Skip to Main content Skip to Navigation
Theses

Localisation commerciale multiple: une application du traitement du signal et du modèle p-médian au développement d'un réseau de magasins de produits biologiques

Résumé : Introduction Les regroupements massifs des réseaux de distribution ces dernières années et la conjoncture fluctuante et imprévisible ont rappelé que leur organisation n'était jamais figée et restait soumis à la loi impitoyable de la concurrence. Des dizaines de grandes entreprises et des centaines de filiales se voient contraintes de restructurer leur mode de production dans les secteurs industriels et leur réseau de distribution pour celles dont l'activité se situe dans le domaine de la distribution des biens ou des services. Pour des entreprises comportant plusieurs centaines de points de vente ou même plusieurs milliers comme dans le cas des agences de compagnies d'assurance ou de banque, la réorganisation d'un réseau s'avère être une tâche colossale. Chaque point de vente ou agence doit être passé à la loupe, comparé en terme de rentabilité, de chiffre d'affaires et de zone de chalandise par rapport à ses plus proches voisins dans certains cas concurrents par le passé et désormais, partenaires d'un même réseau. La précision d'une réorganisation ou même de la construction d'un réseau est indispensable sur le plan de la localisation de ces éléments sur le terrain, mais aussi s'avère être nécessaire une certaine rapidité des prises de décision et de leur application dans ce domaine. Le but de notre présente démarche est de découvrir et démontrer la faisabilité d'un nouvel instrument de décision précis, rapide et également démonstratif pour sélectionner les meilleurs emplacements commerciaux dans l'optique d'une restructuration ou de la création d'un réseau de points de vente. La résolution des modèles de localisation-allocation tel que le p-médian aurait pu constituer une solution mais leur mise en œuvre engendre un nombre d'opérations mathématique si important qu'elle nécessite des ordinateurs puissants et des temps de calcul énormes. Ceci nous conduit tout naturellement à simplifier l'expression du modèle p-médian en introduisant des méthodes originales de filtrage et de convolution destinées à accélérer le traitement des données géomarketing, méthodes ayant déjà fait leurs preuves dans le domaine des "sciences dures". Enjeux et pratiques de la localisation commerciale La zone de chalandise du point de vente et son appréciation Le choix d’une bonne localisation est sans doute l’une des décisions les plus importantes qu’un manager doive prendre car l’emplacement du point de vente est en effet un investissement fixé sur le long terme et son choix bon ou mauvais se ressentira sur la performance commerciale. Toute étude de localisation s'accompagne au préalable de l'identification et le repérage dans l'espace d'une clientèle potentielle qui constituera le fond de commerce du point de vente. En pratique, il s'agit de délimiter une aire géographique rassemblant l'essentiel de cette clientèle, dénommée zone de chalandise. Plusieurs méthodes ont été proposées par le passé pour apprécier au mieux la zone de chalandise dont les méthodes normatives théoriques et les méthodes subjectives qui se fondent sur l'expérience et la connaissance des consommateurs. La principale méthode subjective est représentée par la méthode du temps de conduite qui considère que les clients ne sont prêts à parcourir qu'une distance ou qu'un temps limite pour rejoindre le point de vente : la zone de chalandise comprend alors les aires pas trop éloignées du point de vente selon ce critère de distance limite souvent mesurée en temps de conduite. Les méthodes normatives rassemblent la méthode analogique qui sous-tend que deux magasins placés à deux emplacements identiques auront la même performance commerciale : la zone de chalandise est considérée comme étant le disque dont le rayon a une dimension telle qu'il concentre au minimum X % de la clientèle (X=80 % par exemple). Les autres méthodes normatives sont le modèle de régression qui cherche à mesurer un paramètre de performance commerciale en le corrélant avec des variables socio-économiques, environnementales et marketing ; la méthode par les surfaces enveloppantes qui consiste à représenter les taux de pénétration sur une carte quadrillée en zones de manière à obtenir un relief dont la surface est approximée par des courbes ou des plans et en particulier par des équations dont les coefficients sont déterminés grâce à un modèle de régression ; la méthode des nuées dynamiques qui con¬struit itérativement une classification d’un nuage de points. Malheureusement, toutes ces méthodes de description de la zone de chalandise, une phase primordiale dans la recherche d'une bonne localisation, sont compliquées, peu précises et réduisent le plus souvent la zone de chalandise à une aire compacte et centrée autour du magasin alors que cette dernière est généralement morcelée du fait des irrégularités géographiques, (barrières naturelles, infrastructures routières, séparation de la population en quartiers). Théorie et pratique de la localisation commerciale La phase de recherche d'une localisation commerciale s'opère après que la société se soit attachée à déterminer sur quel marché elle souhaite s'implanter et en ayant à l'idée le nombre exact de point de vente à créer en fonction de la saturation du marché pour le produit ou le service proposé et des capacités financières disponibles. Une première catégorie de modèle de recherche théorique de localisation se fonde sur l'analogie gravitaire : l'un des critères principaux de ces modèles est la distance et l'on cherchera ainsi à se placer au plus proche de la masse des clients de manière à en attirer le plus grand nombre. Citons parmi ces modèles dits modèles d'interaction spatiale, la théorie des places centrales de Christaller qui considère l'espace géographique comme comprenant une répartition uniforme des clients ayant tous un comportement identique : selon cette théorie, l'implantation optimale se situe au centre d'un hexagone dont les sommets sont occupés par six magasins élémentaires. La méthode des secteurs proximaux est une variation de la théorie précédente qui utilise le principe des polygones de Thiessen ou de Dirichlet . Les modèles d'interaction spatiale comprennent également la loi de Reilly qui considère que la population intermédiaire I localisée entre deux pôles urbains A et B sera attirée par chacun de ces pôles proportionnellement à leur taille et en proportion inverse de la distance entre la zone I et les pôles urbains A et B . Le modèle de Huff introduit dans la loi précédente la notion de surface de vente du magasin qui selon lui joue un rôle tout aussi important dans son attractivité vis-à-vis des clients que sa proximité. Le modèle MCI ou Modèle Interactif de Concurrence est une généralisation du modèle de Huff qui tient compte encore d'autres paramètres d'attraction que la distance ou que la surface de vente comme le prix des articles, le nombre de caisse ou même de la perception des consommateurs dans le cas du MCI subjectif. La recherche de localisation utilise une deuxième catégorie de modèles nommés modèles de localisation-allocation qui tente de trouver les emplacements les plus proches des clients grâce à des algorithmes mathématiques. Tout modèle de localisation-allocation comprend (1) une fonction objectif quantifiant l'éloignement du magasin aux clients ou plus généralement mesurant un critère de performance du point de vente par rapport à sa localisation ; (2) des points de demande ou nœuds de demande représentant l'importance de la clientèle et de son désir d'acheter un produit ou un service particulier ; (3) les emplacements potentiels ou nœuds d'emplacement potentiel correspondant aux emplacements possibles du ou des points de vente à localiser ; (4) la matrice d'éloignement ou de temps mesurant les distances kilométriques ou temporelles entre les points de demande et les emplacements potentiels ; (5) la règle d'allocation qui spécifie de quelle manière les emplacements potentiels seront alloués aux points de demande. Le modèle de localisation-allocation le plus utilisé pour la recherche de localisations commerciales optimisées est le modèle p-médian dont les champs d'applications vont du transport à la grande distribution en passant par les services bancaires et l'assurance : sa problématique est de trouver les localisations pour un nombre p d'activités devant fournir une panoplie de services ou de produits à n clients de telle manière que la somme de l'ensemble des distances séparant chaque activité aux clients les plus proches soit minimale. Sa formulation mathématique est la suivante : Minimiser ai dij xij représente la fonction objectif, (1) avec xij = 1,  i,assure que tous les clients sont assignés à une activité et une seule, (2) xij  yj,  i, jempêche d'assigner un client à une activité si elle n'est pas ouverte,(3) yj = p,le nombre total d'activités est p,(4) xij, yj  0,1,  i, jnature binaire des variables xij, yj(5) où ai : la demande au nœud i, di,j : la distance du nœud i au nœud j, p : le nombre d'activités à localiser, xi,j = 1, si le nœud i est assigné à l'activité j et 0 autrement, yj = 1, si l'activité j est ouverte et 0 autrement. Le problème est que le p-médian est réputé appartenir à la classe des problèmes connus comme étant NP-complets : ses solutions issues d'algorithmes linéaires deviennent insolubles au fur et à mesure que le nombre des variables (activités et clients) augmente avec une progression exponentielle de la taille du problème. Il existe néanmoins un certain nombre d'heuristiques pour trouver une solution acceptable au problème p-médian malgré le fait que toutes ces solutions ne convergent que vers des optima locaux et non vers une solution globale et qu'il ne soit pas possible à priori de connaître le niveau d'optimalité de cette solution. Dans les algorithmes de résolution fondamentaux, on trouve l'algorithme flou, l'algorithme de recherche de voisinage, l'algorithme par les multiplicateurs de Lagrange, l'algorithme génétique, une heuristique de substitution et ses variantes . D'une façon générale, les heuristiques se rangent en deux classes : les algorithmes de construction qui permettent de rechercher des localisations avec un degré d'optimalité faible et les algorithmes d'amélioration destinés comme leur nom l'indique, à améliorer les résultats fournis par les algorithmes de construction. Ainsi l'algorithme flou est du type construction de même que l'algorithme génétique et par les multiplicateurs de Lagrange. L'heuristique de substitution et l'algorithme de recherche de voisinage ont une approche d'amélioration. La recherche de localisations optimales en pratique Dans la pratique, les professionnels utilisent des méthodes statistiques démonstratives en général assez simples qui ont aussi le bénéfice de la rapidité. Citons parmi elles la méthode par les parts de marché et les surfaces de vente qui consiste à évaluer la taille de la zone de chalandise à l'emplacement pressenti puis à calculer le chiffre d'affaires escompté en pratiquant une règle de trois après avoir comparé cette zone de chalandise par rapport à celles de magasins existants. La méthode analogique consiste à calculer le chiffre d'affaires par client pour un magasin et à l'extrapoler à celui de l'emplacement prévu du nouveau point de vente après avoir évalué le nombre de clients potentiels sur lesquels il pourra compter. Le modèle de régression multiple cherche à corréler une mesure de la performance d'un magasin (chiffre d'affaires, résultat) avec divers critères comme le revenu des ménages dans la zone, le niveau de concurrence, la part de marché estimée,... Il s'agit ensuite de transposer l'équation de régression obtenue aux sites potentiellement intéressants pour retenir celui ayant la performance la plus élevée. La méthode du discriminant est une variation du modèle de régression qui sépare grâce à une analyse multidiscriminante un ensemble de magasins en plusieurs groupes selon leurs résultats commerciaux, en l'occurrence les magasins ayant une performance acceptable et les autres plutôt inacceptables : on recherchera ainsi ultérieurement à créer un nouvel établissement dans un endroit ayant les caractéristiques d'une zone où est implanté un magasin performant avec éventuellement les caractéristiques de ce type de magasins. La méthode du marché potentiel découle directement du principe de gravité du commerce de détail de Reilly : souvent utilisée par la grande distribution, ce mode de recherche par tâtonnements tente de minimiser la distance du futur emplacement aux consommateurs potentiels et la maximise par rapport à celle des concurrents. Enfin, le modèle p-médian lui-même, sert à localiser des points de vente en repérant les adresses ou les origines géographiques de clients potentiels le plus souvent par des enquêtes de terrain. Dans un premier temps, lors de la construction du modèle, on cherche à assigner chaque client de la base de données d'adresses à un quartier ou à un secteur urbain de manière à réduire le nombre de cellules d'analyse. Ainsi, c'est le centre de gravité de chacun de ces secteurs qui servira de nœud au réseau du modèle. Le nombre de nœuds correspond chacun à un secteur est alors considérablement réduit par rapport au cas où l'on aurait créé pour chaque client un nœud particulier. Le problème est que ce découpage en secteurs géographiques correspond plus à une logique administrative qu'à une logique commerciale et qu'une d'une manière générale, cette procédure de simplification à l'extrême de la réalité commerciale nuit considérablement à la précision et même à la fiabilité des résultats obtenus suite à la résolution du modèle. Il est vrai que l'ensemble des méthodes utilisées en pratique fait d'autre part largement appel à l'intuition, ce fait ayant été démontré par un certain nombre de travaux . Cela nous a conduit à proposer une nouvelle méthode plus fiable, plus rapide et facile d'utilisation qui fait appel au modèle p-médian et aux notions de traitement du signal. Une nouvelle approche pour la recherche de localisations optimales Les limitations précédentes se devaient d'être surmontées en introduisant une nouvelle approche pour en premier lieu délimiter précisément les zones de chalandise ou même toute autre zone géographique possédant des caractéristiques commerciales, économiques, sociologiques propres puis rechercher des emplacements optimisés pour la création de points de vente. Cette nouvelle méthode devait à la fois être rapide, précise et pouvoir être convertie en algorithmes de manière à pouvoir être mise en application sur ordinateur et de préférence sur les calculateurs les plus courants du marché, c'est-à-dire les micro-ordinateurs. Le traitement du signal dont les algorithmes sont capables de traiter les informations en dynamique a fourni de nombreuses applications dont en particulier la plus élaborée, très gourmande en information et en temps de calcul, la vision artificielle, une technique complémentaire de la robotique. La nouvelle approche que nous proposons utilise les principes du traitement du signal associés au modèle p-médian pour déterminer des emplacements optimisés lors de la création de points de vente. Elle se compose de quatre phases dont (1) le géocodage et la représentation cartographique des localisations de clients potentiels, (2) la délimitation des zones de chalandise en utilisant les principes de traitement du signal, (3) le calcul des caractéristiques de chaque aire formant dans leur ensemble la zone de chalandise, ces caractéristiques formant un réseau p-médian avec ses nœuds (centres de gravité de chaque aire) et ses niveaux de demande (étendue des aires) et enfin (4) la résolution de ce réseau p-médian simplifié par les heuristiques traditionnelles. Eventuellement, on pourra ensuite se focaliser au niveau de chaque aire identifiée comme pouvant constituer une localisation optimale en effectuant la même procédure mais à une échelle plus fine pour encore mieux préciser la localisation commerciale. Les dessins suivants résument le fonctionnement ce nouvel algorithme fondé sur la délimitation de zones de chalandise. La phase 1 consiste à codifier les adresses de clients potentiels ou réels en termes de coordonnées géographiques, adresses tirées d'une base de données. On pourra alors obtenir une représentation cartographique des différentes localisations de la clientèle, chaque client étant représenté par un point. La phase 2 correspond à la délimitation des "paquets" de clients ou zones de chalandise. Nous utiliserons dans cette optique les techniques traitement du signal qui font aussi l'originalité de notre démarche. On calculera dans la phase 3 les coordonnées des centres de gravité de chaque zone délimitée dans la phase précédente de manière à modéliser un réseau: les nœuds du réseau seront représentés par les centres de gravité et les segments par les distances routières ou par un indicateur d'éloignement (temporel, kilométrique, généralisé...). Des localisations potentielles supplémentaires pourront d'autre part être introduites comme nœud même si elles ne comptent pas de clients. Ce réseau peut être, si nécessaire, pondéré et dans ce cas, à chaque nœud sera affecté un poids représentatif de l'importance de la clientèle ou de son potentiel. Dans la phase 4, le réseau sera résolu sur la base du modèle p-médian grâce aux algorithmes classiques de résolution et d'amélioration. On aboutira donc au choix de certains nœuds comme localisations optimales. Rétroaction et changement d'échelle: après avoir identifié les p nœuds optimaux par l'algorithme du p-médian, on pourra, si un degré de précision supplémentaire s'avère nécessaire, réitérer le processus en se focalisant cette fois au niveau de chaque nœud. L'examen de zones de plus en plus petites pour améliorer la finesse du choix de localisation pourra se faire autant de fois que souhaité sous réserve de l'existence d'un nombre suffisant de clients ou d'emplacements potentiels à cette échelle. Ainsi, la partie centrale et novatrice de cette méthode est constituée par la délimitation des zones de chalandise (zones denses de clientèle) au niveau desquelles il sera possible de définir un centre de gravité caractérisant la localisation spatiale de ladite zone. Ces centres de gravité constitueront les nœuds d'un modèle p-médian. Il est donc fondamental de définir avec précision les contours de ces zones de chalandise: une évaluation grossière des frontières induira nécessairement un repérage des centres de gravité entachés d'erreurs ce qui ne manquera pas de se répercuter sur le résultat final de localisation des p centres au niveau global et plus encore au niveau local. La deuxième innovation découle du fait que l'on simplifie le problème en l'appréhendant de manière globale grâce à l'identification de "paquets" de clients, et qu'ensuite seulement, on pousse l'analyse dans le détail en recherchant dans les zones intéressantes des emplacements plus précis toujours en utilisant la délimitation de zones de chalandise caractérisées par leurs centres de gravité et le modèle p-médian. Cette technique utilise à la fois des principes de la localisation discrète (à travers le modèle p-médian) et celles du modèle planaire (à travers le calcul de centres de gravité). Organigramme de la nouvelle méthode de recherche de localisation proposée La délimitation des zones de chalandise par traitement du signal Le géocodage et la représentation des données géomarketing (phase 1) issues le plus souvent d'enquêtes ne posent en général pas de problème. La deuxième phase de délimitation de la zone de chalandise mérite une description plus approfondie. Elle se compose d'un prétraitement des données par un filtrage directement sur la carte représentant la localisation des clients pour accentuer les contours de la zone de chalandise. De nombreux types de filtrage existent comme les filtres sigma, Nagao ou médian déjà utilisé par McKay sur des cartographies de clients. Le filtrage en moyenne est le plus simple des filtres : il consiste à remplacer chaque point de la carte par la valeur moyenne d'une petite aire centrée sur ce point et à reconstruire ainsi toute la carte. Le filtre médian prend lui la valeur médiane de chaque petite aire au lieu de la valeur moyenne. Adresses clients associées aux fréquentationsLa représentation traitée par 2 filtres médians Le filtre sigma étudie la statistique de dispersion des valeurs en chaque point et prend le plus souvent comme nouvelle valeur en chaque point la moyenne de ses voisins dans chaque petite aire dont le niveau appartient à l'intervalle de demi-largeur 2 fois la variance locale. Le filtre Nagao est intéressant car il conserve beaucoup mieux la forme des contours des objets d'une image que les autres filtres : il revient à analyser un certain nombre de configurations spéciales (tangentielles, horizontales ou verticales au voisinage de chaque point) et à retenir celle qui est la plus adaptée comme nouvelle valeur du point balayé. Enfin, mentionnons la transformation de dilatation qui consiste à augmenter la surface de chaque point en le grossissant (point représentant chaque client sur l'image) jusqu'à ce que ceux-ci se touchent ce qui permet de remplir les interstices : ce prétraitement est fondamental pour obtenir une représentation générale de la zone de chalandise lorsque les clients ou points sont très séparés les uns des autres dans l'espace géographique et qu'il n'est alors pas possible de repérer visuellement les formes pleines de la zone de chalandise. Après avoir améliorer l'aspect global de l'image représentant la dispersion des clients en accentuant les contours de la zone de chalandise, on procède dans la suite de notre méthode, à une délimitation de la zone de chalandise par un masquage (un type spécial de filtrage) réalisé grâce à une opération matricielle sur l'image, nommée convolution. Rappelons que l'opération de convolution entre deux matrices, l'image fi,j et le filtre ou masque hi,j , est définie par : gi,j = fi,j * hi,j = Les masques les plus courants pour délimiter les frontières des objets d'une image sont : - les masques de Sobel représentés par les deux matrices : Sx = ;Sy = Matrice de détection horizontale ;et matrice de détection verticale - les masques de Prewitt qui sont l'un des filtres du type dérivatif le plus simple : Px = ;Py = Détection HorizontaleDétection Verticale - le Gradient représenté par les matrices : ou ; ou Matrices de détection horizontale ;et matrices de détection verticale - le laplacien représenté par les matrices : ou ; ou Matrices de détection horizontale ;et matrices de détection verticale Ainsi, la simple convolution de l'image avec ces filtres permet d'obtenir immédiatement les contours de la zone de chalandise. La représentation traitée par filtres Sobel Adresses clients après 2 filtres médian (les contours sont associées aux fréquentations superposés à l'image filtrée par 2 filtres Nagao La troisième phase de notre méthode consiste à repérer les coordonnées des centres de gravité des différentes aires constituant la zone de chalandise préalablement délimitée et de calculer la superficie de ces aires de manière à construire un réseau p-médian. Pour cela, le plus simple est de balayer l'image représentant les contours de la zone de chalandise avec un algorithme de parcours qui va suivre les frontières de chaque aire de la zone en notant les coordonnées de chacun de ses points. Exemple de parcours de frontière de zone de chalandise à l’aide de l’algorithme Ensuite, il suffira de prendre la valeur moyenne des coordonnées des points de frontières pour obtenir les coordonnées du centre de gravité de l'aire. Si la frontière a été décrite parallèle en terme d'orientation Nord, Sud, Est, Ouest, la superficie de l'aire est donnée par l'algorithme suivant : 1) Au départ; u = 0 et t =0 2) De i = 1 à n Faire A) Si ai = NordAlorst = t + 1Sinon Aller en B) B) Si ai = SudAlorsu = u + t Sinon Aller en C) C) Si ai = OuestAlorst = t - 1Sinon Aller en D) D) Si ai = EstAlorsu = u - t 3) Sg = u x S où la valeur du paramètre u à la fin de la procédure est le nombre de points contenus dans la zone de chalandise considérée, t un paramètre de comptage et S la superficie géographique unitaire d'un point. Le repérage de coordonnées des centres de gravité correspondant aux futurs nœuds du modèle p-médian dans notre algorithme, donnera aussi par un simple calcul de longueur, les distances de chaque segment du réseau ce qui nous permettra d'obtenir tous les paramètres du réseau p-médian. Le p-médian modélisé après délimitation de la zone de chalandise et calcul des centres de gravité. Il nous suffit donc en dernière étape de résoudre ce modèle p-médian composé d'un nombre limité de points par les heuristiques classiques (algorithmes génétiques, de substitution,...) pour avoir les localisations optimales. Une étape facultative est de réitérer le même processus au niveau des aires mises en évidence par cette résolution pour affiner la position des localisations optimales. Notre méthode a été utilisée avec succès pour trouver les emplacements optimisés de magasins de produits biologiques dans l'ouest de la région parisienne. Une application du modèle p-médian associé au traitement du signal dans le domaine de la distribution des produits biologiques La vente de produits biologiques progresse en France et aux Etats-Unis au rythme de 20 % par an et les experts tablent qu'à moyen terme, 5 % des dépenses des français soient consacrés au bio (soit encore une marge de progression de 400 %) ce qui laisse encore des opportunités de création de nouveaux commerces vendant ce type de produits. Nous nous sommes procurés une base de données d'adresses de 10 211 clients potentiels intéressés par l'achat de produits biologiques dans les communes de Boulogne-Billancourt, Issy-Les Moulineaux, Neuilly-Sur-Seine, Paris 7ème, Paris 15ème, Paris 16ème et Paris 17ème. Ces données ont été géocodées et représentées sur une carte. Le prétraitement a constitué en une dilatation des points représentant les adresses des clients de manières à combler les vides dans les zones denses de clientèle. Géocodage des 10 211 clients potentiels de l'ouest parisienFiltrage par dilatation de points-client L'image ainsi traitée a alors subi une convolution par un filtre Sobel de manière à en tirer les frontières de la zone de chalandise. Les aires constitutives ont ensuite été analysées en termes de coordonnées de leurs centres de gravité et de leurs superficies de manière à construire le réseau p-médian correspondant : chaque centre de gravité constitue alors le nœud du réseau, la demande en chaque nœud ayant la valeur de la superficie de l'aire. Numérotation et repérage du centre de gravité des aires constitutives de la zone de chalandise La résolution de ce modèle par les heuristiques classiques (algorithme flou, de voisinage, multiplicateurs de Lagrange et algorithme génétique) nous donne les mêmes résultats pour les localisations optimales (soit les aires 1 [Paris 17ième], 10 [Paris 15ième], 18 [Boulogne-Billancourt] pour trois localisations par rapport aux numéros des aires mentionnés sur la figure ci-dessus). Nous nous sommes ensuite focalisés sur ces trois aires et avons réitéré la même procédure en leur sein : l'observation sur le terrain des commerces distribuant des produits biologiques nous a conduit à remarquer de façon étonnante que des points de vente de ce type étaient déjà implantés à moins de 150 mètres des préconisations calculées par notre modèle dans les aires 10 et 1 des 15ième et 17ième arrondissements de Paris. En revanche, l'aire 18 correspondant à un quartier de Boulogne-Billancourt laisse entrevoir une possibilité d'implantation non encore exploitée à ce jour. La mise en oeuvre en parallèle d'une méthode classique d'utilisation du modèle p-médian où les centres de gravités des arrondissements parisiens et des communes de périphérie correspondent aux nœuds d'un réseau débouche au contraire sur des résultats trop extravagants pour être pris en compte. Conclusion Notre méthode associant modèle p-médian et traitement du signal comportant un processus intégré de géocodage des clients, de délimitation des zones de chalandise et de résolution d'un modèle de localisation-allocation simplifié permet de se rendre très rapidement compte du double emploi ou non de certains points de vente ou bien de l'opportunité de créer un magasin dans certaines zones lacunaires délaissées par la concurrence. Dans la foulée, cette méthode offre la possibilité de mesurer le potentiel des ventes de telle ou telle région au niveau local, régional ou national selon le secteur d'analyse. Enfin, sa mise en œuvre anticipe la phase de gestion quotidienne du point de vente : la détermination précise (au niveau de la rue) des frontières de la zone de chalandise facilitera considérablement la tâche du Directeur Commercial dans le ciblage géographique des campagnes de promotion que ces dernières prennent la forme de prospectus distribués dans les boîtes aux lettres, d'envois d'e-mail ou de panneaux publicitaires à placer aux endroits stratégiques,... L'un des objectifs de notre recherche future est d'associer le traitement du signal plus généralement à d'autres modèles de localisation-allocation tel que le p-centré ou le problème de couverture maximale de manière à étudier la validité d'une telle méthode pour des problématiques de logistiques (optimisation de centres de livraison ou d'un réseau de livraison) ou de création de services de proximité (hôpitaux, services d'urgence, caserne de sapeur-pompiers).
Complete list of metadatas

Cited literature [166 references]  Display  Hide  Download

https://hal-upec-upem.archives-ouvertes.fr/tel-01121627
Contributor : Jérôme Baray <>
Submitted on : Tuesday, March 3, 2015 - 12:02:41 PM
Last modification on : Thursday, March 19, 2020 - 12:28:02 PM
Document(s) archivé(s) le : Sunday, April 16, 2017 - 12:34:16 PM

Licence


Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

Identifiers

  • HAL Id : tel-01121627, version 1

Collections

Citation

Jérôme Baray. Localisation commerciale multiple: une application du traitement du signal et du modèle p-médian au développement d'un réseau de magasins de produits biologiques. Sciences de l'Homme et Société. Université de Rennes 1, 2012. Français. ⟨tel-01121627⟩

Share

Metrics

Record views

1900

Files downloads

3130