 is the air kinematic viscosity, and � is the air viscosity.

Similarly, a compressibility e�ect is also observed at macro-scale in the acoustic response

of a thermo-conducting 
uid �lled porous media, where a second convenient response factor

is the normalized dynamic compressibility ~� (! ) which varies from the isothermal to the

adiabatic value when frequency increases,

~� (! )
K a

@hpi
@t

= �r :hv i ; (I.29)
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here, ~� (! ) is directly related to the dynamic (scalar) thermal permeability [15] by means of

the relation ~� (! ) = 
 � (
 � 1)j! ~k0(! )=� 0� with � 0 = �=� 0Cp.

Based on a locally plane interface, having no fractal character, the long-wavelength

frequency dependence of the visco-thermal response factors ~� ij (! ) and ~� (! ) have to respect

de�nite and relatively universal behaviors [12,143,144] (namely causality through the Kramers-

Kronig relation), similarly to the models used for relaxation phenomena in dielectric prop-

erties. The equivalent dynamic tortuosity of the material and the equivalent dynamic com-

pressibility of the material are ~� eqij (! ) = ~� ij (! )=� and ~� eq(! ) = � ~� (! ).

Simple analytic admissible functions for the 
uid phase e�ective properties of isotropic

porous media are[12,13,15]:

~� (! ) = � 1

�
1 +

F ($ )
j$

�
; (I.30a)

~� (! ) = 
 � (
 � 1)
�
1 +

F 0($ 0)
j$ 0

� � 1

; (I.30b)

where F and F 0 representing dimensionless viscous and thermal shape functions are given:

F ($ ) = 1 � P + P

r

1 +
j$M
2P2 ;

F 0($ 0) = 1 + P0+ P0

r

1 +
j$ 0M 0

2P02 ;

(I.31)

and dimensionless viscous$ and thermal $ 0 angular frequencies are estimated by the fol-

lowing expression:

$ =
!� 0k0� 1

��
; $ 0 =

!� 0k0
0Npr

��
; (I.32)

whereNpr is the Prandtl number, and � is the coe�cient of the thermal conduction. Factors

M and M 0 represent dimensionless viscous and thermal shape factors, respectively, whileP

and P0 represent dimensionless supplementary parameters (see Eq. I.6).

It can be seen that the frequency-dependent descriptions of e�ective density� (! ) and

e�ective buck modulus K (! ) were reconstructed based on a set of 8 parameters involving� ,

� 0, �, k0
0, k0, � 1 , � 0 and � 0

0. Excluding two geometrical parameters (the porosity � and

the thermal characteristic length � 0), the six remaining factors are computed numerically

by an analytics-based approach that was introduced as the hybrid numerical method in the

literature. The main advantage of this approach is solving three static asymptotic boundary

value problems (BVPs) involving Stokes, Laplace, and di�usion-controlled reaction equations.

These equations yield as follows:

(i) Stokes problems or viscous 
ow for computations of the static viscous permeabilityk0

and the static viscous tortuosity � 0
[12,145,146]:

� �v � r p = � G with r :v = 0 in 
 f ; (I.33a)
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v = 0 on @
 ; (I.33b)

v and p are 
 � periodic; (I.33c)

where G = r pm is the macroscopic pressure gradient acting as a source term,v and p

are the velocity and pressure of the 
uid, respectively.

(ii) Laplace problems or inertial 
ow for computations of the high frequency tortuosity � 1

and the viscous characteristic length � [11]:

r .E = 0 with E = �r ' + e in 
 f ; (I.34a)

E.n = 0 in @
 ; (I.34b)

' is 
 � periodic; (I.34c)

where e is a given macroscopic electric �eld,E the solution of the boundary problem

having �r ' as a 
uctuating part, and n is the unit normal to the boundary of the

pore region.

(iii) Thermal conduction problems or thermal e�ect for computations of the static thermal

permeability k0
0 and the static thermal tortuosity � 0

0
[53]:

r 2u = � 1 in 
 f ; (I.35a)

u = 0 on @
 : (I.35b)
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we expand the macroscopic property of interest such as sound absorption coe�cient of

acoustic materials as a truncated series of orthogonal polynomials with the two vari-

ables that are the considered microstructural parameters. The results of the numerical

example show that the proposed framework allows the sound absorbing property to

be predicted over an appropriate frequency range (a relative error, less than 2%, is

observed). In term of computational cost, the evaluation of the cost function with sur-

rogate model took about 128 seconds for a grid de�ned with 100� 100 sampling points,

whereas proceeding with the reference multiscale computation, for each con�guration,

it is required about 156 seconds (where only one quarter of the cell is used, by periodic-

ity). Besides working on acoustical application concerned here, the present method can

be readily developed to accommodate other constraints such as elastic properties in a

multi-objective formulations. It should �nally be noticed that, for real industrial appli-

cation with multi-layer absorbers, this framework can be broaden for high-dimensional

problems with more input parameters of interest by working on a sparse grid only.

� V. H. Trinh's contributions: V. H. T. performed the numerical works and partici-

pated in discussing the results and writing the manuscript.
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Summary

This paper is concerned with the use of polynomial metamodels for the design of acoustical

materials, considered as equivalent 
uids. Polynomial series in microstructural parameters

are considered, and allow us to approximate the multiscale solution map in some well-de�ned

sense. The relevance of the framework is illustrated by considering the prediction of the

sound absorption coe�cient. In accordance with theoretical results provided elsewhere in

the literature, it is shown that the surrogate model can accurately approximate the solution

map at a reasonable computational cost, depending on the dimension of the input parameter

space. Microstructural and process optimization by design are two envisioned applications.

DOI: 10.3813/AAA.919139

II.1 Introduction

The inverse design of materials has recently gained popularity in both academia and industry.

Materials by design approaches typically require (i) the construction of a mapping between

the microstructural features at some relevant scale and the properties of interest (with a

desired level of accuracy), and (ii) the design of an optimization algorithm that can e�ciently

explore innovative solutions. In this paper, we investigate the use of a multiscale-informed

polynomial surrogate to de�ne an approximation of the macroscopic acoustical properties in

terms of microstructural variables.

Let m denote the vector of microstructural parameters to be optimized, and assume

that m belongs to some admissible closed setSm = � n
i =1 [ai ; bi ] in Rn . Let q 2 Sq � Rd be

some macroscopic quantity of interest. Microstructural design optimization then consists in
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�nding, using an ad hoc computational strategy, the optimal value m opt of m (which may

be non-unique) minimizing some application-dependent cost functionJ such that J (q) =

J (q(m )) =: J (m ), by an abuse of notation:

m opt = argmin
m 2 S m

J (m ) : (II.1)

In practice, solving the above optimization problem (which is not convex and may exhibit

many local minima) requires performing multiscale simulations a large number of times,

especially for large values ofn. A classical remedy to this computational burden relies

on the construction of a surrogate mappingq̂ that properly approximates q (that is, the

map m 7! q̂(m ) approaches the solution mapm 7! q(m ) in some sense) and remains

much cheaper to evaluate than full-�eld upscaling simulations. Available techniques include

the use of neural networks, response surfaces[147] and reduced-order models[148]. Once the

approximation has been de�ned, the optimal solution is then de�ned as

m opt = argmin
m 2 S m

Ĵ (m ) ; Ĵ (m ) = J (q̂(m )) : (II.2)

II.2 Methodological aspects

The de�nition of the surrogate model q̂ involves key theoretical questions (such as the char-

acterization of convergence rates), as well as algorithmic concerns (related to the design of

e�cient strategies to build the metamodel, for instance). These issues have attracted much

attention in various �elds, especially for the computational treatment of partial di�erential

equations, and an extensive review on this topic is beyond the scope of this letter (see e.g.,[148]

for a survey, as well as[149,150] and the references therein for convergence results). Despite this

fact, the use of metamodeling remains quite unexplored in the multiscale analysis of acoustic

properties. Since the reference mapm 7! q(m ) typically introduces some smoothness due

to its multiscale nature, polynomial approximation techniques are natural candidates for the

construction of q̂ (see e.g.,[150]). Upon introducing the normalized vector-valued parameter

� such that [� 1; 1] 3 � i = 2=(bi � ai )mi +( ai + bi )=(ai � bi ) for 1 6 i 6 n, the surrogate model

q̂ is then sought for as a polynomial map in� :

q̂(� ) =
X

�

q̂� P� (� ) ; (II.3)

where � is a multi-index in Nn , P� is the multidimensional Legendre polynomial de�ned as

P� (� ) =
Q n

i =1 P� i (� i ), and P� i is the univariate Legendre polynomial of order � i (see e.g.,

Chapter 8 in [151]). From the orthogonality of these polynomials, namely

< P � ; P� > =
1
2n

Z

([ � 1;1])n
P� (x ) P� (x ) dx

=
nY

i =1

� � i � i

2� i + 1
;

(II.4)
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where � is the Kronecker delta, it follows that

q̂� =

 
nY

i =1

(2� i + 1)

!

< q̂; P� > : (II.5)

The choice of this polynomial basis ensures that the surrogate is uniformly accurate

over the parameter space, so that no bias (noise) is generated in the evaluation of the cost

function. The computation of the coe�cients q̂� necessitates the evaluation ofn-dimensional

integrals, and various techniques have been proposed in the literature to address this issue.

Standard or enhanced (i.e. nested, sparse, etc.) quadrature rules can be invoked for small

values ofn, while (advanced) Monte Carlo simulation techniques can be used for much higher

dimensions (see e.g.,[72]). Below, a Gauss-Legendre quadrature rule is used for illustration

purposes.

II.3 Numerical results

II.3.1 Reference solution map

In the sequel, we consider the optimization of a tetrakaidecahedron structure (see Figure II.1)

for sound absorption purposes, and seek an approximation of the normal incidence sound ab-

sorption coe�cient A (n) as a function of both the macroscopic porosity� and the membrane

closure rate r c = �=� max . For later use, let A (d) be the sound absorption coe�cient for a

di�use �eld excitation (see Eqs. (7{9) in [30]). Note that in a more general setting, the in-

terpolation of intrinsic parameters, such as transport properties, is more appropriate, since

they constitute primary variables enabling the prediction of e.g., frequency dependent re-

sponse functions. Depending on the context,A (n) is indexed by either the frequencyf or

the angular frequency! = 2 �f . We then adopt the notation A (n) (�; r c; f ) (or A (n) (�; r c; ! )),

and any variable temporarily �xed may be dropped with no notational change (when � and

r c are �xed, the absorption coe�cient simply reads as A (n) (f ) or A (n) (! )). While changes

in the porosity � can be imposed in various ways, we presently consider adapting the lig-

ament thickness r (as shown Figure II.1) and the sizeD of the unit cell remains constant

and equal to 0:8 mm. Furthermore, the same closure rate is imposed on all faces of the

structure, which re
ects both the assumed periodicity and processing constraints. Following

the notations introduced in x II.1, m is identi�ed with the vector ( �; r c) and q = ( A (n) );

hence, n = 2 and d = 1. For a given value of the microstructural parameters, A (n) (! )

is obtained asA (n) (! ) = 1 � j (Zs(! ) � Z0)=(Zs(! ) + Z0)j2, where Z0 is the air impedance

and Zs(! ) is the normal incidence surface impedance of the equivalent 
uid. For a layer

of thickness L s (L s = 20 mm below), Zs(! ) reads asZs(! ) = � jZ c(! ) cot(kc(! )L s), where

j is the imaginary unit, Zc(! ) is the characteristic impedance andkc(! ) denotes the wave

number (with the time convention: + j!t ). These quantities can be expressed in terms of
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Figure II.1: Unit cell and FE mesh (� = 0 :97, r c = 0 :6).

the e�ective density � e� (! ) and e�ective bulk modulus K e� (! ) as Zc(! ) =
p

� e� (! )K e� (! )

and kc(! ) = !
p

� e� (! )=Ke� (! ). The e�ective properties can be estimated by using the

semi-phenomenological JCAPL model[12,13,15,16], which involves transport properties that are

obtained by solving a set of independent boundary value problems (BVPs) (Stokes, potential


ow and thermal conduction equations; see e.g., Chapter 5 in[9] and Appendix B in [26] for a

condensed presentation of this model). In this work, these BVPs are solved by using the �nite

element method (at convergence, the mesh associated with the complete cell contains 214; 412

tetrahedral elements; see Figure II.1) and the commercial software COMSOL Multiphysics.

For a given con�guration (i.e. for given values of � and r c), the averaged computation time

for the multiscale simulations is about 156 seconds. The reference solution map is shown in

Figure II.2 for various frequencies.

0
1

0.5

n

0.8
0.95 0.6

1

0.4
0.20.9

Figure II.2: Reference solution map (�; r c) 7! A (n) (�; r c) at di�erent frequencies (in Hz).
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II.3.2 Surrogate analysis

It follows from Eq. (II.3) that the approximant, truncated at order p, is given by

q̂p(� ) =
pX

� 2 N2 ; j� j=0

q̂� P� (� ) ; (II.6)

where � = ( � 1; � 2), j� j =
P n

i =1 � i and P� (� ) = P� 1 (� 1)P� 2 (� 2). The reduced coordinate� 1

corresponds to� , and � 2 represents the closure rater c. The coe�cients are then estimated

(see Eq. II.5) as

q̂� �
(2� 1 + 1)(2 � 2 + 1)

4

NQX

i =1

wi q̂(� (i ) )P� (� (i ) ) ; (II.7)

in which f wi g
NQ
i =1 and f � (i )gNQ

i =1 are the weights and points of the quadrature rule. Evaluating

the multiscale model at the quadrature points represents o�ine stage (distributed) compu-

tations in which the reduced variables are mapped back onto the physical ones (i.e.� and

r c). Convergence must be characterized with respect to bothp (using e.g., aL 2 metric for

increasing orders of expansion) andnQ = ( NQ )1=2 (for a �xed order of expansion p). In

practice, the value of nQ can be determined by analysing the convergence of the function

nQ 7! " (nQ ) = kq̂� (nQ ) � q̂� (nQ + 1) k2=kq̂� (nQ )k2, where the dependence of̂q� on nQ is

made explicit (see Eq. (II.7)). In what follows, nQ is determined such that " (nQ ) 6 10� 2

(see Figure II.3).

0 5 10 15 20
10-4

10-2

100

Figure II.3: Graph of the error function nQ 7! " (nQ ) for p = 5 (circles), 10 (diamonds) and

15 (squares).

Let Dp be the relative error measure de�ned asDp(�; r c) = jA (n) (�; r c)� Â (n)
p (�; r c)j=A(n) (�; r c),
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where Â (n)
p is the estimate of the sound absorption coe�cient (normal incidence) obtained

with the surrogate model at order p. The probability density function of Dp obtained for

� 2 [0:9; 0:99] and r c 2 [0:1; 0:9] (with a total of 900 combinations evaluated) is shown in

Figure II.4, for p = 15 (with nQ = 14, implying that 196 computations are necessary to

calibrate the surrogate model). As expected, uniform convergence over the parameter space

0 0.005 0.01 0.015 0.02
0

100

200

300

400

500

Figure II.4: PDF of the relative error for p = 15 and for the set of frequencies shown in

Figure II.2.

is observed, with a relative error that is typically less than 2%, regardless of the frequency

under consideration. It should be noticed that the apparent ordering in mean and variance,

which both decrease when the frequency increases, is due to the frequency dependency of the

normalizing absorption coe�cient (see Figure II.2). The accuracy of the approximation can

also be assessed over a wide range of frequencies, as shown in Figure II.5 forp = 10 (nQ = 11)

and p = 15 (nQ = 14).

Let us now consider the optimization problem given by Eq. (II.2), and consider, for

m = ( �; r c), the cost function Ĵ (m ) = � q̂� (m ), with � 2 [0; 1] and

q̂� (m ) = � Â
(n)
p (m ) + (1 � � )Â

(d)
p (m ) (II.8)

where Â
(n)
p (m ) and Â

(d)
p (m ) are the averages of the sound absorption coe�cients, approxi-

mated with the surrogate, over the frequency interval [f 0; f 1]:

Â
(k)
p (m ) =

1
f 1 � f 0

Z f 1

f 0

Â (k)
p (m ; f ) df ; (II.9)
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0
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0

0.5

1

Figure II.5: Solution map for the normal incidence sound absorption coe�cient. Solid line:

reference; cross markers: surrogate withp = 10; point markers: surrogate with p = 15. The

results are shown forr c = 0 :1 (black), 0:2931 (green), 0:4862 (blue), 0:5966 (red), 0:7069

(magenta), and � = 0 :9124 (left panel) and � = 0 :9745 (right panel).

where k stands either for n or d. Note that the dependence ofq̂ on p is not reported to

simplify notation. The charts showing the approximated sound absorption coe�cients are

reported in Figure II.6, and can be used to evaluate the performance of the material over

ranges of values induced by process variability. Once calibrated, the surrogate model allows

Figure II.6: Plots of the averaged absorption coe�cients, with f 0 = 250 and f 1 = 5 ; 000

Hz. The maximum value in each chart is identi�ed with a red cross.

the cost function to be evaluated at a negligible computational expense, which opens up many
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possibilities to design optimal microstructures (pore size, membrane content) under contraints

related to di�erent acoustical parameters. Whereas the proposed application was concerned

with transport and sound absorbing only, it should �nally be noticed that the approach can

readily accommodate other constraints related to mechanical and sound insulation properties

in a multi-objective formulation.

II.4 Conclusion

In this work, we have investigated the potential of polynomial metamodels to accurately ap-

proximate mappings between key microstructural features and homogenized acoustical prop-

erties. The approach relies on orthogonal polynomials and enables appropriate convergence

over the parameter space to be ensured. It is shown that the framework allows the sound

absorption coe�cient to be predicted over an appropriate range of frequencies, so that the

optimization of microstructures under various types of constraints can be envisioned at a rea-

sonable computational cost to support the design for noise reducing materials and structures

(COST Action CA15125).
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Highlights

� Polymeric foam with monodispersed pore size and tunable membrane content were

obtained using milli-
uidic techniques at constant porosity.

� Micrograph images revealed that a proper description of the membrane content requires

the respective proportions of closed windows and opened windows, and the distribution

of aperture sizes of opened windows.

� Tuning membrane content enabled to progressively modify the sound absorbing behav-

ior at constant pore size from the open-cell to the closed-cell con�gurations.

� The calculation of visco-thermal parameters on a periodic model statistically built

from the three-dimensional geometry of real foams is able to reproduce the membrane-

induced e�ect observed on real foams.

� Tuned membrane content showed interesting speci�c sound absorbing properties be-

tween the open-cell and closed-cell foams.

Abstract

This work is focused on tailoring cellular foam membranes for sound absorption. Several

foam con�gurations with a constant porosity and varying membrane content were �rst elab-

orated by using milli-
uidic techniques. This approach allows transport and sound absorbing

properties to be continuously tuned on purpose, from open-cell to closed-cell foams. The

morphology of these foams was then investigated using optical micrograph images. Mi-

crostructural descriptors such as the proportions of closed and opened windows and aperture

size were speci�cally analyzed. The associated transport and sound absorbing properties were

subsequently characterized using air
ow resistivity and three-microphone standing wave tube

measurements. The numerical reconstruction of foam samples was next addressed by con-

sidering a Periodic Unit Cell (PUC) approach on Kelvin cells. The transport properties of

these virtual samples were determined by numerical homogenization, performing sequential

evaluations of the parameters that govern visco-thermal losses. To overcome the limitation

induced by the size of the numerical model at the pore scale, an averaging procedure was

proposed. The results show that the PUC model can be used to accurately predict the trans-

port and sound absorbing behaviors of interest. The relevance of the multiscale estimations

for acoustic properties is demonstrated over the entire range of membrane content.
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III.1 Introduction

Cellular foams are attractive materials for structural, thermal, and acoustical applications

due to their lightweight and high speci�c surface area properties[152,153]. Therefore, they

were the focus of much attention during the past three decades (Gibson and Ashby, 1988;

Warren and Kraynik, 1988) [152,154]. The design of lightweight structures aims, above all, at

an optimal compromise between structural properties, transport properties and acoustical

performance. Ultimately, the sought-for solution should be compatible with some industrial

requirements (large-scale production requirements). The microstructure-informed prediction

of some physical properties of interest for a porous medium provides a theoretically sound

basis for conducting optimization analyses. It can be approached in various ways, using

phenomenological or truly multiscale frameworks on idealized (e.g., periodic) or random

foam morphologies. Moreover, crystalline foams, and more particularly those prepared from

milli-
uidic techniques, are primary regarded as model systems by physicists, due to their

equal-volume pore and well-controlled polymer properties[155]. As such, they may therefore

represent a critical step in the understanding of their structure-property relations. Here, we

report that the acoustical properties of tailored membrane-based cellular foams can be di-

rectly determined from numerical homogenization performed on an idealized foam mimicking

the microstructure of a real foam.

Even if viscous dissipation is the main losses mechanism, modeling the acoustical proper-

ties of rigid porous medium requires to consider both the visco-inertial and thermal e�ects[9].

At low frequencies, when the wavelength is much larger than the typical pore size (i.e.,

scale separation), visco-inertial and thermal e�ects might be decoupled: the visco-inertial

e�ects are conveniently described by a macroscopically averaged 
uid velocity which can

be represented at macroscale by a frequency-dependent density (Johnson, 1986, Johnson et

al., 1987)[12]; and the thermal e�ects are described by analogy with a macroscopically aver-

aged 
uid temperature represented at macroscale by a frequency-dependent bulk modulus[15].

Then, as long as the scale separation is valid, the dynamic behaviors of density and bulk

modulus can be approximated by analytic expressions compatible with the low- and high-

frequency asymptotic solutions associated to each losses mechanism. If, both e�ects share an

intrinsic parameter which is the porosity of the open pore-space,� op, each mechanism also

owns some speci�c parameters. For visco-inertial e�ects, three additional parameters were

introduced: (1) the Darcy static permeability, k0, governing the low frequency behavior of

e�ective density; (2) the tortuosity, � 1 , associated to the high frequency regime for which

the 
ow pattern is identical with that for an ideal 
uid, except in the boundary layer (the

viscous skin depth becomes much smaller than any characteristic pore size); (3) the viscous

characteristic length, �, is a pore-volume-to-surface ratio of the pore-solid interface in which

each area or volume element is weighted according to the local value of the velocity �eld
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in the high frequency regime which represents a dynamically connected pore size entering

into the analytic properties of the high-frequency limit. Regarding thermal e�ects, and by

analogy with the viscous ones, at least two parameters were added: (4) the static thermal

permeability, k0
0, associated to the low frequency regime, which links the pressure time deriva-

tive to the macroscopic excess temperature, (5) the thermal characteristic length, �0, which

is de�ned as a generalized hydraulic radius also entering into the analytic properties of the

high-frequency limit. As, at high frequency, the excess temperature is everywhere the same

in the pore space because this quantity is related to the adiabatic compression of the air in

the material and depends only on the excess acoustic pressure that is constant at the pore

scale, the e�ective bulk modulus is then equal to the adiabatic bulk modulus and no addi-

tional parameter is necessary. All the �ve previous parameters which constitutes the input

parameters of the Johnson-Champoux-Allard-Lafarge model (JCAL), can be characterized

experimentally [107,120]. The relationships between these parameters and the microstructure

of porous materials can be inferred in various ways: (A) by considering solutions associated

to idealized structures (for example, a network of aligned tubes as in Refs.[9,12,34,35], (B)

by using semi-empirical relations based on power laws obtained on idealized structures and

calibrated on experimental measurements, as done by Gibson et al.[152] for mechanical and

transport properties of cellular materials, or by Allard and Champoux for acoustical prop-

erties of �brous materials [9], (C) by homogenization method[156{158] performed on numerical

periodic structures mimicking the microstructure of real porous medium. For porous medium

having a complex pore-space, speci�c tools using mathematical morphology[90] and probabil-

ity theory were used in order to generate numerical samples that are consistent with observed

data with advanced imaging techniques (e.g., micro computed tomography)[91,92,159]. Finally,

as an alternative way to the approach (C) which consists to compute the only asymptotic

transport parameters, numerical homogenization method can be used to compute the overall

dynamic response functions of the porous medium { frequency by frequency { associated to

the visco-thermal e�ects [24,159{162].

These di�erent approaches have been used to study the acoustical properties of cellular

foams. Depending on various factors such as the formulation, processing conditions and post-

processing operations[27,79,153], the microstructures of cellular foams can be characterized by

the fraction of closed windows[27,28,79,163] or by membrane aperture rates[153]. In the case

of polyurethane foams, a more complex distribution of membranes is observed and involves

both fully closed and partially-open windows[75]. Concerning the acoustical properties, the

e�ect of closed windows was studied by Doutres et al.[27,79] with a semi-empirical approach

(B), and by Park et al [28] with a numerical homogenization approach (C) performed on a

Kelvin cell (tetrakaidecahedron) microstructure. The e�ect of the window aperture was stud-

ied by Perrot et al. with the approach (C) performed on a Kelvin structure. By another

approach, based on the numerical homogenization of Biot equations, Goa et al. have studied

46



III.2. MEMBRANE INDUCED-EFFECT ON SOUND ABSORPTION: EXPERIMENTAL
EVIDENCE

the acoustic properties of foams having both open and closed windows. They have pro-

posed a homogenization model based on a simple mixing law built by parallel association of

two types of cells: fully open cells (without any membrane) and partially closed cells. The

Biot theory [34,35] used by these authors makes it possible to take into account the e�ect of

the deformations of the solid skeleton, but is probably not the most appropriate to study

in detail the viscous and thermal losses[12]. Numerical homogenization methods performed

on an appropriated structure (C), such as Kelvin or Weaire Phelan structures, encapsulate

both realistic (the model and the geometry of the foam are quantitatively comparable) and

parametrizable salient features[164,165] of the real microstructure, allowing cellular morphol-

ogy modi�cations to be accounted for across the scales[10]. This builds up an appropriate

framework of discussion with chemists. At the present time, however, there was no optimal

morphological con�guration rising from this category which was shown to be manufactured.

Within this context, this study aims at (i) exploring whether milli-
uidic techniques [155]

can be used to tune the membrane content of cellular foams (and therefore, the transport and

sound absorbing properties of these materials); (ii) assessing the e�ects of the membrane dis-

tribution on the sound absorbing and underlying visco-thermal properties; (iii) developing a

model to predict the evolution of these macroscopic properties as a function of the aforemen-

tioned distribution. This model will be compared to other formulations proposed elsewhere

in the literature, such as the Doutres et al. (DAD) model [27,28,79,163] (which accounts for the

fraction of fully opened/fully closed windows) and the Hoang and Perrot (HP) model, which

is based on a homogeneous closure rate of membranes[138,166,167].

This paper is organized as follows. In the �rst section, we present a simple but e�cient

elaboration route for obtaining low-density monodispersed polymeric foams with a tuned

membrane content at constant porosity. The membrane distribution and acoustical proper-

ties of the foams thus produced are then studied using optical photomicrographs and air
ow

resistivity, combined with three-microphone standing wave tube measurements. In order to

analyze the relationship between the membrane distribution and sound absorbing proper-

ties, a three-dimensional regular unit cell model is subsequently proposed. A comparison

between the experimental values and the numerical predictions is �nally provided on relevant

quantities of interest.

III.2 Membrane induced-e�ect on sound absorption: Experi-

mental evidence

In the next section, we detail experiments conducted on real solid foams. In particular,

the foaming process, the microstructural characterization and the measurements of normal

incidence sound absorption and of the macroscopic parameters are presented.
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III.2.1 Elaboration of controlled polymer foams

We elaborate solid polymer foam samples having �xed values for both gas volume fraction

and monodisperse bubble diameterDb, but a tunable membrane content. The experimental

procedure can be described as follows (see Fig. III.1).

1. A monodisperse precursor aqueous foam is generated. Foaming liquid, i.e., TTAB

(Tetradecyl Trimethyl Ammonium Bromide) at 3 g/L in water, and nitrogen are pushed

through a T-junction allowing the bubble size control by adjusting the 
ow rate of each


uid. Produced bubbles are collected in a glass column and a constant gas fraction over

the foam column is set at 0.99 by imbibition from the top with foaming solution [168].

2. An aqueous gelatin solution is prepared at a mass concentrationCgel within the range

12-18%. The temperature of this solution is maintained atT � 60� C in order to remain

above the sol/gel transition (T(s=g) � 30� C).

3. The precursor foam and the hot gelatin solution are mixed in a continuous process

thanks to a mixing device based on 
ow-focusing method[169,170]. By tuning the 
ow

rates of both the foam and the solution during the mixing step, the gas volume fraction

can be set,� 0 = 0.8. Note also that the bubble size is conserved during the mixing step.

The resulting foamy gelatin is continuously poured into a cylindrical cell (diameter: 40

mm; height: 40 mm) which is rotating around its axis of symmetry at approximately 50

rpm. This process allows for gravity e�ects to be compensated until the temperature

decreases belowT(s=g) .

4. The cell is let at rest during one hour, at 5� C, and is then placed in a climatic chamber

(T = 20 � C and RH = 30%) for a week. During this stage, water evaporates from the

samples and the gas volume fraction increases signi�cantly.

5. After unmolding, a slice (thickness: 20 mm; diameter: 40 mm) is cut. The slice

is used to perform acoustical measurements, while the cut extremities are used for

microstructure characterizations[75] (i.e., the peripheral surface is used to measure the

pore size[31]) .

III.2.2 Characterization of the foam samples

III.2.2.1 Pore volume fraction

As the density of dried gelatin was measured to be 1.36, volume and weight measurements

of the dried foam samples allow the pore volume fraction to be determined. For the gelatin

concentrations used in this study, the pore volume fraction is found to vary between 0.977

and 0.983. In the sequel, this parameter is considered constant and equal to 0.980� 0:003.
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Figure III.1: Schematic description of the foaming process.

III.2.2.2 Pore size

Through a preliminary calibration, the observation of the sample surface (see Fig. III.2a)

allows for the pore (bubble) size to be measured. The calibration procedure can be described

as follows. Bubbles collected in the glass column (precursor in the Fig. III.1) were �rst

sampled and squeezed between two glass plates separated by 100� m. The surface was next

measured and using volume conservation, the bubble gas volume and mean bubble diameter

Db were determined (with a precision of 3%). Moreover, the mean lengthL p characterizing

the Plateau borders of the precursor foam at the column wall was measured. It is found that

Db = (1 :68 � 0:06)L p, with Db = 810 � 30 � m for all samples. This relation can be used to

estimate the pore size in the dried gelatin samples.

In addition, the degree of anisotropy was assessed by controlling the value of the ratio

Db1=Db2 (see Fig. III.2b). Note that this degree is also considered in both the axial and

radial directions. In practice, this ratio is typically smaller than 1.15 for all samples, so that

the e�ect of geometric anisotropy will be neglected from now on.
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Figure III.2: Characterizations of dried-gelatin foam materials: top view of foam sample

(a), degree of anisotropy (b), membrane closure rate (c), and membrane thickness (d).

III.2.2.3 Cell wall characteristics

In this work, cell walls have been characterized by observing the top and bottom surfaces of

samples through a microscope (see Fig. III.2).

In terms of cellular morphology properties, the distribution of the number edges per

faces shown in Fig. III.3c is in close agreement with previous experimental[78,131] and numer-

ical [129,132] studies. The measured morphological properties, such as the edge length and face

area distributions shown in Fig. III.3a� b, are very close to results shown in Refs.[129,132] for

foams with a monodispersed or relaxed structure. The periodic unit cell modeling is based on

a Kelvin cell and is described in Section III.3.1. The locations of the distribution peaks ob-

served in Fig. III.3a� b are close to the ones obtained in a Kevin cell for whichL= 3
p

Vce � 0:45

(with Vce = D 3
b=2) and Ak= 3

p
V 2

ce � 0:38 (with Ak = (6 � L 2 +8 � 3
p

3=2L 2)=14). In addition,

as shown in Fig. III.3c, the main proportion of 5-sided faces in all samples is consistent with

the averaged number of edges of the cellular model (4� 6 + 8 � 6)=14 � 5:14 (the average

being taken over all the faces of the Kelvin cell).

The membrane content is evaluated by measuring the closure rate of windows separating

the pores, using the following procedure. Over several hundred windows observed on both

the top and bottom sample surfaces, the proportion of fully closed windowsxc is measured.

Therefore, the proportion of open windows, denoted byxo, is xo = 1 � xc. For each window,

50



III.2. MEMBRANE INDUCED-EFFECT ON SOUND ABSORPTION: EXPERIMENTAL
EVIDENCE

Figure III.3: Morphological properties measured on foam samples for S1(� ), S2(� ), S3(� ),

S4(� ), S5(5 ), S6(C), S7(?), S8(B), S9(4 ), and S10(+). The results are shown for the

normalized edge length distributions (a), the normalized face area distributions (b), and the

distributions of faces with E edges (c).

the closure rate of membraner c is also measured: r c = 1 �
p

Ael=Apo, where Apo is the

window area (the area of the corresponding polygonal face) andAel is the aperture area (the

area of the �tting ellipse with the aperture, see Fig. III.2c. The average of the closure rate

hr ci is then calculated. In the following, a distinction will be made between the mean closure

rate hr c;ci of closed windows (equal to one) and the mean for open windows, denoted by

hr c;oi . The three mean closure rates of open windows are related by the following equation:

hr ci = xc + xo � h r c;oi . Note that in order to get all the structural information required for

the PUC modeling, this treatment is re�ned by separating the \square-like" windows having

4 or less edges (referred to as0sq0), from the \hexagon-like" windows having more than 4

edges (referred to as0he0).

The structural characterization is completed by a measurement of the membrane thick-

ness through SEM images (Fig. III.2d). From ten micrographs, the average thickness was

measured to be equal to 1:5 � 0:25� m, which is close to thicknesses measured for similar

polymer foams[75,167,171].

Fig. III.4 shows the cumulative distribution function of window closure rate for each

sample, and Table III.1 gives the corresponding mean valuehr c;oi and proportion of closed
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Table III.1: Microstructural characteristics of foam samples.

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Cgel (%) 12 13 16 16 16 17 18 18 18 18

xc (%) 7.1 16.7 21.0 30.7 40.4 46.3 50.8 68.8 77.9 86.2

hr ci 0.33 0.44 0.47 0.60 0.65 0.73 0.74 0.83 0.91 0.94

hr c;oi 0.28 0.32 0.33 0.38 0.41 0.50 0.47 0.45 0.58 0.55

xsq
o (%) 20.8 18.4 15 12.7 10.4 8.2 6.6 6.1 6.3 3.4

xsq
c (%) 4.2 8.1 12.4 16.1 19.8 23.6 22.1 17.9 18.2 24.9

xhe
o (%) 72.1 64.9 64 56.6 49.2 45.5 42.6 26.1 15.8 11.2

xhe
c (%) 2.9 8.6 8.6 14.6 20.6 22.7 28.7 50.9 59.7 61.3

Figure III.4: Distribution function of the window closure rate measured on foam samples.

The results are shown for: S1(� ), S2(� ), S3(� ), S4(� ), S5(5 ), S6(C), S7(?), S8(B), S9(4 ),

and S10(+).

windows xc. The gelatin concentration Cgel (varying from 12% to 18%) in the foaming

solution appears as a control parameter to tune the membrane content of foam windows. It

appears that samples prepared with the same gelatin concentration may result in di�erent

mean closure rates after drying. The mapping between the elaboration parameters and the

cellular morphology parameters is given through a design of experiments.

It is worth to be mentioned that the closure rate of membranes for the larger windows

tends to be slightly smaller than the one for the smaller windows, for all foam samples:

r he
c 6 r sq

c . One may however simplify this feature by considering, in average, that all the open

windows of the PUC have the same closure rate, given byhr c;oi = ( r sq
c xsq

o + r he
c xhe

o )=(xsq
o + xhe

o ).
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As shown in Fig. III.1, such a statistical approach leads to a �rm trend in which the level of

closure ratehr c;oi increases with increasing the proportions of fully closed windowsxc, which

leads to an increase of membrane contenthr ci from foam S1 to foam S10.

III.2.3 Acoustic measurements

Figure III.5: Experimental setup of the three-microphone impedance tube method.

We determined the macroscopic parameters by acoustic measurements performed in

a three-microphone impedance tube[106,172] (length: 1 m, diameter: 40 mm). The test fre-

quency ranges from 4 Hz to 4500 Hz with a step size of 4 Hz. Note that the three-microphone

impedance tube method consists in measuring the pressure transfer functions,H12 and H13,

between the microphones (see Fig. III.5). The sound absorbing coe�cient� is estimated

as � = 1 � j p� =p+ j2, in which, p� and p+ are respectively the pressure created by the out-

going and the ingoing waves at the surface of the sample. Also, based on these measured

data, Panneton and Olny[107,120] proposed an inverse characterization method to estimate the

transport properties of porous materials. This characterization method requires the porosity

and the static viscous permeability k0 as input parameters following the approximate but

robust JCAL semi-phenomenological model[12,13,15]

Samples showing high permeability, i.e.,k0 > 10� 9m2, were characterized by a direct

measurement of the pressure drop �Psp as a function of the volumetric air 
ow rate Q. This

was achieved within steady state conditions in a Darcy 
ow regime (ReD b = VoDb�=� < 1),

as speci�ed in ISO standard ISO9053:1991. The Darcy permeability was then determined as

follows:

k0 = �QH sp=A� Psp ; (III.1)

with the thickness of sampleHsp� 20 mm and the circular cross-sectional areaA� 12.57 cm2.

More precisely, the permeability of each sample was measured for various static air
ows

ranging from 350 to 70 cm3=s (with incremental reductions) and determined by interpolation

for a linear air
ow velocity of 0.5 mm. The relative error of this measure is lower than

10%. The static viscous permeability valuek0 can also be determined as the imaginary

part of the low frequency behavior of the e�ective density � [120]: k0 = � �= lim ! ! 0[= (!� )].
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Using this method, the air permeability is determined asymptotically based on the frequency

range [80� 800] Hz. For foams having an important fraction of closed windows, the inverse

method used to characterize the transport parameters fails to determine the parameters

governing the thermal e�ects, i.e., the thermal characteristic length � 0[13] and the static

thermal permeability k0
0

[15].

III.2.4 Experimental results and discussions

Fig. III.6 illustrates the evolution of the sound absorption coe�cient in normal incidence

as a function of the membrane contenthr ci . As the membrane content increases, the sound

Figure III.6: E�ect of the mean closure rate on the sound absorption coe�cient at normal

incidence with a sample thickness of 20 mm and a rigid backing.

absorption coe�cients display a transition from the most opened pores (S1,hr ci = 0.33) to the

least opened ones (S10,hr ci = 0.94). This analysis shows that the highest sound absorbing

values (at constant thickness, 20 mm) arise for intermediate situations (S6,hr ci = 0 :73). For

hr ci = 0 :73, visco-thermal losses are produced such that a� 100% absorption peak can be
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obtained at � 1600 Hz. The sound absorption increases monotonically whenr c increases

for hr ci < 0:73 and then decreases monotonically whenhr ci continues to increase above the

critical value hr ci = 0 :73. At low membrane contents, most of the pores are fully open:

consequently, the sound waves can propagate through the foam without strong losses, and

be re
ected on the rigid backing. On the other hand, at high membrane contents, the sound

waves can hardly penetrate into the cellular foam and most of their energy is re
ected instead

of being transmitted and absorbed by the porous structure.

Table III.2: Transport parameters of the elaborated foam samples.

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Mean closure rate,hr ci 0.33 0.44 0.47 0.60 0.65 0.73 0.74 0.83 0.91 0.94

� (kNsm� 4) direct meas. 1.7 3.0 4.0 7.0 10.6 out of range

� (kNsm� 4) acoustic meas. 1.7 4.6 5.1 10.5 8.7 22.8 37.3 41.4 185 1360

� 1 (� ) 1.06 1.4 1.69 2.4 2.4 3.78 4.5 5.9 - -

� ( � m) 224 165 179 103 95 51 44 67 - -

k0
0 (� 1010m2) 170 190 170 - 130 - - - - -

� 0 (� m) 490 665 420 - 400 - - - - -

The following remarks can be made regarding the transport parameters (see Table III.2

and Fig. III.12).

� Because membranes obstruct some windows, increasinghr ci reduces the mean aperture

size and thus, increases the static air
ow resistivity � . As well as a�ecting the 
ow

resistivity, the membrane closure rate has an important e�ect on tortuosity. Membrane

closure rate, in turn, increases the 
uid path length and therefore, the tortuosity � 1 .

The increase in tortuosity with closure rate accounts for the lowering of the frequency

of the quarter wavelength resonance shown in Fig. III.6.

� Similarly, closing some windows or reducing the aperture size of open windows, reduces

the values of the viscous characteristic length �, since � is de�ned as a pore-volume-

to-surface-ratio in which a weighting procedure [Eq. (III.6)] substantially favors the

smaller apertures. Note that the values of �=Db are close to the mean aperture radius

hRoi , calculated by including the closed windows for whichRo = 0 (Fig. III.12a).

� The ratio � 0=� is close to 2 for small values of hr ci (as observed in �brous matarials[43]),

however, it turns out that � 0=� should increase signi�cantly as hr ci ! 1, since, in the

meantime � ! 0 [and � 0 ! � 0
fc , see Eq. (III.17)].

� Furthermore, we note that the formal inequality k0
0 � k0

[173] is veri�ed experimentally,

and that k0
0=k0 also diverges whenhr ci ! 1 ask0 ! 0. At constant of pore sizeDb, k0

0

decreases slowly with increasing membrane content (
uid-structure interface) whereas

k0 decreases strongly with membrane content (
uid obstruction).
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III.3 Distinction between aperture size and fraction of closed

windows: Numerical simulations

III.3.1 Unit cell modeling approach

The space-�lling arrangement of Kelvin's cell is a good representative structure for real cel-

lular foams with equal-sized bubbles or cells of equal volume[25,128]. The idealized Kelvin's

tetrakaidecahedron is widely used for modeling foams having high porosity[174]. The cell is

a 14-sided polyhedron with 6 squared and 8 hexagonal faces. In order to use this cell to

study cellular materials, the cross sections of the struts of this framework might be modeled

using di�erent shapes such as the circular, the triangular or the concave triangular ones.

Interestingly, the ligament shape has relatively limited in
uence on the macroscopic acoustic

properties[27,164], so that the strut can be treated using simple shapes (e.g., triangular tubes

with a constant cross section). Thus, the cell skeleton is made of idealized ligaments having a

length L , and an equilateral triangular cross-section of edge sider (see the Appendix A). Fig.

III.7a shows the periodic unit cell used to represent the local structure of the foam samples.

The corresponding �nite element mesh is shown in Fig. III.7b.

Figure III.7: PUC: skeleton geometry (a) and pore-space mesh (b).

In this work, the boundary value problems (BVPs) governing visco-thermal losses mech-

anisms are solved by using the �nite element method (at convergence, the mesh contains 207

361 tetrahedral elements, see Fig. III.7b)[175]. As we are interested in membrane induced-

e�ects, we partially or totally close the windows by adding membranes. In the case of an open

window, the hole in membrane is circular. As we attempt to make a numerical reconstruction

of real foams, the number of closed windows and the size of window aperture in the PUC are

based on the microstructural characterization of the real samples. The global closure rate

of the cell can be tuned by varying the number of partially closed windows. Therefore, the

number of closed hexagons and the ones of closed squares are determined by the following
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equations: N sq
o = b6 � xsq

o =(xsq
o + xsq

c )e and N he
o = b8 � xhe

o =(xhe
o + xhe

c )e where b�e denotes

the nearest integer (round) function. The number of fully closed windows is then equal to

N sq
c = 6 � N sq

o and N he
c = 8 � N he

o . The aperture radius of windows is chosen in accordance

with the characterized closure rateRo = ( Apo=� )0:5 � (1 � r c;o), with Apo = 3
p

3D 2
b=16 for

hexagonal windows andD 2
b=8 for squared windows.

Figure III.8: Illustration of some typical reconstructed PUC corresponding to microstruc-

tural characteristics of foam samples S1 to S10. Graphs of the periodic unit cell (a)� (k)

corresponding to PUC1� 10. Note that, for each PUC, only a con�guration among many

others is depicted.

Thus, a reconstructed PUC involves N sq
c fully closed squares andN he

c fully closed

hexagons. However, di�erent spatial distributions of fully closed windows are possible (except

in the most simple case, e.g., fully open cell). The total number of possible con�gurations

N t is given by the product of two binomial coe�cients (see Fig. III.8 for a con�guration of

each PUC):

N t =
�

6
N sq

c

�
�

�
8

N he
c

�
: (III.2)

A 2D representation of the Kelvin cell is useful to localize the position the closed windows

(Fig. III.9): the window numbered from 1 to 3 are associated to squares shared between two

cells and located at the face of the cube enclosing the PUC, the windows numbered from 4 to

6 are associated to squares located within the cube, and the ones from 7 to 14 are associated

to hexagons located within the cube. For each con�guration, it is possible to de�ne an array

for which each cell is associated to a window in the PUC, and contains \1" if the window

is closed or \0" otherwise. Hence, as soon as the number of closed hexagonal windows and

the one of closed squared windows are de�ned, all possible con�gurations of PUC can be

found by calculating all permutations of 0 and 1 in the array. We show in Fig. III.9b an
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example of di�erent con�gurations associated to the simple case,N sq
c = 1 and N he

c = 0.

These con�gurations are also depicted in Fig. III.11a(I) in a tabular form, where each line of

the table corresponds to a geometrical con�guration.

Among all the possible con�gurations associated with the same number of closed win-

dows, part of them have, with respect to the physical problem considered, a similar behavior.

A trivial example is obtained by rotating a given con�guration around the axis corresponding

to the direction of sound propagation (x-axis), for instance. Other transformations (rotations,

translations) exploiting the symmetries of the Kelvin cell also preserve the behavior of the

cell. We de�ne a set of 13 transformations as shown in Fig. III.10. For each transformation,

by comparing the original con�gurations [Fig. III.11a(I)] to the transformed con�gurations

[Fig. III.11a(II)], we can �nd the equivalent con�gurations and associate them together [Fig.

III.11a(III)]. Then, by considering the results obtained on all transformations, a global cal-

culation of equivalent con�gurations is performed [Fig. III.11a(IV)]; as we show in Appendix

B.

Note that when the number of closed windows is important, i.e.,N sq
c � 2 and N he

c � 4,

several con�gurations lead to closed interconnected pores for which no 
ow through the PUC

is possible. The number of such closed con�gurations,N t;c , is given in Table III.4. The ratio

N t;c=Nt provides an estimate of the open porosity ratioRop corresponding to such a unit cell

modeling approach: Rop = open porosity, � o=total porosity, � = 1 � (N t;c=Nt ).

Figure III.9: (a) Reconstruction of a tetrakaidecahedron cell with a 2-dimensional pat-

tern, direction of x axis is perpendicular with faces 1 and 4; (b) the possible con�gurations

associated to PUC1 (N sq
c = 1 and N he

c = 0).
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Figure III.10: The symmetry property of the periodic unit cell.

Table III.3: Equivalent con�gurations in various symmetry conditions.

Symmetry Shown in Equivalent con�guration

Periodicity/Translation Fig. III.9a [4 5 6 1 2 3 j 11 12 13 14 7 8 9 10]

Origin point O Fig. III.10a [1 2 3 4 5 6 j 13 14 11 12 9 10 7 8]

Axis Ox Fig. III.10a [1 2 3 4 5 6j 9 10 7 8 13 14 11 12]

Axis Oy Fig. III.10a [1 2 3 4 5 6j 14 13 12 11 10 9 8 7]

Axis Oz Fig. III.10a [1 2 3 4 5 6j 12 11 14 13 7 8 10 9]

Axis Oy1 Fig. III.10a [1 3 2 4 6 5j 13 12 11 14 9 8 7 10]

Axis Oz1 Fig. III.10a [1 3 2 4 6 5j 11 14 13 12 7 10 9 8]

Rotation 90� around Ox Fig. III.10b [1 3 2 4 6 5 j 8 9 10 7 12 13 14 11]

Plane Oyz Fig. III.10b [1 2 3 4 5 6 j 11 12 13 14 7 8 9 10]

Plane Oxy Fig. III.10c [1 2 3 4 5 6j 10 9 8 7 14 13 12 11]

Plane Oxz Fig. III.10c [1 2 3 4 5 6j 8 7 10 9 12 11 14 13]

Plane Oxy1 Fig. III.10d [1 3 2 4 6 5 j 9 8 7 10 13 12 11 14]

Plane Oxz1 Fig. III.10d [1 3 2 4 6 5 j 7 10 9 8 11 14 13 12]
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Figure III.11: Major steps of equivalent con�guration calculation (a) and graphs associated

to steps III. and IV. (b). This �gure depicts the simple case where N sq
c = 1 and N he

c = 0 .

III.3.2 Calculations of visco-thermal parameters

III.3.2.1 De�nition of non-acoustic parameters

In this section, we brie
y introduce the BVPs that are used for computing the macroscopic

properties of the JCAL semi-phenomenological model with 6 input parameters. This semi-

phenomenological model relies on two purely geometrical parameters (� , � 0) de�ned directly

from the local geometry of the representative unit cell as� =
R


 f
dV =

R

 dV ; and � 0 =

2
R


 dV =
R

@
 dS. The 4 remaining transport properties are computed from the solution �elds

corresponding to three group of PDEs over the unit cell.

Viscous 
ow: The low Reynolds number 
ow of an incompressible Newtonian 
uid is

governed by the usual Stokes equations in the 
uid phase[146]:

� �v � r p = � G with r :v = 0 in 
 f ; (III.3a)

v = 0 on @
 ; (III.3b)

v and p are 
 � periodic; (III.3c)

where G = r pm is a macroscopic pressure gradient. Symbolsv and p are the velocity and

pressure of the 
uid, respectively. It can be shown that the local �elds of the static viscous

60



III.3. DISTINCTION BETWEEN APERTURE SIZE AND FRACTION OF CLOSED
WINDOWS: NUMERICAL SIMULATIONS

Table III.4: PUC characteristics corresponding to foam sample S1-S10. In particular, it

illustrates the huge discrepancy between the total number of possible con�gurationsN t and

the reduced number of reference con�gurationsN r .

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Unit cell PUC1 PUC2 PUC3 PUC4 PUC5 PUC6 PUC7 PUC8 PUC9 PUC10

N sq
c 1 2 3 3 4 4 5 4 4 5

N he
c 0 1 1 2 2 3 3 5 6 7

N t 6 120 160 560 420 840 336 840 420 48

N r 2 6 6 38 36 36 12 36 36 2

N t;c 0 0 0 0 0 0 0 94 135 32

permeability are obtained from the local velocity �elds as v = � (k0=� )G. Thus, the static

viscous permeability k0xx is calculated as

k0xx = � hk0xx i : (III.4)

Inertial 
ow: In the high frequency limit, the viscous boundary layer becomes negligible

and the 
uid tends to behave as a perfect one, having no viscosity except in the vicinity of the

boundary layer. Consequently, the perfect incompressible 
uid formally behaves according

to the electrical conduction problem[12,143,176]:

r .E = 0 with E = � r ' + e; in 
 f ; (III.5a)

E.n = 0 ; on @
 ; (III.5b)

' is 
 � periodic; (III.5c)

wheree is a given macroscopic electric �eld,E is the solution of the boundary problem having

� r ' as a 
uctuating part, and n is the unit normal to the boundary of the pore region.

The viscous characteristic length � and the high frequency tortuosity � 1 are then calculated

through

� =
2

R

 f

jEj2dV
R

@
 jEj2dS
; � 1 =

hjEj2i
hjEj i 2 : (III.6)

Thermal e�ect: The thermal terminology is used here but the following developments are

also valid for di�usion of Brownian particles whose sizes are small with respect to a typical

pore size of the medium. Heat di�usion at low frequency and Brownian motion in porous

media is governed by a Poisson equation,

r 2u = � 1; (III.7)
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where u is the local �eld. When the frame has a su�cient thermal capacity, the excess

temperature u can be considered to vanish at the pore walls, and the boundary conditions

are u = 0 on @
 : The excess temperature �eldu is periodic. The mean value of the excess

temperature �eld in the pore space is directly related to the de�nition of the (scalar) thermal

permeability:

k0
0 = hui : (III.8)

III.3.2.2 Calculation of the average of non-acoustic parameters

In terms of numerical results of non-acoustic properties, the con�guration of each unit cell

is considered based on the spatial distribution of the fully closed faces. Of course, this

distribution has no in
uence on the geometric parameters (i.e., the thermal characteristic

length � 0 and the porosity � , for PUCs without a closed pore-space).

In order to compute the e�ective macroscopic transport parameters, for each unit cell

of foam sample, let us �rst introduce two averaging operators:

h:i V =
1

Vf

Z


 f

:dV ; (III.9a)

hgj i N =
1

N t

N rX

j =1

gj =
1

N t

N rX

k=1

Nkgk ; (III.9b)

in which Nk is the number of equivalent con�gurations having the same valuegk . Hence only

one representative con�guration of Nk is selected to perform the numerical computation. In

the total number of possible con�gurations N t for each unit cell in Eq. (III.2), this involves

typically N r reference con�gurations (see Section III.3.1). The values ofN t and N r are

summarized in Table III.4.

Then, the e�ective static viscous and thermal permeabilities of each foam sample were

deduced from the averages of the local permeability �elds k0xx j and uj of each con�guration,

it follows

k0 =
D


k0xx j
�

V

E

N t
; k0

0 =
D

huj i V

E

N t
: (III.10)

Similarly, the e�ective viscous characteristic length and high frequency tortuosity are obtained

from the the solution �eld E j solved from the electrical conduction problems,

� =
2
DR


 f
jEj2j dV

E

N t;oDR
@
 jEj2j dS

E

N t;o

; � 1 =

D
hjEj2j i V

E

N t;o
� D

hjEj j i V

E

N t;o

� 2 : (III.11)

In which, 
 f is the 
uid-�lled domain in the open-pore space and @
 is the 
uid-solid interface

in a representative unit cell 
. hgj i N t;o
is a con�guration average performed over the open

con�gurations. Details in the above solved local �elds are presented in the previous section,
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note that because the number of windows is limited in the Kelvin unit-cell, for PUCs with

a relatively high number of closed faces (i.e., S8 to S10), some con�gurations correspond to

disconnected 
uid 
ow. This leads us consider that all the corresponding solution �elds are

equal to zero.

III.3.3 Calculations of sound absorbing properties JCAL

From the macroscopic perspective, the equivalent-
uid approach is applied where a rigid

porous medium is substituted by an e�ective 
uid. This 
uid is characterized by an e�ective

density ~� (! ) [12] and an e�ective bulk modulus ~K (! ) [13,15] as follows[9]:

~� (! ) = � 0

2

4� 1 � j
��
!� 0

s

1 + j!
� 0

�

�
2�� 1

�� �

� 2
3

5 ; (III.12)

and

~K (! ) = 
P 0

2

4
 � (
 � 1)

(

1 � j
��

k0
0� 0Npr !

s

1 + j
4k0

0
2Npr � 0!

� � 02� 2

) � 1
3

5

� 1

: (III.13)

In these equations,� 0 and � are the density and dynamic viscosity of the ambient 
uid

at rest(i.e., air), P0 the atmospheric pressure,
 = Cp=Cv the ratio of heat capacities at

constant pressure and volume,Npr the Prantdl number, j the imaginary unit, ! = 2 �f the

angular frequency.

The wave number ~kc(! ) and the characteristic impedance ~Zc(! ) at normal incidence of

a layer of equivalent-
uid backed by imprevious rigid wall are given by[9],

~kc(! ) = !
q

~� (! )= ~K (! ); ~Zc(! ) =
q

~� (! ) ~K (! ) : (III.14)

The absorption coe�cient of this porous layer is related to the impedance ~Zs(! ) at the surface

x = x(� Hsp) of the sample,

� = 1 �

�
�
�
�
�

~Zs(! ) � Z0

~Zs(! ) + Z0

�
�
�
�
�

2

; (III.15)

with Z0 is the impedance of the air, and ~Zs(! ) = � j
~Zc (! )

� cot[~kc(! )Hsp].

III.3.4 Results and discussion

At �rst, we consider the prediction performance of our \two-parameters" microstructural

model (at constant pore size). Fig. III.12 shows that the computed transport parameters

compare well to the characterized ones. However, the computed values of tortuosity are

lower than the characterized ones. These di�erences could be due to the limited size of our
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Figure III.12: Dimensionless transport properties for: real foam samples (� ) and 2-

parameter models: PUC computation (� ), EM model (4 ). The mean aperture radiushRoi ,

calculated by including the closed windows (Ro = 0), is added (� ) and allows for a comparison

with � =Db. Note that the samples S1 to S10 are ordered by increasing mean closure rates.

The error bars on computed values of macroscopic parameters are calculated by considering

an error on the characterization of hr c;oi equal to � 0.05.

numerical samples. It is known that in percolating materials[177], the number of cells required

for calculations when the fraction of open windows,xo, is close to the percolation threshold

(1:5=Nv � 0:11, whereNv = 14 is the pore neighbor number of the Kelvin structure), should

be superior to a few thousands. The fraction of open windows for sample S10, equal to

1 � 0:86 = 0:14, is very close to the percolation threshold. We can illustrate the limitation

of our unit cell modeling by comparing their predicted fraction of open porosity obtained by

pore-network calculations performed on large samples in Ref.[177]. As expected, Fig.III.12c

shows that a modeling approach based on a simple PUC do not accurately predict the open

porosity of the real cellular foam samples containing a high fraction of closed windows. We

also note that another explanation is possible due to an experimental bias: the microstructural

characterization of foam sample was done on the cut extremity of samples, and not on the

foam sample used to perform the acoustic measurements. As the sample drying occurs by

water transfer trough the borders of samples, the proportion of open windows in the border
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Figure III.13: Comparison of the dimensionless transports predictions obtained for PUC

computations and: the HP method (a, b and c), or the DAD method (d, e and f). The results

are shown for: PUC computation values (� ), HP values (O), and DAD values (4 ). Note that

the samples S1 to S10 are ordered by increasing mean closure rate,hr ci .

could be slightly higher in the extremity than in the bulk of the foam samples.

Thus, it appears clearly that these models taking into account both the amount of

closed window and the closure rate give quite good estimates of macroscopic parameters.

What about the simplest models taking into account one microstructural descriptor among

two of them? Two \1-parameter" models are considered in the following: (i) the Hoang and

Perrot's model (HP) built by considering fully open foam with an uniform membrane clo-

sure rate tuned in such manner that the computed permeability is equal to the characterized

one[166,167] (it could include closed windows, i.e., squared ones), (ii) the semi-empirical model
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Figure III.14: Sound absorption coe�cients of samples: experiments (orange �lled zone),

PUC computations with � = 0 :98 (blue �lled zone with full line), PUC computations with

� = � o;computed (red �lled zone with dashed line). The results are shown from top to bottom

as: foams S1 to S5 (left panels), and foams S6 to S10 (right panels). The curves are calculated

by using the computed macroscopic parameters shown in Fig. III.12, and their uncertainty

are related to the estimation of errors on macroscopic parameters calculated by considering

an error on the characterization of hr c;oi equal to � 0.05.
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of Doutres et al. which considers the fraction of closed windows without taking into account

the closure rate of open windows[27,79]. Fig.III.13 allows the predictions of these \1- param-

eter" models at constant pore size to be compared with those of the model presented in this

paper. Apart from k0 which is an input parameter taken from experiments, the macroscopic

parameters values calculated with the HP model are globally close to our \2-parameter" PUC

model. However, the viscous and thermal length, � and � 0, for foams having a low fraction

of closed windows (e.g., S1) are not well estimated. For a relatively low mean closure rate,

hr ci (i.e., S1, hr ci = 0 :33), ignoring the presence of closed windows and considering that

the system can be described by membranes at the periphery of open windows instead, could

lead to an overestimation of the viscous and thermal characteristic lengths by a factor of

two. The DAD model was developed on the standpoint of a cellular morphology which di�er

signi�cantly from the one studied here, Fig. 13 (right pannel). Therefore, it can not be used

to predict the transport parameters of a cellular structure exhibiting both partially open and

closed windows in a given proportion. Concerning the SAC predictions of our computational

method, Fig. III.14 shows that the global trend of experiments is well reproduced by our

calculation method. However, a systematic di�erence between experiments and PUC com-

putations is observed: it is as if the PUC computed curve was associated to materials having

a closure rate slightly lower than that of the corresponding real foam. The discrepancy could

be due to both a systematic error in the PUC calculation (as expected for the porosity, but

also for the tortuosity) and a bias in the microstructural characterization as described before.

Thus, it appears necessary to take into account both the fraction of open windows

and the window aperture rate to get an accurate estimation of macroscopic parameters and

sound absorption coe�cient. This result is in agreement with the fact that for at least two

parameters, the thermal characteristic length � 0 and the static viscous permeability k0, their

physical modelings require to consider both the fraction of open windows and the window

aperture size. Indeed, by considering the idealized geometry of the considered foam skeleton,

the thermal length, � 0, can be fully calculated. The detail of the calculation is given in

Appendix A for our idealized Kelvin cell. By neglecting a term due to the thickness of the

ligaments (which is very low when� � 1), the thermal characteristic length is given by:

1
� 0 �

1
� 0

fo

� fo

� o
+

7
8� o

2xsq
fc + 3

p
3xhe

fc +
�
2xsq

p + 3
p

3xhe
p

� �
2r c;o � r 2

c;o

�

Db
; (III.16)

where � 0
fo and � fo are respectively the thermal characteristic length and the porosity of the

fully open foam (without membrane), and � o the open porosity. The previous expression

shows clearly that the thermal length depends on both the fraction of open windows and the

window aperture rate. Alternatively, in the framework of the characterization of partially

reticulated foam samples, �0 can be related to the thermal length, � 0
fc, associated to a fully

closed foam, as follows:
1
� 0 =

1
� 0

fc

� fc

� o
�

2hAoi Nv

� oD 3
b

; (III.17)
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where � o corresponds to the open porosity, andhAoi is the mean window aperture area.

The mean window aperture area depends on the aperture window size distribution which

can be evaluated from the closure rate distribution. The value of the thermal length of a

fully closed foam, � 0
fc appears as the lower bound of the thermal characteristic length. For

a real foam, the ratio volume/surface is close toDb=(5:3 3
p

2), leading to � 0
fc =Db � 0:3=� .

We consider now the other parameter for which a \2-parameter" modeling is required.

A model of e�ective medium for foam permeability, recently established[177], predicts that

the foam permeability, k0, depends on both the amount of closed windows and the membrane

aperture size. This foam permeability can be estimated by the following equations:

k0 = Rop� wk0; (III.18a)

2
Nvk0 =

X

i

x0
i

ki +
� N v

2 � 1
�

k0
; (III.18b)

where � w is a coe�cient ranging between 3 and 4, ki = r 3
0;i =3Db is a local permeability

associated with an open window having an aperture radius equal tor0;i , and x0
i is the fraction

of windows inside the open pore space calculated by including closed windows. Note that the

closed windows have a local permeability equal to 0 and a proportion given by 1�
P

i;k i 6=0 x0
i .

Eq. (III.18b) is solved iteratively. Approximated formula allowing us to estimate the fraction

of open porosity Rop, the open window fraction within the open pore-spacex0
0 by measuring

the open window fraction and the average number of neighbor pores are given in Ref.[177].

The size of aperturedi is calculated from the characterized closure ratesr c;i and the mean

size of bubblesDb: di = (1 � r c;i ) htw=Dbi Db. The ratio htw=Dbi is assumed to be given

by Kelvin cell structure: ( 8
14

p
3L + 6

14L)=2
p

2L � 0:54. Moreover, closure rate distributions

shown in Fig. III.4 allow to calculate the fraction x i of walls having an aperture size equal to

di . Fig. III.12 shows that the EM model predictions are in good agreement with experimental

measurements and PUC computed values.

III.4 Conclusion

This paper investigates, both numerically and experimentally, the capability of milli
uidic

techniques to obtain light-weight cellular foams with tailored acoustical properties. The sim-

ple and yet versatile elaboration route proposed in this study consists in modifying the mass

concentration of the polymeric solution, and it was shown that this approach allows bio-based

solid cellular foams with controlled pore size and tuned membrane level to be obtained. The

foam samples thus produced exhibit monodisperse pores with an assembly of closed and open

windows, characterized by an appropriate aperture ratio. The dependence of the transport

and sound absorbing properties on the membrane content was demonstrated. In particular,
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samples with increased sound absorption properties (visco-thermal losses) were successfully

manufactured. These experimental evidences are further supported by computational results,

in which the transport properties are predicted by combining multiscale simulations with an

averaging procedure. The latter involves all independent con�gurations of the membrane

content, identi�ed using the experimental distribution. These results con�rm the relevance

of the elaboration strategy to produce raw materials with optimal sound proo�ng capabilities.

Acknowledgments

This work was part of a project supported by ANRT (Grants No. ANR-13-RMNP-0003-01

and No. ANR-13-RMNP-0003-03). The work of V. H. Trinh was supported by a fellowship

awarded by the Government of Vietnam (Project 911).

Appendix

III.A. Reconstruction of periodic unit cell

In this appendix, we reconstruct a periodic unit cell based on the Kelvin pattern. A part of

the 1/96 periodic unit cell is approximated as 1/4 triangular tube and 1/8 octahedron placed

at their junction of node (see Fig. III.15). The coordinates of 7 vertices of this skeleton can be

expressed as follows: A(0; r=2tan�; 0), B(r=2; 0; 0), C(0; � r=2tan�; 0); F(r=2; 0; � r=2),

J(r=2+ L l
p

2=4; � L l
p

2=4; 0), K( L l
p

2=4; � L s
p

2=4; 0) and M(r=2+ L l
p

2=4; � L l
p

2=4; �

r=2); in which, tan� =
p

3=(
p

3 �
p

2), � = 3 �= 4 � � , L l = ( Db=4 � r=2)
p

2, and L s =

[Db=4 � r=2(
p

6 � 1)]
p

2.

The total solid volume over the overall unit cell is the volume of 12 nodes and 24

ligaments (12 edges on hexagonal faces and 24 edges shared with the neighboring cells),

given by

Vs = 96 � (VABFJKM + VABCF ) = 6
p

3Lr 2 + (4tan � � 6 �
p

6)r 3: (III.A.1)

The porosity of the open cell structure can be de�ned as,

� = 1 �
3
p

6
16

 
r
L

! 2

�
4tan� � 6 �

p
6

16
p

2

 
r
L

! 3

: (III.A.2)

Solving Eq. (III.A.2), the ligament size r=L as a function of porosity � is then given by,

r
L

=
P2

3P3

�
1 � cos

arcos(� ) � 2�
3

�
; (III.A.3)

where � = ( P3
2 � 27P3P0)=(2

p
P3

2 ) with
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Figure III.15: (a) Detail of the coordinates of the basic vertex in the 1/48th open unit cell

having ligaments of equilateral triangular cross-section of edge sizer and length of L . (b)

Diagram as a top view of the skeleton showing the relations between the angular and length

parameters at the node and several ligaments.

P0 = 1 � �; P 2 =
3
p

6
16

; P3 =
4tan� � 6 �

p
6

16
p

2
:

Finally, we obtain an approximate expression for Eq. (III.A.3) which reads

Cr := r=D b = 0 :5833(1� � )0:521: (III.A.4)

In the case of a fully open unit cell, the thermal characteristic length can be estimated

as � 0
fo = 2 �=S p, in which the speci�c surface areaSp is de�ned as the total solid surface area

per unit volume,

Sp =
96� (SBFMJ + SAFMK + SBCF )

D 3
b

: (III.A.5)

Therefore, one gets

� 0
fo

Db
=

�

3
�
(2=cos� � 4

p
3 � 2

p
2)C2

r + 3
p

2Cr
� : (III.A.6)

By neglecting the volume of membranes where thicknesses are in the order of 1� m,

the thermal characteristic length � 0 of a unit cell containing membranes can be obtained by

considering the speci�c surface of membranesSm ,

� 0 =
2�

Sp + Sm
=

1

1
.

� 0
fo + ( Ssq

m + She
m )

.
2�

; (III.A.7)
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where

Ssq
m =

P 6
i =1

�
2r ci � r 2

ci � 4
p

6Cr + 4(7 � 2
p

6)C2
r

�

4Db
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She
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3
p

3
P 8

i =1

�
2r ci � r 2

ci � 4Cr + 4C2
r

�

8Db
: (III.A.8b)

Noted that, for the fully closed faces, their closing rates are close to 1, and considering all

partially closed faces have an identical rater c, the above factorSm is estimated as following,

Sm =
2N sq

fc +3
p

3N he
fc

8 +
2N sq

p +3
p

3N he
p

8 (2r c � r 2
c)� 6(

p
6 � 1 + 2

p
2)Cr +

�
42� 12

p
3(

p
2 � 1)

�
C2

r

Db
:

(III.A.9)

III.B. Global calculation of equivalent con�gurations

We consider the response of a system de�ned in Sec. 3.1. Speci�cally, we wish to show

that, for the particular case at hand in which the reconstruction of real foams is addressed

by means of both the number of closed windows and the size of window aperture, a drastic

reduction of the number of calculations to be considered can be obtained. This calculation

is carried out in an iterative way and consists of browsing the graph of linked con�gurations

with the aim to de�ne a set of equivalent con�guration, Fig. III.11b. At the beginning of

the iterative process, the �rst line of the table found at the end of the step III is used as

a starting equivalent con�gurations list. All con�gurations associated to the con�gurations

from the starting list are added to it to build a new list of equivalent con�gurations. This

list becomes the starting list in the iterative process. As previously, this list is used to build

a new list, etc. The process is repeated until the starting list and the recalculated list are

equal. At the end of the iterative process, the branch of con�gurations equivalent to the

�rst one is identi�ed. Then, the calculation is repeated with a line which has still not been

visited. When all con�gurations have been visited, the calculation is �nished. The major

steps of equivalent con�gurations calculation is summarized in Fig. III.11. Thanks to this

calculation of equivalent con�gurations, the number of reference con�gurations,N r , we have

to compute is drastically reduced compared to the total number of con�gurations,N t (Table

III.4).
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Abstract

In this paper, we study how the permeability of solid foams is modi�ed by the presence of

membranes that close partially or totally the cell windows connecting neighboring pores. The

�nite element method (FEM) simulations computing the Stokes problem are performed at

both pore and macroscopic sales. For foam with fully interconnected pores, we obtain a robust

power-law relationship between permeability and aperture size. This result is due to the local

pressure drop mechanism through the aperture as described by Sampson for 
uid 
ow through

a circular ori�ce in a thin plate. Based on this local law, pore-network simulation of simple


ow is used and is shown to reproduce FEM results. Then, this low computational cost

method is used to study in detail the e�ect of an open window fraction on the percolation

properties of the foam pore space. The results clarify the e�ect of membranes on foam

permeability. Finally, Kirkpatrik's model is adapted to provide analytical expressions that

allow for our simulation results to be successfully reproduced.

DOI: 10.1103/PhysRevE.97.053111
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IV.1 Introduction

Foam is dispersion of gas in liquid or solid matrix. Its structure is made of membranes (also

called �lms or liquid foams), ligaments or Plateau's borders, (junction of three membranes)

and vertices or nodes (junction of four ligaments). Whereas closed membranes are necessary

to ensure the mechanical stability of liquid foam[31], membranes can be open or totally

absent in solid foams, allowing for the foam cells (pores) to be connected through windows.

It is remarkable that such a small volume contained in the window areas an have such

drastic e�ects for several properties of foams. This is the case for 
uid permeability of

solid foam, where open windows contribute to transport the 
uid through the material,

whereas closed windows stop it. Therefore, the fraction of closed windows is crucial for several

applications, such as �ltering. As viscous dissipation is the most dissipative mechanism

in sound propagation through porous materials, permeability (or 
ow resistivity) is a key

parameter in this issue[9,12], making acoustical properties of foams very sensitive to both

the open window fraction and the aperture of windows. Di�erent works have focused on

the e�ects of foams geometry on permeability: fraction of closed windows[27], aperture of

windows[130], and solid volume fraction and ligament shapes[178,179]. Authors have proposed

empirical relations between permeability and several structural parameters of foam (solid

volume fraction, window aperture rate, etc.), but a global physical model would be suitable

in order to design foams with the required permeability. Note also that, beyond a critical

value of open window fraction (called the percolation threshold), the percolation phenomenon

is expected to arise in foams, i.e., the size of the largest cluster of inter-connected cells is

equal to the sample height,Hsp, leading to an open pore space[180]. This phenomenon has

not between studied so far in the case of foams, although it has been proved to have a

great in
uence on permeability of porous media. For example, the classical Kozeny-Carman

equation has to be modi�ed by considering the di�erence between the porosity and the critical

porosity leading to percolation[181]. Tackling the percolation issue for the permeability of

porous media requires numerical simulations to use large samples involving a few thousand

pores[182]. For the 
ow simulation at the pore scale or at the scale of a few pores, the

�nite element, �nite volume, boundary element, and lattice Boltzmann methods have been

often applied[9,183{185] . However, as the size of samples increases, the computational costs

for those methods become prohibitive, so that multi-scale approaches are preferable[186{191] .

Such methods involve determining the 
ow behavior at the local scale (i.e., a throat between

two linked pores) by numerical simulations or analytical solutions (e.g. Hagen-Poiseuille

equation); then, pore-network simulations are performed to determine the permeability at

the macroscopic scale[192].

In this paper, we use a multi-scale approach to study the permeability of solid foam

with various windows con�gurations. The e�ect of aperture size on local permeability of fully

open-cell foam (i.e., containing no closed window) is studied by using FEM simulations on
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periodic unit cells (PUCs) with the Kelvin partition of space. The e�ect of closed windows is

studied through FEM simulations on larger samples (containing 256 pores). Then, mesoscopic

e�ects induced by the structure of the pore network are studied by pore-network simulations

on large (containing at least 43900 pores) networks of interconnected pores interacting via

local permeabilities. Finally, a model of e�ective permeability, based on a calculation of the

mean local permeability as in Kirkpatrik [186], is used to provide a physical description of

the membrane-induced percolation e�ect in foam and the e�ect of combining several local

permeabilities.

IV.2 Numerical simulations of foam permeability

IV.2.1 FEM simulations of 
uid 
ow

At the pore scale:

Figure IV.1: PUC with fully open windows (a), with partially closed windows by the same

aperture size(b), identical aperture rate (c), de�nitions of the aperture size to and the window

sizetw (d).

As shown on Figure IV.1, a periodic unit cell of sizeDb is used to represent the pore

Van Hai TRINH
Multiscale Modeling and Simulation Laboratory, Paris� Est University
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structure in foam samples[25]. The number of pores,Np, contained within the unit cell is equal

to 2. The cell is based on the Kelvin paving and is a 14-sided polyhedron (eight hexagons and

six squares) corresponding to windows shared with theNv = 14 neighbors. The cell skeleton

is made of idealized ligaments having lengthL = Db=(2
p

2) and an equilateral triangular

cross section of edge sider = 0 :58Db(1 � � )0:521, where � is the gas volume fraction[31].

As we are interested in the e�ect of partial closure of the cell walls, we partially close the

windows by adding holed membranes characterized with distinct circular aperture sizes. Two

kinds of simulations have been performed: (1) identical aperture size on all windows [Figure

IV.1(b)] and (2) identical rate of aperture � ow = to=tw [Figure IV.1(c)] where tw and to are,

respectively, the full window size and the size of the aperture as de�ned in Figure IV.1(d).

Note that, in the reference con�guration [Figure IV.1(a)], the 14 cell windows are fully open

(i.e., contain no membrane). The static viscous permeabilityK is computed from the solution

of the Stokes problem[180] for di�erent porosities. The boundary value problem is solved by

using the �nite element method and the commercial software COMSOL Multiphysics. The

permeability calculation error, determined by convergence tests, is inferior to 6%. To achieve

this accuracy, the meshes contain at least 250 000 tetrahedral elements.

At the macroscopic scale:

Figure IV.2: FEM macro-scale samples: skeleton mesh (a) and porosity mesh (b). For sake

of visibility, a mesh of size 2
p

2 � 2
p

2 � 2 (Db units) is depicted.

In order to study the 
ow properties on a larger scale, we have performed numerical

simulation for the 
ow of a Newtonian 
uid through a periodic network of Kelvins cells having

a sizeL � L � Hsp = 4
p

2� 4
p

2� 4 in Db units (i.e., Np = 256 pores), and a porosity� equal

to 0.9. Figure IV.2 shows an open cell foam sample made of 32 pores (i.e., all the windows

between adjacent cells are open). The macroscopic intrinsic permeability is computed from

the averaging of the solution of the Stokes problem set on the foam sample. In this study,

the cell windows are either closed or open with random spatial distribution over the foam
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sample. The fraction of open windows isxow = Now=(Np � Nv=2), where Now is the number

of open windows. For each valuexow, the macroscopic intrinsic permeability is the average

of numerical simulations for six di�erent samples obtained from six draws of closed window

positions. The resolution of the boundary value problem is achieved through the Finite

Element Method using FreeFem++ software[193]. The typical discrete problem contains 1

400 000 tetrahedra and 8 000 000 degrees of freedom and is solved using a Message Passing

Interface on four processors. We compared the permeability computed with the �nest mesh (1

400 000 tetrahedra) to the permeability computed using a coarser one (700 000 tetrahedra).

As the di�erence is less then 3%, which is small compared to the window closure included

permeability variations, we concluded that the meshes we use are �ne enough for accurate

results.

IV.2.2 Pore-network simulations

E�ects of pore network features on permeability are studied on several lattices having di�erent

numbers of neighbor poresNv (Figure IV.3). Concerning foams, the casesNv = 14 and Nv =

8 are of speci�c interest: Nv = 14 corresponds to Kelvin's structure, which is very similar

to real foam's structure[31], and Nv = 8 corresponds BCC structure, or to Kelvin's structure

with smallest windows (square windows) being closed as expected for a small fraction of

gas � . For Nv = 14 and Nv = 8, the samples have a sizeL 2 � Hsp = 283 (Db units) and

contain 43904 pores. ForNv = 6 and Nv = 20, the the samples contain at least 46000 pores.

Boundary e�ects are avoided by resorting to periodic conditions imposed in the directions

perpendicular to the macroscopic 
ow. In this simple model, we consider, for each pore,

a unique value of pressure without calculating the functions of pressure and 
uid velocity

inside the pore. At the local scale, the 
ow rate qj ! i from pore j to pore i is governed by

the di�erential pressure between the pores � Pij = Pj � Pi ; qj ! i = D b
� kij � Pij , where the

coe�cient kij is the local permeability between the poresi and j , and � is the 
uid dynamic

viscosity.

At steady state and by considering incompressible 
uid, the volume of 
uid inside pore

i is constant and the sum of 
ow rates coming from neighbor bubbles is equal to zero, leading

to:
P N v

j =1 kij (Pj � Pi ) = 0. To generate a 
ow through the sample, a pressure di�erence is

imposed between top and bottom faces of the sample (Ptop = � Psp; Pbot = 0). By considering

these boundary conditions, this previous equation can take a matrix form:

�K [Pi ] = [ Si ]; (IV.1)

where [Pi ] is a vector containing the pressure of inner pores (pores located on the top and

bottom faces are excluded); �K is the matrix de�ned from local permeabilities ( �
P

kij along

the diagonal and kij elsewhere); and [Si ] is a vector containing zeros except for inner pores

having top pores as neighbors whereSi = �
P

j top
kij top � Psp.
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Figure IV.3: Network structures used in pore-network simulations.

As soon as the pore network links top to bottom and by considering only the intercon-

nected pores �K can be inverted and the 
uid pressure in each pore can be calculated from Eq.

(IV.1). Alternatively, in the case of memory limitations during computer calculations, 
uid

pressure can be calculated in an iterative way as in Ref[186]. In any way, the macroscopic


ow Q and the macro permeability K can be calculated as

Q =
X

i bot

X

j v

qj v ! i bot =
Db

�

X

i bot ;j vi

ki bot j vi � Pi bot ;j vi (IV.2a)

K = �QH sp=L2� Psp (IV.2b)

Di�erent materials having di�erent kinds of local permeability distribution have been

studied: two local permeabilities (binary mixture), a local permeability mixed with zero per-

meability (i.e., closed window), and two local permeabilities mixed with closed windows. For

each kind of local permeability distribution, calculations are repeated 100 times on di�erent

random draws in order to calculate an average. For each random draw, local permeabilities

are randomly distributed over the network.

To reduce errors induced by size e�ects in the calculation of percolation threshold and
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open porosity (de�ned as the volume fraction of pores occupied by percolating 
uid)[182],

additional numerical simulations were performed on large samples such asNp � 106 pores.

IV.3 Results and discussion

IV.3.1 E�ect of the aperture size

FEM simulations on PUCs at the pore scale for various aperture sizes reveal a power-law

relationship between permeability and aperture size [Figure IV.4(a)]. Similarly the numerical

results for the dimensionless permeability of porous materials with same aperture rate are

well �tted by a power law when plotted in a ( � ow, K=D 2
b) diagram [Figure IV.4(b)]. Note

that, for high aperture rates, the the aperture shape is no longer circular due to the fact that

the apertures should overlap the ligaments, which is not allowed in our calculations. The the

condition of identical aperture rate is not observed. This artifact leads to an arti�cial per-

meability plateau corresponding to the \without membrane" permeability. Apart from this

artifact, FEM results show that relationship between permeability and mean wall aperture

is almost una�ected by the porosity (i.e., the width of ligaments).

This power-law relationship is in agreement with a local interpretation based on the

pressure drop of the 
uid passing through the wall aperture. Indeed, Sampson[194] solves

analytically the problem of the pressure drop � P occurring for an incompressible 
uid 
ow

passing through a circular hole of diameterdo in a thin plate:

q
� P

=
d3

o

24�
; (IV.3)

where q is the volume 
uid 
ow rate passing through the hole.

This relation arises from the fact that, at low Reynolds number, the coe�cient of 
uid

resistance� = 2� P=(�V 2
o ) is, in general, proportional to the inverse of Reynolds number

Re = Vodo�=� [195], where Vo is the mean stream velocity in the narrowest section of the

ori�ce ( Vo = 4q=�d2
o).

After Ref. [196], the pressure drop through a hole of circular shape is very close to the one

obtained with a hole of squared shape having the same area. We can deduce that the Sampson

formula can be extended to squared and hexagonal shape of aperture by taken into account an

equivalent diameter to;eq de�ned from the surface area of the apertureSo: to;eq = 2( So=� )0:5.

By using such a de�nition for the aperture size and calculating a window average of the

aperture size, we can plot all FEM results on a same graph. Figure IV.4(c) shows that all

results, including the ones obtained without a membrane, follow the same trend. Therefore,

due to the peculiar pore geometry of foams, the pressure drop inside such porous materials is

governed by a local mechanism which is not described by the usual Hagen-Poiseuille equation

as it is done in classical porous media[187,189,191,192].
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Figure IV.4: (a) FEM predictions at identical aperture size with � = 0 :98, (b) FEM

predictions at identical aperture rate for various � , (c) permeability as a function of the

mean wall apertures: FEM results (blue dot for identical aperture, green dot for identical

rate, red cross for \no wall" foam with � varying from 0.8 to 0.99), pore-network simulations

with Sampson local permeabilities andNv = 14 (blue line for identical aperture, green line

for identical rate). Note that the mean wall aperture is calculated without including the four

square windows, which are parallel to the macroscopic 
ow directionhto;eqi =Db = (2 to;sq +

8to;hex)=10Db.
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To check the ability of a pore-network model to predict the permeability, network cal-

culations have been performed using local permeabilities given by a Sampson equation:

k = t3
o=24Db: (IV.4)

Note that in such simple simulated con�gurations (i.e., identical aperture size to or

identical aperture rate � ow), the network problem shown in the previous section can be

solved analytically. Therefore, macroscopic permeability is given byK = 2ksq + 2khex ,

leading to K
D 2

b
= 1

6

�
to
D b

� 3
for identical aperture rate and K

D 2
b

= 1+3 1:5

12

�
5

1+48 0:5
hto;eq i

D b

� 3
�

0:13
�

hto;eq i
D b

� 3
for identical aperture rate. Figure IV.4(c) shows that network simulation results

compare very well to FEM results. This good agreement supports both the interpretation of

the permeability by using local permeabilities and the relevance of network simulations.

IV.3.2 E�ect of closed windows: The bond percolation problem in foam

Figure IV.5: Dimensionless permeabilityK (xow)=K (1) as a function of the open window

fraction xow for FEM simulation (black square) and pore-network simulations (blue cross and

red dot) on samples mixing two local permeabilities with various ratioskhex=ksq and having

a Kelvin structure ( Nv = 14). Error bars are calculated using (maximal value� minimal

value)/2.

Figure IV.5 shows the permeabilities calculated by FEM simulations on large samples

having random positions of closed windows and various open window fractionsxow. For

xow > 0:3, permeability exhibits a quasi-a�ne dependence on the open walls fractionxow.

Below a critical concentration xow < 0:2, the 
uid 
ow vanishes.
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To check their capacity to reproduce the FEM results, pore-network simulations were

performed by considering two local permeabilities,khex and ksq, given by the Sampson equa-

tion and associated to squared and hexagonal windows as in Kelvin's structure (Nv = 14).

For � = 0 :9, the hexagonal-to-square aperture ratio in FEM simulations is close to 3.2. The

ratio between local permeabilities is therefore close tokhex=ksq = 33( � 3:23). As shown in

Figure IV.5 and considering the margin of error, network simulations and FEM simulations

lead to the same results. Moreover, pore-network simulations reveal that the slope of the

a�ne part of the function K (xow) depends on the ratio between local permeabilities.

Figure IV.6: Pore-network simulations: Highest of the largest cluster of the interconnected

pores (black diamond) and fraction of open porosity (green diamond) as a function of the

open window fraction xow for Nv = 14 and large samplesNp � 106. Green line corresponds

to fraction of open porosity calculated by using Eq. (IV.6a).

In reference to percolation theory[186], solid foams are subjected to bond percolation for

which bonds correspond to open windows. In such a percolation, pore-network simulations

are helpful to calculate the maximal size of interconnected pores, the fraction of percolating

porosity Rop (= number of pores within open pore spaceN 0
p/total number of pores, Np), and

permeability [186,197]. In the caseNv = 14, the maximal vertical extent (the mean direction

of 
uid 
ow is vertical) of interconnected pores, H ip , is equal in average to the sample thick-

nessHsp for xow > 0:1, and percolation occurs (Figure IV.6). This fraction corresponds to

the percolation threshold xp, and it is close to 1:5=Nv for all lattices studied as in Ref.[186].

Therefore, as the average number of open windows per pore is equal toxowNv , at least 1.5

open windows per pore are required to allow 
uid 
ow through porous foamy materials.

With respect to the permeability (Figure IV.7), simulations performed with homogeneous
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Figure IV.7: Pore-network simulations: (a) dimensionless permeabilityK (xow)=K (1) as a

function of the open window fraction xow for various neighbor pore numberNv (arrows point

to the abscissaxow = x �
ow = 2=Nv); (b) the same data with another abscissa (xow � x �

ow)=(1 �

x �
ow).

local permeabilities show that the slope of the a�ne part of K (xow) depends on the number

of neighbor poresNv . The a�ne part of K (xow) intercepts the abscissa to a critical concen-

tration given by x �
ow = 2=Nv . Figure IV.7(b) shows that the ratio K (xow)=K (1) in porous

material having homogeneous local permeability is linearly dependent on a single parameter

(xow � x �
ow)=(1 � x �

ow) except for open window fractions close to the percolation threshold.

A deeper analysis of our results makes it possible to study in detail the structure of

the open-pore space and the one of 
uid passing through it. Figure IV.8(b) shows that

the fraction of open windows within open pore space,x0
ow is larger than global value xow.

This additional amount of open window within open-pore space can explain the behavior of
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Figure IV.8: Fraction of closed porosity, 1� Rop (a) and excess fraction of open windows

within the open pore space (b) as a function of the reduced fraction of open windows for

various neighbor pore numbersNv and large sample (Np � 106). Dashed lines correspond to

theoretical curves calculated in considering the �rst simplest closed clusters i.e., Eqs. (IV.5a]

and (IV.5b). Full line corresponds to curves calculated by using approximate formulas [Eqs.

(IV.6a) and (IV.6b)].

permeability close to percolation threshold. Indeed, by plotting the reduced fraction of open

windows within the open pore space, (x0
ow � x �

ow)=(1 � x �
ow), as a function of the open window

fraction xow [Figure IV.9(a)], we �nd curves which are very similar to the ones obtained for

permeability as a function of xow. Moreover, from pore-network simulations, we can calculate

the fraction of pores in which the 
uid 
ow occurs, Rop;f low (= number of pores in which
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ow occurs/total number of pores). It appears that 
uid 
ow occurs only in a part of the

open pore space, the other part the open pore space is made of dead ends where no 
uid 
ow

occurs [Figure IV.9(b)].

Figure IV.9: Pore-network simulations: (a) (x0
ow � x �

ow)=(1� x �
ow) as a function of open win-

dow fraction xow for various neighbor pores numberNv , (b) Open porosity fraction (dashed

line) and open porosity fraction without dead ends (full line) as a function of the open window

fraction xow for Nv = 6 (black) and Nv = 14 (green).

From a practical point of view, accurate formulas allowing to estimate the fraction of

open porosity Rop, the open window fraction within open pore spacex0
ow and the percolation

Van Hai TRINH
Multiscale Modeling and Simulation Laboratory, Paris� Est University

87



CHAPTER IV. PERMEABILITY OF SOLID FOAM: EFFECT OF PORE CONNECTIONS

threshold xp by measuring the open window fraction and the average number of pores could

be useful. First, the percolation thresholdxp can be estimated by a formula given in Ref.[198].

Then, by considering the structure of closed clusters, it seems possible to calculate the fraction

of open porosity and the open window fraction within the open pore space. To begin, we

calculate the fraction of poresPk being within the �rst simplest closed clusters (Table IV.1).

For value of xow close to 1, those simplest clusters represent the main part of the closed

pore space (i.e., pore space located outside open pore space). Therefore, the faction of open

porosity Rop =
N 0

p
Np

and the ratio x0
ow=xow =

�
N 0

ow
N 0

p

� � �
Now
Np

�
are given by

Rop = 1 �
3X

k=0

Pk (IV.5a)

x0
ow

xow
�

1

1 �
P 3

k=0 Pk

 

1 �
2

xowNv

3X

k=1

k
k + 1

Pk

!

(IV.5b)

Table IV.1: Structures of simplest closed clusters havingk open windows andk + 1 pores,

and fraction of pores Pk contained within such cluster (= total number of pores being in a

closed cluster havingk open windows andk + 1 pores/total number of pores, Np). In the

\Closed cluster" drawing, open windows having a probability xow, and closed windows (thin

gray lines) have a probability (1 � xow) to black lines.

k Closed cluster Pk

0 (1 � xow)N v

1 Nvxow(1 � xow)2N v � 2

2 3
2Nv(Nv � 1)x2

ow(1 � xow)3N v � 4

3 1
6Nv(Nv � 1)(13Nv � 17)x3

ow(1 � xow)4N v � 6

Figure IV.8 shows that these approximated formulas are able to predict the fraction of

open porosity and the ratio x0
ow=xow except for open window fractions close to percolation
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threshold where the complexity of the closed clusters structures increases drastically. To

bridge the remaining gaps between theoretical calculations and numerical simulations,x0
ow

and Rop can be approximated by following equations, forxow > x p:

Rop � 1 �
3X

k=1

Pk � exp
�
� (3Nv + 12)

�
xow � 1:88N � 1:2

v

��
(IV.6a)

x0
ow

xow
�

1

1 �
P 3

k=0 Pk

 

1 �
2

xowNv

3X

k=1

k
k + 1

Pk

!

+ exp
�
� (2:9Nv + 8 :2)

�
xow � 1:69N � 1:35

v

��

(IV.6b)

with xp = 0 :7514
� 2

3(Nv � 1)
� � 0:9346 (from Ref. [198]).

Figure IV.6 and IV.8 show that these formulas accurately predict x0
ow and Rop in the

full range of xow: [xp; 1].

IV.3.3 E�ective medium model for permeability

In this section, we present an e�ective medium model for permeability of pore-network built

from the same theoretical framework as that of pore-network simulations. This model is

based on a self-consistent calculation of the mean local permeability and a calculation of

the macroscopic permeability. Details leading to Eqs. (IV.7) and (IV.8) are given in the

Appendix.

Table IV.2: Coe�cients � w for used lattices and weakly disordered foam. Note that for SC,

BCC or Kelvin lattices, � w is isotropic.

Coe�cients SC BCC Kelvin Nv = 20 random foam

Nv 6 8 14 20 2(n + 1) =2

� w 1 2 4 14p
3

� n
2

The mean local permeability �k is calculated iteratively from [180,186]:

1
�k + n�k

=
X

i

x i

ki + n�k
; (IV.7)

with x i the fraction of local permeability ki and n = Nv=2 � 1.

The macroscopic e�ective permeability is then deduced from the mean local permeability
�k,

K = � w �k; (IV.8)

where the coe�cient � w depends on the structure of the porous medium (Table IV.2).

In a few simple cases, Eqs. (IV.7) and (IV.8) possess analytical solutions. This is the

case for fully open-cell foam (xow = 1) described by a binary mixture of local permeability
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Figure IV.10: Comparison between EM model with network simulations (black diamond)

for various neighbor pore numbers. \EM0" (dashed blue line) is based on the global open

window fraction [Eq. (IV.9)], and \EM1" (red line) is based on the open window fraction

within pore space [Eq. (IV.10)].

(see the Appendix). EM model is known to accurately predict the permeability of such a

binary mixture of local permeabilities, but also to fail in its prediction for porous media

having an open window fraction close to the percolation threshold[180,186]. To illustrate this

point, consider the case of a porous medium having a mixture of closed windows and open

windows characterized by an unique aperture parameter. The local permeability associated

to the closed windows is equal to zero, and Eqs. (IV.7) and (IV.8) have an analytical solution:

K
K 1

=
x1 � x �

ow

1 � x �
ow

; (IV.9)

with K 1 = � wk1.
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As shown in Figure IV.10, this solution \EM0" reproduce correctly the linear relationship

between the permeability and the parameter (xow � x� ow)=(1 � x �
ow) expect for an open

window fraction close to the percolation threshold. In the case of foamy material where the

number of neighbor pores is usually to on the order of 14 (except for low porosity� � 0:6),

the previous equation gives a very good approximation on a large range of open window

fraction (i.e., xow > 0:2). However, EM predictions can be improved if the open pore space

is explicitly considered. Indeed, as the mean local permeability in framework of the e�ective

medium model is calculated by considering that the mean 
uid 
ow passes through the mean

pore, the calculation of permeability should be performed on a half pore contained within the

open pore space. Therefore, as shown in Figure IV.10, by considering the structure of the

open pore space in calculation of permeability, via the percolating fraction of porosityRop

and the fraction of the open windows within open pore spacex0
ow instead of the global open

window fraction, the EM model predictions are signi�cantly improved for the open window

fraction close to the percolation threshold. In the modi�ed EM model \EM1", permeability

is given by
K
K 1

=
x0

1 � x �
ow

1 � x �
ow

Rop (IV.10)

The fraction of open porosity Rop and the fraction of open windows within open pore

space can be estimated from the global open window fraction by using Eq. (IV.6a) and

(IV.6b).

For generalization purposes, one can write:

1
�k0+ n�k0

=
X

i

x0
i

ki + n�k0
; (IV.11a)

K = Rop� w �k0; (IV.11b)

wherex0
i is the fraction of windows inside the percolating porosity having a local permeability

equal to ki . Note that the fraction of closed windows (for which k0 = 0) within the open pore

space,x0
0, is equal to 1�

P
i 6=0 x0

i .

After Eq. (IV.10), the physical meaning of the critical concentration x �
ow = 2=Nv is now

more explicit: at least two open windows per pore located in the open pore space are required

to start a su�cient interconnection of pores.

Other improvements of e�ective medium approximations based on real-space renormal-

ization have been proposed in the literature[180,199]. However, as the renormalization scheme

depends on the lattice structure, a speci�c study for each lattice should to be done.

IV.4 Conclusion

In order to study the e�ects of both the fraction of open windows and their aperture sizes

on solid foam permeability, we performed di�erent numerical simulations at di�erent scales:

Van Hai TRINH
Multiscale Modeling and Simulation Laboratory, Paris� Est University

91



CHAPTER IV. PERMEABILITY OF SOLID FOAM: EFFECT OF PORE CONNECTIONS

FEM simulations computing the Stokes problem both the pore scale and at the macro-scale,

and pore-network simulations of simpli�ed 
ow performed on large lattices of interconnected

pores. The FEM simulations at pore scale were useful to identify the pressure drop mechanism

for 
uid 
ow through solid foam and to de�ne the local permeability associated with it. Thus,

we show that the pressure drop inside fully open-cell foam can be explained by a mechanism

acting at the scale of the membrane aperture and well described by Sampson's law [Eq. (IV.4].

The FEM simulations at macro-scale with various fractions of open windows showed the

ability of pore-network simulations to predict the permeability of percolating foamy medium.

By using large samples, pore-network simulations results exhibit that percolation occurs when

the fraction of open windows is close toxp = 1 :5=Nv (� 0:11 for foam havingNv = 14), and

reveal that the fraction of open windows within the open pore space is a key parameter to

interpret the particular behevior of permeability for fraction of open windows close to the

percolation threshold xp.

Finally, we develop a model of e�ective foam permeability allowing for foam perme-

ability to be estimated by an analytical calculation [Eqs. (IV.4), (IV.6), and (IV.11)]. In

an alternative way to Sahimi et al. [199] our model modi�es Kirkpatrik's model to take into

account explicitly the structure of the open pore space via the fraction of open porosityRop

and the fraction of open windows within the open pore space (x0
ow). However, Kirkpatrik's

model with local permeabilities derived from the Sampson equation [i.e., Eqs. (IV.4) and

(IV.9)] provides an excellent approximation for estimating permeability of foamy material

having an open window fraction greater than 0.2.

By using an appropriate local permeability estimate, our approach to derive the e�ective

permeability of porous materials could be extended to more complex microstructures such as

topologically disordered foams or materials exhibiting a hierarchical porosity.
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Appendix

IV.A. E�ective medium theory

Here, we detail the calculation of the mean local permeability. We consider a cross-section

of foam [Figure IV.A.1(a)] and calculate the mean local permeability �k of a foam containing

di�erent local permeabilities f ki g. To represent a p ore inside the cross-section, we consider

a half pore connected toNv=2 e�ective pores such asn = Nv=2 � 1 windows have a local
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permeability equal to the mean local permeability �k, and the last one located at the pth

position has a permeability equal toki [Figure IV.A.1(b)]. Due to the heterogeneity induced

by the local permeability ki , the pressure inside the central porePi;p is di�erent from the

mean pressure�P. Pressure inside neighbor e�ective pores are supposed equal to the e�ective

pressure expected for each peculiar of the neighbor pore:�P + � r � �P with � r = zr =Db.

The total 
ow rate passing through the central half pore is equal to qi;p = D b
�

P n+1
r =1 qr =

D b
�

P n+1
r =1 kr

� �P + � r � �P
�
, where kr = �k for r 6= p, and ki for r = p.

Figure IV.A.1: (a) Cross-section of foam, (b) geometrical of a half pore representative of

pores contained inside the foam cross section. Note that we have to considern + 1 con�gu-

rations for the position p of the window associated with the permeability ki . Figure depicts

the casep = 2.

The total 
ow rate can be written in a more useful way as

qi;p =
Db

�

"
n+1X

r =1

�k
� �P � Pi;p + � r � �P

�
+ ( ki � �k)

� �P � Pi;p + � p� �P
�
#

:

The e�ective 
ow rate �q passing the e�ective pore is obtained by consideringki = �k and

Pi;p = �P in the previous equation:�q = D b
�

P n+1
r =1

�k� r � �P .

Therefore, the 
ow rate qi;p can be expression in function of �q:

qi;p = �q +
Db

�

�
(n + 1) �k

� �P � Pi;p
�

+ ( ki � �k)
� �P � Pi;p + � p� �P

��
:

Thereafter, we suppose that the total 
ow rate passing the central half poresqi;p is equal

to e�ective 
ow �q leading to 0 = D b
�

�
(n + 1) �k

� �P � Pi;p
�

+ ( ki � �k)
� �P � Pi;p + � p� �P

��
:
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Figure IV.A.2: For each lattice, bonds per unit cross section (gray area) considered for

the calculation of � w . A couple (� p, fraction of bonds pb included within cross section) are

associated to each bond.� w is calculated by � w =
P

� ppbD 2
b=area.

The hypothesis leads to the pressure inside the central pore:

Pi;p = �P +
ki � �k

n�k + ki
� p� �P :

Now, we may impose the self-consistency condition, requiring that the averagehPi;p i p;i =D
hPi;p i p

E

i
is equal to e�ective pressure �P leading to

D ki � �k
n�k + ki

E

i
h� pi p� �P = 0 :

The previous equation can be written in an alternative form:
D 1

n�k + ki

E

i
=

1
(n + 1) �k

To determine the macroscopic e�ective permeability, we calculate the macroscopic 
ow

rate Q passing through the whole cross sectionA containing Nw window having a local

permeability equal to �k. Moreover, we suppose that the gradient of pressure around corss-

section � �P=Db is equal to mean pressure gradient �Psp=H. Then, the macroscopic 
ow rate

is given by

Q =
Db

�

"
NwX

w=1

� w

#

�k
� Psp

H
Db;
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Figure IV.A.3: Comparison of EM model predictions (full line) to network simulations

(cross) with Nv = 14.

leading to macroscopic e�ective permeability:

K = � w �k;

where � w =
hP Nw

w=1 � p

i
D 2

b
A .

For each lattice, the calculation of � w can be straightforward in considering the inclina-

tion of the cross section shown in Figure IV.A.2. However, for SC, BCC, or Kelvin lattice,

numerical calculations performed in various inclination shown that� w is isotropic. In a case of

weakly disordered foam (i.e., lowly polydisperse foam) we can use� w = Nwh� i pD 2
b=A and con-

sider the continuous limit for calculation of h� i p leading to: h� i p = 1
2�

R2�
0

R�= 2
0 sin� cos�d�d' =

1=2. By considering the surface wall densityNw=A of a Kelvin structure which is approxi-

mately equal to n=D2
b, we �nd � w � n=2.

In the case of a binary mixture of local permeabilities (e.g. fully open foam), the mean

local permeability �k is given by the following equation:

�k
k1

=
1
2

"

� +

r

� 2 + 4(1 � � )
k0

k1

#

;

with � = 1 � k1k2
nk 0k1

, k1 = kV oigt = x1k1 + x2k2, k0 = kReuss = ( x1=k1 + x2=k2) � 1.

k1 and k0 correspond respectively to the permeability of an in�nitely interconnected

network (Nv ! 1 ) and this one of a poorly interconnected network (Nv = 2).

In such simple porous media, EM model accurately predicts the permeability calculated

by pore-network simulations (Figure IV.A.3).
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Chapter V

To go beyond PUC modeling

V.1 Representative elementary volume of disordered struc-

tures

It is true that the arrangement of idealized cells sometimes does not completely capture

the random geometry of real structures (i.e., the Kelvin model is not supported by the

numerical results[129] as well as experimental data[78]). Thus, the requirement for a more

realistic structure with real foams could be raised. Below, a random representation of foaming

structures based on the Voronoi tessellation is demonstrated.

In a Voronoi pattern, the partitioning is based on a set of seed points distributed in a

model space where each cell is de�ned by all points that are closer to one particular seed

point than to any others. Mathematically, given a set S of N points in a Rd dimensional

space, the process of associating all the locations of theRd space into polyhedral regions

with the closest point of S is called Voronoi partitioning process. The polyhedral regions are

called cells. The union of all the cells is then referred to as a Voronoi diagram. Theoretically,

a Voronoi diagram may be constructed in any dimensional space. A cellular foam model

based on Voronoi partitions of 3D space is built as follows[200]. First, a set of N nuclei (seed

points) is given in a three-dimensional �nite spaceR3. For each nucleus, let cellVi be the

region consisting of all locations in the space which are closer toPi than any other nucleus

Pj (j 6= i ), a cell VL corresponding to seed pointPi is de�ned as

VL (x i ) = f x 2 R3 j k x � x i k �k x � x j k; i 6= j g; (V.1)

where x i and x j are respectively the coordinates of seed pointsPi and Pj . Each seed point

is surrounded by a cell that contains all points in space that are closer to this particular

seed point than to any other. Consequently, cell walls will appear centrally aligned on, and

perpendicular to, lines that �ctively connect two neighbor seed points. Cell edges appear

wherever cell walls intersect and cell vertices appear where cell edges intersect. The result is
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strictly convex cells with 
at faces. An ordered set of seed points can be used for creating

ordered and regular structures, for instance, structures made of Kelvin or Weaire-Phelan

pattern. Distributing seed points randomly within the model space without any further

constraints will result in a Voronoi partitioning with poor foam resemblance.

Figure V.1: (left) Close packed con�guration at a density � p = 0.612 for a random packing

of 1024 mono-sized spheres, and (right) the corresponding random foam with a Voronoi

partitioning.

Two main methods are often employed to generate packing of equal hard spheres where

the sphere centers are used as seed points for a subsequent Voronoi pattern. In a simple

way, random sequential adsorption (RSA) refers to a fairly simple process where particles are

randomly added to a system if they do not overlap any previously placed particle. Without

any constraints, one will �nally reach a jamming limit within a lower volume fraction � p �

0:36[201], in which no more spheres can be adsorbed. Dynamically generated distributions

of hard spheres also referred to as molecular dynamics simulations, can be used to drive

sphere packing towards the random close packed (RCP) limit, i.e.,� p � 0:64.[202,203]. Jodrey

and Tory provided an algorithm to construct a randomly close packed distribution of equal

hard spheres[204,205]. The initial state is N randomly distributed points that represent sphere

center points are generated in a basic cube with a size ofL c. Each point is surrounded by

two spheres, one inner and one outer. The outer diameterd(0)
out is set initially to 2 L c

� 3
4�N

� 1=3

corresponding to a nominal packing fraction of� p = 1. The inner diameter d(k)
in is set to the

minimum center-to-center distance between any two spheres after iterationk,

d(k)
in = min k r (k)

ij := x (k)
i � x (k)

j k; i; j 2 [1; N ]; i 6= j: (V.2)

Initially, the inner diameter d(0)
in de�nes a true volume fraction which is very low, and
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the outer spheres do overlap each other. The algorithm then eliminates overlaps and slowly

reduces the outer diameter. The inner and the outer diameters approach each other and the

algorithm is halted by an eventual coincidence of the true and nominal packing fractions. In

each step, the worst overlap between spheresi and j is eliminated by moving them apart an

equal distance along the line joining their centers,

D (k) =
1
2

d(k+1)
out � k r (k)

ij k

k r (k)
ij k

: (V.3)

Then, their new positions are de�ned according to the equation,

x (k+1)
i = x (k)

i + D (k) r (k)
ij ;

x (k+1)
j = x (k)

j + D (k) r (k)
ji :

(V.4)

Figure V.2: Three-dimensional solid foam skeleton representing the interconnected poly-

hedrons from the Voronoi tessellation (left part) and detail of a typical polyhedron with a

focusing on its vertex interconnection (right part).

If any overlaps remain, the outer diameter is reduced slightly as follows,

� (k+1) = � (k) �
� i

2� N
; (V.5)

where � (k) = d(k)
out =d(0)

out , and � = b� log104 � (k)
p c. The parameter � i is the initial contraction

rate which is independent of the size and number of spheres, and characterizes the initial rate

of contraction of the ensemble.4 � (k)
p is the di�erence between the nominal and true packing

fractions at the iteration k, and symbol b:c is the greatest integer function.
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Table V.1: Algorithm for generating the close random packing of equal hard spheres.

Input: Cubic sizeL c, number of spheresN , and desired volume fraction� pf

Output: Desired positions ofN spheres

1. Create an initial random matrix of size N � 3, x (0) , for N positions of spheres

2. Compute d(0)
in , d(0)

out , and � (0)
p = �N

12

�
d(0)

in

� 3

3. while � (k)
p < � pf do

4. For each pair of spheres: Computed(k)
ij = k r (k)

ij k with i; j 2 [1; N ]; i 6= j

5. if d(k)
ij < d (k)

out do

6. Move two spheres apart using Eq. (V.4)

7. endif

8.1. Compute d(k+1)
in using Eq. (V.2), d(k+1)

out using Eq. (V.5)

8.2. Update � (k+1)
p = �N

12

�
d(k+1)

in

� 3

9. endwhile

10. Obtain the exact desired fraction � pf by reducing the sphere diameterd(k+1)
in .

The above algorithm is summarized in Table V.1. For illustration purposes, the left part

of Figure V.1 shows an assembly of 1024 spheres with a volume fraction of 0.612. This was

generated in less than 30 seconds on an Intel(R) core(TM) i7-4500U, 1.80 GHz, 2.40 GHz, 4

GB RAM. The 3D Voronoi diagram based on this random dense packing of spheres is shown

in the right part of Figure V.1. The Voronoi algorithm generates around each seed a convex

polyhedral unit cell made of vertices, joined by edges delimiting planar faces, which connect

neighbor cells. Finally, a foam skeleton is completely established (sse Figure V.2), and the

corresponding �nite mesh models of skeleton and pore domain are graphed in Figure V.3.

V.2 Applications and discussions

V.2.1 Foamy structures

As previously mentioned, three-dimensional packings of cells of equal volumes have been

used successfully to represent real cellular foam structures, and these unit cells can be more

realistic approximations to real foam topology than other simple types of idealized unit

structures. Within their complex three-dimensional structures, it seems di�cult to de�ne

purely analytical predictions of fundamental mechanical and transport properties. In this

regard, an idealized cubic unit cell[30,152,206,207] or simple two-dimensional patterns[10,160]

also may be employed to study morphological features of foam materials.

On the contrary, for some speci�c cases, the modi�ed or like-Kelvin unit cell should
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Figure V.3: Graphs of �nite element model of skeleton frame (left part, i.e., 1 379 316

tetrahedral elements) and pore domain (right part, i.e., 1 660 493 tetrahedral elements). For

the sake of visibility, these FE meshes are created from a quarter of the assembled foam

presented in Figure V.2, and here they present an open cell foam structure having a porosity

of 0.914.

be considered to characterize foamy structures with their advanced morphology features:

membrane unit cell[83,130,139], parallel unit cell [75]. With high porosity foams for acoustical

application, it is seen that the Kelvin arrangement can mimic the transport property as well

as acoustical performance. However, from a work by Bu�ul et al.[127], it can be stated that

there are clear di�erences in e�ective elastic properties between the Kelvin and Weaire-Phelan

structures, and the strut shape of these idealized cells also have a strong in
uence on the

computed results of overall elastic properties.

Beginning with random foams having a mono-sized structure (monodisperse foams), us-

ing the previously described process in Section V.1, more generally, it can be stated that our

numerical procedure can generate foam structures that are very consistent with both exper-

imental characterization data [78] and numerical results[129,132] previously reported. Figure

V.4 shows the distribution P(F ) that a cell has F faces, andP(E) that a face has E edges.

More detailed in morphology foam property, the cell volumeVce and the strut length L li were
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Figure V.4: Distribution of cells with F faces (left) and faces with E edges (right) in

compared with Matzke's experimental data and numerical simulations provided by Kraynik

and co-workers.

Figure V.5: Graphs of the normalized cell volume (left part) and the normalized edge length

(right part) distributions of Voronoi random foam in compared with previous numerical works.
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also normalized with respect to the average cell volumeV ce and the strut length L li := V
1=3
ce

as eVce = Vce=V ce and eL li = L li =L li , respectively. Two observed distributions eVce 7! P ( eVce)

and eL li 7! P ( eL li ) are graphed on Figure V.5. Regarding the structure that has narrow

distributions [ P(E) and P( eL li )] of morphological property, it could be required a relaxation

step in Surface Evolver[135] could be required to undertake[129,132]. As a result, after this

step, we obtain a relaxed structure foam in which the cell window in pentagon shape has

a proportion more than 60% that is shown in Matzke's experimental data (see left part of

Figure V.5) and identical to the proportion in our work of morphological characterization

[see, Figure III.3(c), Chapter III]. In our materials with monodisperse cell size, the results of

the distribution of length strut measured in a set of 10 samples are in good agreement with

numerical modeling[129,132] and show clearly that there is no proportion of very short length

struts and the struts, with their length around 0.45 times the cube root of the average cell

volume, are more common being around a value of 30% [see, Figure III.3(a), Chapter III].

Let us go further in real random foamy materials such as polydisperse[208] or graded[209,210]

Figure V.6: Graphs of multi-sized disc packing with the Gaussian (a), Gama (b), and

graded (c) distributions, and the corresponding Voroinoi patterns of 2D foam structure (d,e,f),

respectively.
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foams. Recently, a growing community of engineers and scientists have showed their interest

in these engineering materials because of their functional property. As previously described,

when investigating the problem of generating the distribution of seed points, however, it

may be a limitation of the RCP algorithm in generating powder-based structures of densely

multi-sized spherical packing. For handling this problem, the Discrete Element Method[211]

(DEM) or Dropping or the Rolling Method [212] (DRM) could be a more e�cient tool.

To demonstrate both multi-sized structures and the numerically generating process,

therein, we work here with two-dimensional structures. In the �rst place, a distribution of

seed points is needed. Of course, the dense packing of hard discs in the place of spheres

is required. Here the DEM approach is used to carry out this task (see e.g., Chapter 7 in

Ref.[213]).

For polydisperse foam structures, a hard disc packing with a size Gaussian distribution

is initially generated. The ratio of the maximum to minimum element size is 10 [see Figure

V.6(a)]. This ratio is equal to 17 in the case of a packing based on Gama distribution [Figure

V.6(b)]. The area fractions of these dense disc packings are 0.80 and 0.82, respectively. The

corresponding constructed foam structures are shown respectively in Figures V.6 (d) and V.6

(e). When generating a graded foam structure, we design 5 monodisperse packing layers,

in which a disc size ratio between two neighborhood layers is set at 1.5 [see Figure V.6(c)].

From there, a two-dimensional graded foam sandwich structure corresponding to the close

packed con�guration with a graded variation of disc size and at a density of 0.82 is provided.

From the three multi-sized foam structures reconstructed above, it can be stated that the

proposed procedure readily allows generating the complex morphology of functional cellular

materials. This may be bene�cial as a useful source of information for modeling and designing

such materials.

V.2.2 Computational example

In this part, two numerical frameworks (mentioned in Subsection I.4.2) are used for modeling

acoustical foams in order to compare their e�ciency in implementations. The considered

material is idealized with a periodic unit cell based on the Weaire-Phelan structure. The

open- and closed-cell skeletons are illustrated in the bottom panels of Figure I.15, in which

a strut framework is made of cylindrical ligaments and spherical nodes. For illustration

purposes, a foam-based material with a high porosity of 98% is characterized with two type

of morphology properties: open cell structure [see Figure I.15(c)], and closed-cell one with

a membrane closure rate of 0.3 (an identical closing rate of membranes for all windows, see

Figure I.15(d). The size of the unit cell is equal to 1 mm. In this work, both BVPs and

PDEs are solved by using the �nite element method and the commercial software COMSOL

Multiphysics. Figure V.7 presents the �nite mesh models (a type of tetrahedral element) of

two representative volume elements. As can be seen from the number of elements that: Using
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the same �ne mesh level (i.e., the same maximal element sizes and maximum element growth

rate, etc.), the element number of membrane unit cell is 1.7 times greater than the number

in open cell, because of a higher mesh concentration in the space around the boundary of the

very thin membrane.

Figure V.7: Unit cell �nite meshes: a model of 269 931 tetrahedra used to open-cell structure

(a), and a model of 469 358 tetrahedra used for the closed-cell one (b).

The numerical micro-scale �elds from both hybrid and direct methods are illustrated in

Figure V.8 for the case of membrane foam. In there, the asymptotic �elds for the represen-

tative element volume of low-frequency scaled velocity �eld, high frequency scaled velocity

�eld, and low-frequency scaled temperature �eld from hybrid solution are shown in Figure

V.8(a)� (c). For the direct method, Figures V.8(d) � (i) present the results of micro-scale dy-

namic viscous and thermal permeability distributions at three di�erent frequency regimes [40,

2000, and 5000] Hz. It can be seen that at low-frequency, the viscous dissipation is concen-

trated in the center of membrane apertures [Figure V.8(d)], and thermal conduction occurs

mainly in the center of cell pores [Figure V.8(g)]. However, at high frequency, the dense


uid acceleration and heat exchange phenomena seem to occur in the vicinity of membranes

[Figure V.8(f)] and along the boundary of the pores [Figure V.8(i)]. It should be noticed

that the both local dynamic viscous and permeability �elds at low frequency [Figures V.8(d)

and V.8(g)] are very consistent with their static distributions [Figures V.8(a) and V.8(c)],

respectively.

Figure V.9 and Figure V.10 show respectively the results of the e�ective density and the

e�ective bulk modulus numerically obtained from both approaches. As can be seen in the

sub-plots, the frequency-dependent e�ective parameters show a good agreement. In terms of

membrane e�ects, it is clear that the membranes have a strong in
uence on both real and

imaginary parts of these e�ective parameters.

In addition, we compare the computational costs (in seconds) of the two numerical
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Figure V.8: Asymptotic �elds for the representative element volume. Hybrid method :

(a) low-frequency scaled velocity �eld koxx [� 1010 m2], (b) high-frequency scaled velocity

�eld E x=5 ' [� ] for an external unit �eld ex , and (c) low-frequency scaled temperature �eld

k 0
0 [� 1010 m2]. Direct method : [(d,e,f)] and [(g,h,i)] are respectively shown for real parts

of dynamic viscous and thermal permeability distributions kxx [� 1010 m2] and k0 [� 1010

m2] at three frequencies 40 Hz, 2000 Hz, and 5000 Hz (from left to right).
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Figure V.9: Real (left) and imaginary (right) parts of the e�ective density. The results are

shown for: hybrid numerical (continuous lines), direct numerical (circle symbols) methods,

and open-cell foam (thin objects), and closed-cell foam (thick objects).

Figure V.10: Real (left) and imaginary (right) parts of the e�ective bulk modulus. The

indicated legends are the same as illustrated in Figure V.9.

framework methods. It is to be noted that all computations were run on a desktop with

Intel R
 ; Xeon R
 ; CPU X5690, @3.47 GHz, and 64 GB of RAM. As shown in Table V.2, for

the case of open foam, the total time consumption on hybrid method is around 10 times

smaller than that of the direct computation, and a larger ratio around 17 can be observed for

the membrane case. Additionally, the membrane unit cell having a larger number of �nite
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Figure V.11: The sound absorption coe�cient at normal incidence of the foams obtained

from hybrid (lines) and direct (circles) simulations. Thin and thick objects are for the foam

without and with membranes, respectively. The sample thickness is equal to 25 mm.

Table V.2: The comparison of computational time between two numerical methods. The

direct work is conduced with 15 di�erent frequencies.

Method Equations Time consumption (s)

Open cell foam Closed cell foam

Direct Momentum equation 5427 13076

Energy equation 288 1274

Hybrid Stoke equation 518 755

Laplace equation 25 48

Thermal conduction equation 20 23

elements leads to a time computation more costly than that for the open unit cell in both

computations. The cost of the computational time for the membrane structure was 2.5 and

1.5 times higher compared with that of the open structure, respectively, in the direct and

hybrid computations. It can be seen that these values are approximately of the same order

as the ratio of the element numbers previously analyzed.

Finally, we estimate the sound absorption coe�cient at normal incidence in order to

demonstrate the consistent results of two proposed methods and show how membrane frac-
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tion a�ects on the acoustical property of these foams. As can be seen in Figure V.11, the

membrane foam shows clearly a high acoustic absorption in comparison with the sample

without membranes.

V.2.3 Summary of the numerical framework

The local geometrical generating and the numerical predicting of the macroscopic properties

of foam-based materials were presented. The reconstructing process of REVs includes several

foam structures having both ordered and disordered states. Two options of the idealized unit

cell, a single cell (Kelvin cell) and a pair of two individual cell (Weaire-Phelan), are provided,

detailing the ligament morphology. For the disordered foams, various levels of polydispersity

are considered. For all cases of random foam models, the keystone of the proposed method

rests on the reconstructions of corresponding ensemble of seed points. The Voronoi tessella-

tion tool is then used to obtain the polycrystalline structures of certain materials. From the

models of a large number of individual cells, it can be seen that this numerical geometrical

modeling can mimic several morphology properties of real materials such as structural prop-

erty (e.g., distribution of cell size, distributions of window area and ligament length, shape

morphology of length and window, etc.), homogenized properties (e.g., fractional density).

As a result, realistic geometry models may be used to simulate more accurately a number

of functional properties at the macroscale such as mechanical, thermo-mechanical, and 
uid

dynamic properties.

As the main focus of this dissertation is on acoustic applications, a detailed description

considering the numerical existing methods to characterize acoustical porous materials as

an equivalent 
uid is also provided. It is agreed that both direct and hybrid methods can

predict the macro-properties of materials via a simple REV (a PUC based on the Weaire-

Phelan structure as an example). The comparison of time cost indicates that the hybrid

procedure is a cheaper option. As a result, our work will follow up on this framework in

order to characterize acoustical materials. From the computations over the Weaire-Phelan

structure (consisting of 8 cell pores), it can be seen that we have to face challenges of time as

well as memory consumption. Especially in the case of membrane material, it requires a large

number of elements in mesh models because the geometry involves very narrow spaces around

membranes. We have to pay special attention to this point when considering a complex REV

in numerical works for such materials. Alternatively, several existing methods can solve the

problem of 
uid 
ow in porous media without the �nite element modeling (e.g., pore-network

simulation, self-consistent model, see chapter IV, or lattice Boltzmann method, fast Fourier

transfer, etc.). In addition, the fact of considering only a simple PUC having a large number

of con�gurations should be still more e�cient in terms of characterizing materials within

membrane components (see chapter III).
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Chapter VI

Conclusions and future work

VI.1 General conclusion

This thesis addresses the problem of characterizing sound absorbing materials. The objective

of the project is to develop a method linking the local geometry of a low density cellular foam

to its acoustic macro-behavior and to optimize its structural parameters in order to archive

the desired acoustical performance. Regarding the research results it can be stated that this

work leads to the following conclusions:

X For the design optimization of acoustic materials, we investigated the potential of sur-

rogate models (polynomial chaos expansions) to accurately approximate mappings be-

tween key microstructural features and homogenized acoustical properties. The ap-

proach relies on Legendre orthogonal polynomials and enables appropriate convergence

over the parameter space to be ensured. The results demonstrate that the framework

allows the sound absorption coe�cient to be predicted over an appropriate range of fre-

quencies, so that the optimization of microstructures under various types of constraints

can be envisioned at a reasonable computational cost to support the design for noise

reducing materials and structures.

X The contribution of this work to material design and engineering relies on the fact

that we produced successfully a series of cellular samples having the same high density

around 0.98 and the same mono-sized cell structure at a scale of 0.8 mm but di�erent

values of the closure rate of the windows separating the foam pores. Here, a gelatin solu-

tion with a concentration varying from 12 to 18% was used in the foam making process.

In these fabricated foamy samples, the variations of the proportion of closed cells and

the size distribution of apertures for open-wall cells lead the interesting macroscopic

transport and acoustic performance as desired.

X A set of techniques and processes has been used to experimentally measure structure
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and properties of studied materials. In order to overcome the limitations of the previous

methods for morphology characterization the SEM images of the complex microscopic

structure of membrane foams, we extended existing methods by focusing not only on

foam images of an area having a large number of cells but also on foam images of indi-

vidual cell walls. This allowed to accurately estimate the level of the closed membrane

(by �tting ellipse of aperture and �tting polygon of wall's vertices) as well as the statis-

tical morphology of wall shape such as: number of sides, strut length, wall area. These

morphological features of local geometry are important input information for multiscale

modeling works, the observed numerical results are validated by experimental data from

resistivity and standing tube impedance measurements. Beside acoustics, it is to be

noticed that our proposed procedure for microstructural characterization can be widely

applied for other purposes.

X In acoustic modeling of the studied material, it can be seen that numerical and em-

pirical models based on a single unit cell are limited because of its complex membrane

morphology as well as large varying properties. We dealt with this restriction through

a numerical framework together considering a con�guration number of the periodic

unit cell. Based on the data of image characterization, for each foam sample, we re-

constructed a periodic unit cell having some windows partly closed at a closure rate,

and other windows fully closed by membranes. All combinations of partially and fully

closed face's location in PUC are represented by a number of equivalent con�gurations

because of the symmetry of Kelvin structure. From this, a systematic relationship be-

tween microstructural property and macroscopic performance of membrane foams is

investigated. The obtained numerical results of transport and acoustic properties show

a good agreement with experimental data. The more detailed the proposed method

characterized the local geometrical properties, the more accurate the predictions of

macroscopic properties were obtained. Comparing with the existing methods, our con-

tributions may be considered in terms of modeling absorbing membrane foam-based

materials.

X In terms of the permeability of membrane foamy materials, we study how membranes

separating the foam pore connectivity a�ect on this physical parameter. We use nu-

merical methods to carry out this objective. It is provided from results of �nite element

model that, for partly open cell foams, we obtain a robust power-law between perme-

ability and the membrane aperture size that is very consistent with the local pressure

drop mechanism originally suggested by Sampson. With this local law, pore-network

simulations are conducted with a low computational cost, able to successfully repro-

duce the �nite element results and handle the permeability and percolation problem

with foam structure on various lattices. An e�ective medium model for foam perme-

ability based on Kirkpatrick's model is then proposed, showing an ability to reproduce

the results of network simulations. From the observed results, a complete validation of
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computational models is obtained when considering a large number of con�gurations

of multiscale model.

X This work presents a systematic numerical method for modeling cellular materials in

acoustics: (i) the local geometrical properties of ordered foams is idealized a PUC based

on the Kelvin partitioning; (ii) the hybrid numerical methods based on the technique

of periodic asymptotic homogenization is used to characterize the acoustic absorption

behavior of the absorbing materials, as an equivalent 
uid with its e�ective parame-

ters. In the rest of this work, we also mentioned the slightly and highly disordered

foams (based on Voronoi partitioning) as well as a comparison between the employed

numerical method with the direct method in order to show the consistent results be-

tween two approaches and con�rm the advantages of the hybrid framework in terms of

computational e�ciency.

VI.2 Future work

Although the provided methodologies and results within this dissertation are quite good and

constitute a set of powerful tools, it is necessary to mention its perspectives. Here, we brie
y

describe some interesting research topics that should be further investigated and addressed:

! Beginning with the proposed pore-network model, it could be interesting to extend this

model to other transport properties such as the tortuosity � 1 or the viscous charac-

teristic length �. Additionally, application of the pore-network simulation could be

extended to various porous foamy materials (i.e., topologically disordered foams or

containing double porosity).

! It is also suggested to go further into generating numerically the complex foam struc-

ture in order to investigate their functional property in real industrial applications.

Three-dimensional structures of graded foam or polydisperse foam with arbitrary dis-

tributions of cell size can provide useful input for further modeling. Going further in

this way, a multilayer made of the cellular materials with other functional layers should

be considered.

! In terms of multiscale surrogate models, a high-dimensional problem with more input

parameters (e.g., considering that individual windows have a di�erent closed rate, mul-

tilayer has variations of porosity, cell size) could be studied through developing the

present method but with a sparse grid technique.

! Using the symmetry of Kelvin cell shape, the idea of the equivalent con�guration should

be extended to other purposes in mass and heat transfer phenomena that are associated

with solid foam structures. Macro-scale behavior of materials could thus be achieved

with a reduction of computational cost.
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