
HAL Id: hal-04234924
https://hal.science/hal-04234924

Submitted on 10 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Federated Learning on Personal Data Management
Systems: Decentralized and Reliable Secure Aggregation

Protocols
Julien Mirval, Luc Bouganim, Iulian Sandu Popa

To cite this version:
Julien Mirval, Luc Bouganim, Iulian Sandu Popa. Federated Learning on Personal Data Management
Systems: Decentralized and Reliable Secure Aggregation Protocols. SSDBM 2023 - 35th International
Conference on Scientific and Statistical Database Management, USC Information Sciences Institute,
Jul 2023, Los Angeles CA, United States. pp.1-12, �10.1145/3603719.3603730�. �hal-04234924�

https://hal.science/hal-04234924
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Federated Learning on Personal Data Management Systems:
Decentralized and Reliable Secure Aggregation Protocols

Julien Mirval
julien.mirval@cozycloud.cc
Cozy Cloud, Inria-Saclay

UVSQ, Université Paris-Saclay
France

Luc Bouganim
luc.bouganim@inria.fr

Inria-Saclay
UVSQ, Université Paris-Saclay

France

Iulian Sandu-Popa
iulian.sandu-popa@uvsq.fr

UVSQ, Université Paris-Saclay
Inria-Saclay

France

ABSTRACT
The development and adoption of personal data management sys-
tems (PDMS) has been fueled by legal and technical means such
as smart disclosure, data portability and data altruism. By using a
PDMS, individuals can effortlessly gather and share data, generated
directly by their devices or as a result of their interactions with com-
panies or institutions. In this context, federated learning appears
to be a very promising technology, but it requires secure, reliable,
and scalable aggregation protocols to preserve user privacy and
account for potential PDMS dropouts. Despite recent significant
progress in secure aggregation for federated learning, we still lack
a solution suitable for the fully decentralized PDMS context. This
paper proposes a family of fully decentralized protocols that are
scalable and reliable with respect to dropouts. We focus in particu-
lar on the reliability property which is key in a peer-to-peer system
wherein aggregators are system nodes and are subject to dropouts
in the same way as contributor nodes. We show that in a decen-
tralized setting, reliability raises a tension between the potential
completeness of the result and the aggregation cost. We then pro-
pose a set of strategies that deal with dropouts and offer different
trade-offs between completeness and cost. We extensively evaluate
the proposed protocols and show that they cover the design space
allowing to favor completeness or cost in all settings.

CCS CONCEPTS
• Computer systems organization→ Peer-to-peer architec-
tures.

KEYWORDS
Secure aggregation, peer-to-peer, reliability, federated learning.

ACM Reference Format:
Julien Mirval, Luc Bouganim, and Iulian Sandu-Popa. 2023. Federated Learn-
ing on Personal Data Management Systems: Decentralized and Reliable
Secure Aggregation Protocols. In 35th International Conference on Scientific
and Statistical Database Management (SSDBM 2023), July 10–12, 2023, Los
Angeles, CA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3603719.3603730

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0746-9/23/07. . . $15.00
https://doi.org/10.1145/3603719.3603730

1 INTRODUCTION
New privacy-protection regulations (e.g., GDPR) and smart disclo-
sure initiatives in the last decade have boosted the development
and adoption of Personal Data Management Systems (PDMSs) [3].
A PDMS (e.g., Cozy Cloud [13], Nextcloud, Solid) is a data plat-
form that allows users to easily collect, store, and manage into
a single place data directly generated by the user’s devices (e.g.,
quantified-self data, smart home data, photos) and data resulting
from the user’s interactions (e.g., social interaction data, health,
bank, telecom). Users can then leverage the power of their PDMS
to benefit from their personal data for their own good and for the
benefit of the community [10].

As a result, the PDMS paradigm leads to a shift in the personal
data ecosystem since data becomes massively distributed, on the
user side. It also holds the promise of unlocking innovative usages.
An individual can now cross her data from different data silos, e.g.,
health records and physical activity data. In addition, individuals
can leverage their PDMSs by forming large communities of users
sharing their data. This allows, for example, to compute statistics
for epidemiological studies or to train a Machine Learning (ML)
model for recommendation systems. In this context, it is natural
to rely on a fully decentralized PDMS architecture (as opposed
to central servers that raise several important issues such as cost,
availability and scalability with the number of users), but this also
poses new challenges.

Aggregation primitives are essential to compute basic statistics
on user data and are also a fundamental building block for ML
algorithms. In particular, Secure Aggregation (SA) is a central com-
ponent of Federated Learning (FL), introduced in [21], as evidenced
by the large body of recent work in this area [20]. However, to
enable such new usages in the PDMS context, we need new so-
lutions adapted to its specificity. First, PDMS users rely on large
peer-to-peer systems for data sharing and computations [3, 9] thus
requiring fully decentralized and scalable aggregation protocols,
discarding data centralization on servers. Also, these protocols need
to protect user privacy and adapt to varying selectivity (i.e., the
consent of relevant participants). Ideally, the proposed protocol
should provide an accurate result that takes advantage of the high-
quality data available in PDMSs. Efficiency (i.e., protocol latency
and total load of the system) is of prime importance given the po-
tentially limited communication speed or computation power of
PDMSs. Finally, given the scale of such decentralized aggregation,
protocols must also be robust to node dropouts. To summarize, our
goal is to design protocols that fulfill the following properties: fully
decentralized and highly scalable, with the number of partici-
pants; privacy-preserving, i.e., protecting the confidentiality of

https://doi.org/10.1145/3603719.3603730
https://doi.org/10.1145/3603719.3603730
https://doi.org/10.1145/3603719.3603730


SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA Mirval, Bouganim and Sandu-Popa

the contributed user data; accurate, i.e., no trade-off between accu-
racy and privacy (e.g., like in the data anonymization or differential
privacy approaches); adaptable, i.e., adapting to a large spectrum
of computation selectivity values (reflecting the subset of contribu-
tor nodes) and system configurations (network and cryptographic
latency); and reliable, i.e., handling node dropouts (e.g., failures,
voluntary disconnections or unexpected communication delays).

Ensuring these properties altogether is challenging and to the
best of our knowledge, the existing distributed Secure Aggrega-
tion (SA) protocols fail to achieve this objective. On the one hand,
approaches such as local differential privacy are based on adding
noise to protect privacy. This affects accuracy [7] or reliability to
dropouts [25] and requires a very large number of participants to
reduce the impact of noise which contradicts an adaptive node
selectivity (see Section 2). On the other hand, despite leveraging
different cryptographic schemes in SA for FL [20] (e.g., encryption-
based [6, 14] or secret sharing-based [8, 12, 18]), existing solutions
employ a similar hybrid architecture wherein one or several highly
available and powerful servers aggregate the data supplied by many
user devices. Although some solutions consider the case of node
dropouts, this applies to client devices and never to aggregation
servers [8, 12]. In a Peer-to-Peer (P2P) PDMS system, all compu-
tations are performed by internal PDMS nodes (i.e., user devices).
Hence, the data aggregators and data contributor nodes have the
same constraints, i.e., limited computing power and availability.
Such nodes cannot be expected to carry out heavy cryptographic
operations [8] and can drop out during the computation. Fortu-
nately, the P2P approach allows involving many nodes to perform
a computation thus reducing the load on individual aggregators.

A first effort towards SA adapted to P2P systems was made
in [22], where we designed a protocol that fulfill the above proper-
ties in an ideal setting, i.e., without considering the reliability issue.
This work brings two major novelties. First, we focus on the reliabil-
ity property, which is difficult to guarantee in a fully-decentralized
setting and deserves a detailed study. Second, although our proto-
cols apply to SA in general, we chose to study the more general
case of FL, given its particular interest in the PDMS paradigm. The
study of FL is also more challenging due to the potentially large
size of the model, which increases the scalability problem. In our
experiments, we consider model sizes from very small to very large,
thus covering a wide range of use cases (including classical SA).

Our contributions are as follows. We analyze the impact of
dropouts, be it contributor or aggregator nodes, on the other prop-
erties of an SA protocol designed for a P2P PDMS system. Node
dropouts have a direct impact on accuracy (i.e., a single failure can
make the final computation result useless) and on efficiency (i.e.,
it can introduce large latency). From this analysis, we derive the
precise requirements of a reliable protocol and show that in a fully-
decentralized context, reliability also introduces a tension between
result completeness (i.e., the percentage of initial contribution in
the final result, despite dropouts) and computation cost. We intro-
duce the necessary building blocks to deal with these requirements.
Then, we propose a variety of execution strategies offering different
trade-offs between completeness and cost and allowing to cover a
wide spectrum of dropout rates, contributor selectivity or trained
model sizes. Our extensive experimental evaluation shows that the

proposed strategies cover well the design space allowing to favor
completeness or cost in all settings.

The rest of this paper is organized as follows. We discuss the
related works w.r.t. the required properties in Section 2. We intro-
duce, in Section 3, the considered architecture and threat model.
Section 4 reminds the main design principles proposed in [22] and
then introduces, as a starting point, a straw-man SA protocol which
efficiently computes the required aggregation assuming an ideal
world (i.e., there are no node dropouts). This allows to highlight
the challenges induced by reliability issues. Section 5 presents the
necessary building blocks to addresses the reliability related chal-
lenges. In Section 6, we propose four SA strategies that leverage
those building blocks and allow for different trade-off between re-
sult completeness and aggregation cost. We extensively evaluate
the proposed strategies in Section 7 and conclude in Section 8.

2 RELATEDWORKS
Secure aggregation (SA) is an intense research area since many
years leading to several approaches: SA based on cryptography,
SA based on (local) differential privacy and gossip-based protocols
and SA based on Trusted Execution Environments (TEE). However,
these solutions are not adapted to the decentralized context and
fail to cover all the required properties listed above.
SA based on cryptography. Cryptographic solutions for SA have
been proposed since nearly three decades. The initial solutions
were designed for wireless sensor networks [27], but the field has
recently taken off again tomeet the needs of FL. A recent survey [20]
discusses about forty works for FL, grouped in four classes: SA using
masking, SA using additively homomorphic encryption, SA using
functional encryption and SA based on MPC (or secret shares). The
proposed scheme may differ on the offered trade-off between the
computation and the communication cost, or the tolerance to client
dropouts. Regardless of the employed cryptographic scheme, all
the existing solutions (e.g., [5, 8], Prio [12] and Drynx [16]) rely on
a similar architecture wherein one or a handful of powerful and
highly reliable servers collect encrypted user data and then apply
costly aggregation algorithms based on masking (e.g., [30]), garbled
circuits (e.g., [6, 14]) or secret sharing (e.g., [15, 18]).
SA based on cryptography with dropout support. Typical FL
scenarios can involve a large number of (mobile) clients and hence,
client dropouts are common during the aggregation process. Some
of the above mentioned works support client dropouts, in particular,
the methods based onmasking [8] andMPC [20] but none considers
that the aggregation servers can fail.

The existing methods cannot be applied in a fully-decentralized
PDMS setting for two reasons: (i) scalability – a PDMS is not a
high-end server that could deal with thousands of connections
and related crypto operations, making the existing solutions not
scalable with a large number of participants (e.g., the execution
latency is linear [12], super linear [29] or quadratic [8] with the
number of participants); and (ii) reliability – similar to the client
devices (i.e., the data contributors), the aggregator nodes can drop
out making the existing solutions inoperative in our context. Our
protocols are also based on cryptography (i.e., using a basic secret
share mechanism) but adapt to the architectural specificity and the
related constraints of the PDMS context.



Federated Learning on Personal Data Management Systems:
Decentralized and Reliable Secure Aggregation Protocols SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA

SA based on differential privacy and gossip protocols. Lo-
cal differential privacy (LDP) has gained significant momentum in
recent years due to its major advantage compared with classical
DP, i.e., it does not require a trusted third party. Existing works
address problems such as ML [7] , FL [1, 33, 34], marginal statis-
tics [35] or basic statistics based on range queries [11]. However,
LDP accentuates the tension between utility and privacy protection
since it requires more noise for the same level of protection as with
classical DP [2]. Hence, this can either affect utility or require a
very large number of participants to reduce the impact of noise
which contradicts adaptability to selective participation.

Gossip-based protocols are scalable, fully decentralized, reliable
and have an adjustable accuracy. Unfortunately, classical gossip-
based protocols do not protect the user privacy. In [7, 28], partici-
pants collectively learn a machine learning model in a privacy pre-
serving way by gossiping differentially private models, impacting
accuracy. In [23], participants introduce noise in the first iterations
and gradually remove it in subsequent iterations. This approach
makes such solutions unreliable w.r.t. node failures. Finally, we are
not aware of gossip protocols tolerating selective participation and
basic adaptations produce inaccurate results.
SA based on TEE. To overcome some of the limitations of crypto-
graphic schemes or DP, several works propose using secure hard-
ware at the user-side to address, e.g., SQL aggregation [32] or spatio-
temporal aggregation [26]. This approach is generic w.r.t. the com-
putation function but the existing solutions use a hybrid architec-
ture (i.e., employ a supporting server), do not address the node
selection problem and generally consider a tamper-proof attack
model or a very small number of corrupted nodes.

In conclusion, none of the above classes of solutions can satisfy
all the requirements of SA in a PDMS setting wherein the fully-
decentralized nature of the system has to cope with unavoidable
aggregator dropouts and the need for accuracy of FL.

3 SYSTEM OVERVIEW AND THREAT MODEL
3.1 System Architecture
P2P network. We envision a fully distributed P2P system relying
only on PDMSs, thus requiring an efficient communication overlay.
Distributed Hash Tables (DHT) are structured overlays which enable
a logarithmic scalability with the number of nodes. Our protocol
is currently built on top of the Chord DHT [31]. Each node has
an Id obtained by hashing a static property of the node and stores
a fingertable (FT) to route Chord messages. FT is a table with a
number of entries equal to the size of the Id space in bits. If 𝑋 is
a node Id, the 𝑖𝑡ℎ entry of the FT contains the IP address of the
node whose Id is closest but lower than 𝑋 + 2𝑖 . Routing is done
by searching in the FT the closest entry to the target address and
transmitting recursively the message until it reaches its target, with
a worse case of O(𝑙𝑜𝑔(𝑁 )) message complexity, where 𝑁 is the
number of DHT nodes.
Computation model. A model computation can be triggered by
any node, i.e., querier. The querier broadcasts the computation and
each node consents or not to contribute, and in the positive case is
called contributor. The ratio between the number of contributors
and total number of nodes defines the selectivity 𝜎 ∈ [0, 1]. Each
node (contributor or not) may be a data processor and is then called

aggregator. Each contributor trains the model locally for several
epochs as described in [21] and sends it to the aggregators. Aggre-
gators produce a new model based on the received contributions.
The process can potentially repeat for several iterations.

3.2 Threat Model
As in themajority of SAworks [20], we consider the classical honest-
but-curious threat model, i.e., an attacker can access, but cannot
alter, the data manipulated by the attacked nodes (called leaking
nodes). A PDMS can hold the entire digital life of her owner and
thus needs to be highly protected against privacy threats as indi-
cated by recent works [4]. However, we consider that some PDMS
owners have succeeded in tampering their PDMS since no security
measure is unbreakable. Since attackers may collude and thus, de
facto, control more than one PDMS, the worst-case attack is repre-
sented by the maximum number of colluding nodes controlled by a
single “attacker”, i.e., 𝐶 leaking nodes. Additionally, each PDMS is
equipped with a trustworthy certificate supplied by an offline PKI.
Thus, any node can verify the authenticity of other participants by
checking their certificate. This prevents Sybil attacks (i.e., forging
nodes to master a large portion of the system). Finally, secure com-
munication channels (e.g., TLS) are required since attackers can
observe the communications between the nodes.

Our protocols should fully protect the confidentiality of the
contributors’ data and all the intermediary results, with high and
tunable probability (see also [9]), the final result not being con-
fidential. Also, we consider that being a contributor for a given
computation is not a sensitive information.
Out-of-scope attacks. We do not consider the case of an attacker
manipulating fully corrupted PDMSs. In a P2P system, such an at-
tacker could perform poisoning attacks of the contributed data [12]
or forge false aggregation results [17] with the objective to com-
promise contributors’ input confidentiality by bypassing the SA
protocol. A few recent works (e.g., Prio [12], VeriFL [17]) deal with
these problems but existing solutions are still limited especially in
our context because of their limited scalability or lack of genericity.

4 STRAW-MAN PROTOCOL
This section summarizes themain design principles proposed in [22]
to fulfill the privacy, accuracy, adaptability and scalability prop-
erties. It then describes, as a starting point, a straw-man protocol
in an ideal world, i.e., assuming there are no dropouts. Finally, it
highlights the reliability issue by considering node dropouts and
formulates precisely the problem at hand.

4.1 Background
Achieving a scalable aggregation process requires multiple aggrega-
tors, naturally arranged in a tree structure (see Fig. 1.a) wherein the
intermediary nodes are aggregators and the leaves are contributors.
The querier obtains the result from the tree root.
Privacy and accuracy: We use a secret sharing scheme without
threshold for data confidentiality. Each contributor splits its private
value into 𝑠 shares, making it impossible to reconstruct the secret
unless someone collects all 𝑠 shares. Considering 𝑠 shares for each
contributor and partial aggregate results leads to build 𝑠 separate
(parallel) aggregation trees with exactly the same structure. This



SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA Mirval, Bouganim and Sandu-Popa

dc be

Aggregation tree

4

6 i

a e

b

d

f
g

h

Q

c

1

23
3

4

5

5

4

4

5

Chord DHT
Q

i h f g

a

A A A

C C C C

A

Q

….
A A A

(a) Aggregation tree

Q

Contributors

VS
Q

Contributors
(c) Adaptability (d) Scalability: Recursive building of the privacy-preserving aggregation tree

Q
A
C

Querier
Aggregator
Contributor

C C C

Share 1

….
(b) Privacy preservation

Share 2
Share 3

Q Aggregator share 1
Aggregator share 2
Aggregator share 3

Aggregator group
Contributor
Querier

…….. ……..

……..…..……. ……..…….………..…….…..

Figure 1: Building the aggregation tree based on DHT

precludes inferences from an attacker on any of the intermediate
results (see Fig. 1.b). Each 𝑖𝑡ℎ share has the value 𝑥𝑖 = 𝑥/𝑠 + 𝜖𝑖 such
that

∑𝑛
𝑖=1 𝜖𝑖 = 0, where 𝑥 is the private value. Thus, shares from

different contributors are aggregated separately and if no share is
missing (reliability is discussed in Section 5), the final result equals
the exact sum of all private values and is computed by the querier;
hence, our protocol provides, by construction, accurate results.

The number of shares, 𝑠 , is computed such that the probability
to obtain 𝑠 shares for an attacker, controlling𝐶 nodes, is inferior to
𝛼 , a security threshold (e.g., 𝛼 = 10−6). An attacker could cleverly
locate her controlled nodes in the DHT to obtain the 𝑠 shares of
a group. We avoid this attack by reusing the concept of imposed
location proposed in [19]: the node Id in the DHT is computed by
hashing the public key from the PDMS certificate (see Section 3.2).
The nodes are then uniformly distributed in the DHT space and the
PDMS owner (here the attacker) cannot influence this placement.
Consequently, the uniform distribution also applies to leaking nodes
and the probability that an attacker controls an entire group is given
by (𝐶/𝑁 )𝑠 < 𝛼 . Then 𝑠 is minimal when 𝑠 = ⌈log(𝛼)/log( 𝐶

𝑁
)⌉.

Obviously, communications between nodes must use secured
channels, to protect the integrity and confidentiality of the ex-
changed data and to ensure the provenance of that data.
Adaptability: The number of aggregators and their arrangement
(i.e., the tree fan-out and its height) is tuned as a function of the num-
ber of contributors, the communication costs and the processing
costs as discussed in [22]. This allows the protocol to always offer
near-optimal performance (i.e., aggregation latency) and achieve
adaptability w.r.t. the computation selectivity and PDMSs charac-
teristics. Furthermore, our protocol can be configured to offer the
desired trade-off between the latency and the total cost of the aggre-
gation, which are conflicting objectives. At one extreme (see Fig. 1.c
left), a binary tree (𝑓 = 2) distributes the query load on a maximum
number of aggregator groups but increases the communications
costs. At the other extreme (see Fig. 1.c right), a tree limited to a
unique aggregator group (𝑓 = 𝜎 × 𝑁 ) minimizes the communica-
tions costs, the total system load but concentrates most of that load
on this unique aggregator group that becomes overloaded. Thus, in
an "ideal" setting, the height of the tree is chosen to optimize the
query latency without impacting too much the total load.
Scalability: The DHT realizes a de facto fully decentralized and
efficient architecture for communication between nodes. Building
and broadcasting 𝑠 aggregation trees can be very costly since the
trees can be large. We thus employ a divide-and-conquer approach

to parallelize the construction and diffusion of the trees and use
the finger table structure to minimize communications. Finally, we
reduce the knowledge and the diffusion of the trees to the part
required to perform the aggregation: a node of an aggregation tree
only knows its parent and its children.

To simplify the description of the tree construction, we consider
below that each node of the tree is a group of 𝑠 nodes (see Fig. 1.d
with 𝑠 = 3). Assuming the querier knows the height ℎ and the fan-
out 𝑓 of the aggregation tree (see above), it starts the tree creation
by assigning the whole DHT to its successors. Recursively, each
aggregator group in the tree (i.e., parent nodes) is assigned to a DHT
region that it will subdivide and delegate to other aggregator groups
in that region. When an aggregator oversees a DHT region, it looks
for 𝑓 nodes that are (almost) evenly spaced across the region. The
node responsible for finding peers is a parent aggregator, while the
selected nodes are child aggregators. Each child then becomes the
parent of the region between itself and the next sibling. This process
goes on until the height ℎ is reached. At each step, 𝑠 nodes are
selected instead of one. To make this selection efficient, each node
in the DHT maintains a cache with the addresses and certificates
of the 𝑠 − 1 successor nodes that will form the aggregator group. At
the last tree level, the tree leaves (i.e., the contributors) are found
by using a localized DHT broadcast in the respective region. Fig.
1.d illustrates this process with three nodes per group (blue, red
and green) by using letters to represent a group. The fan-out is 4
and the height is 3 (excluding the querier Q).

4.2 Straw-man Protocol in an Ideal World
This section details a straw-man aggregation protocol, assuming
an ideal world in which there are no dropouts, in order to illustrate
the reliability problem. For the sake of simplicity, the presented
protocol considers that the aggregation trees were built up to the
leaves, but without including the contributors.

Straw-man is detailed in Algorithm 1 by type of nodes consid-
ering the computation of the average of a private vector owned
by each contributor. Contributors willing to participate establish a
secure channel with each aggregator parent and then send shares of
their private vector. The aggregators aggregate the received shares
and send their results to their parents up to the root. The querier
then performs the final aggregation to obtain the result. There are
only two types of messages: (i) Query() messages containing (1)
the query itself (line 25); (2) the sender certificate (line 26), and (3)
the receiver parents to whom the shares must be sent (line 28). (ii)



Federated Learning on Personal Data Management Systems:
Decentralized and Reliable Secure Aggregation Protocols SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA

Algorithm 1: Straw-Man protocol (average computation)
Message definition:

• IntRes𝑖 (Sum, NbContrib): intermediate result of child 𝑖 .
• Query(): ask contributors for their potential contributions.

Input: 𝑠 : number of shares; 𝑓 : tree fan-out
Querier Node :

1 on initialization do −−→sum← −→0 ; nbContrib← 0
2 on IntRes𝑖 (), 𝑖 ∈ [1..𝑠 ] do
3

−−→sum += msg. −−→𝑠𝑢𝑚; nbContrib += msg. nbContrib
4 if I received 𝑠 intermediate results then
5

−−−−→
𝑟𝑒𝑠𝑢𝑙𝑡 =

−−→sum/(nbContrib/𝑠 ) /* average */

Aggregator Nodes :
6 on initialization do −−→sum← −→0 ; nbContrib← 0
7 on IntRes𝑖 (), 𝑖 ∈ [1..𝑓 ] do
8

−−→sum += msg. −−→𝑠𝑢𝑚; nbContrib += msg. nbContrib
9 if I received 𝑓 intermediate results then
10 if I want to contribute then
11

−−→sum +=
−−−−−−→
𝑚𝑦𝐷𝑎𝑡𝑎; nbContrib += 𝑠

12 Send IntRes (−−→sum, nbContrib) to my parent

Leaf Aggregator Nodes :
13 on initialization do
14

−−→sum← −→0 ; nbContrib← 0
15 Broadcast the query to the assigned part of the DHT
16 Set a Contribution Timeout (to receive all contributions)

17 on IntRes𝑖 (), 𝑖 ∈ [1..𝑓 ] do
18

−−→sum += msg. −−→𝑠𝑢𝑚; nbContrib += msg. nbContrib

19 after Contribution Timeout expiration do
20 if there is no more pending messages then
21 if I want to contribute then
22

−−→sum +=
−−−−−−→
𝑚𝑦𝐷𝑎𝑡𝑎; nbContrib+=𝑠

23 Send IntRes (−−→sum, nbContrib) to my parent

Potential Contributor Nodes :
24 on Query() do
25 if I want to contribute then
26 if msg. sender is a PDMS (check certificate) then
27 for 𝑖 ∈ [1..𝑠 ] do
28 Send IntRes (−−−−→𝑠ℎ𝑎𝑟𝑒𝑖 , 1) to msg. parents[𝑖 ]

Intermediate results under the format (−−→sum, nbContrib) sent either
by contributors (line 28, with nbContrib = 1) or (Leaf) Aggregators
(lines 12 and 23).

After having broadcasted the query, the leaf aggregators set a
contribution timeout, computed such that it allows to receive all
contributions (line 16). The timeout is computed by considering
the time to reach a contributor plus the time to prepare and send a
contribution since we consider an ideal world with no delays. While
sent in parallel, the contributions are decrypted sequentially by
the leaf aggregators, which wait for the processing of any message
(line 20) before sending the partial result (line 23). If a node selected
as aggregator (leaf or not) in the tree wishes to contribute, it can

simply add its private data to the partial aggregate it computes add
𝑠 to the count of share contributions before sending it to its parent.

4.3 Analysis and Problem Formulation
Although the straw-man protocol is simple and efficient in an ideal
world, it can deliver an incorrect result or simply block in the pres-
ence of node dropouts. Indeed, one share of a contributor may
not be received because the contributor drops out after sending
some shares or because the corresponding message was delayed.
In both cases, the result is incorrect. Furthermore, if an aggregator
fails before sending its intermediate result, the condition in line 9
will never be true, thus blocking the protocol. A single aggregator
dropout is indeed sufficient to thwart a graceful protocol termi-
nation since all the ancestors of the dropout node will hang on
indefinitely waiting for the data to arrive.

The problem addressed in this paper is to devise protocols ro-
bust to dropouts, i.e., ensure the reliability property with three
complementary goals despite failures and delays:

(1) validity: the protocol must deliver a correct result;
(2) termination: the protocol must not block;
(3) completeness: the protocol should maximize completeness

defined as the percentage of the initial contributors actually
accounted for in the final result.

Termination and validity are mandatory while maximizing com-
pleteness is a desirable objective, but may incur a significant over-
head. An ideal protocol should minimize this overhead and maxi-
mize the completeness of the result, which are unfortunately con-
flicting goals. Indeed, maximizing completeness requires synchro-
nization between the parallel aggregation trees and the ability to
redo the work done by a dropped out aggregator. In addition, this
overhead increases the latency of the protocol which can lead to
increased dropouts, with, potentially, a snowball effect.

5 HANDLING DROPOUTS
This section proposes solutions to handle dropouts during the ag-
gregation protocol. We first introduce the dropout model and de-
tection. Then, we discuss possible approaches to react to dropouts,
guarantee validity and termination.

5.1 Dropout Model and Detection
We consider the most difficult failure model wherein any node
can dropout at any moment (i.e., we cannot benefit from grace-
ful disconnections). For simplicity, in all cases, we consider that
dropout nodes cannot reintegrate the ongoing computation after a
dropout. When a dropout node recovers, it reintegrate the DHT or
can participate in new queries.

We consider that the dropout probability is the same for any con-
tributor or aggregator node. That is, at each time instant (e.g., every
second) during the protocol execution, every node can dropout
with some fixed probability, thus, the longer the protocol duration,
the higher the risk of a dropout and hence the observed dropouts.
In this model, there is no way to detect a dropout with certainty;
a dropout can only be assumed after a timeout, i.e., node 𝐴 may
presume node 𝐵’s dropout because𝐴was expecting a message from
𝐵 and did not receive it after a given timeout.



SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA Mirval, Bouganim and Sandu-Popa

Let us note that the aggregation trees form a temporary addi-
tional overlay on top of the DHT overlay. Hence, to detect dropouts,
we use a common DHT mechanism to maintain its consistency, i.e.,
health check (HC) messages. Specifically, any aggregator is periodi-
cally monitored by its parent using HC messages. HC are sent over
the secure channels already required to secure the communications
in the aggregation tree. HC are equivalent to ping messages so they
imply a low network overhead.

5.2 Replacing (or not) a Dropped Out Node
The natural reaction to the dropout of an aggregator 𝐴 is to trigger
a node replacement as follow: the parent 𝑃 detecting the dropout of
node𝐴 randomly selects a free node, say𝑅, from its DHT fingertable
(i.e., a node that has not been previously selected as aggregator in
the current tree) and supplies 𝑅 the necessary information (e.g.,𝐴’s
children, the members of 𝐴’s group, 𝐴’s status, etc.) allowing the
node to take the place of 𝐴. This information can be easily kept
up-to-date by 𝑃 when 𝐴 answers 𝑃 ’s health check requests. If the
dropout occurs before𝐴 has received any data from its children, the
replacement is cheap, entailing only the creation of secure commu-
nication channels between 𝑅 and 𝑃 , 𝐴’s children and the members
of 𝐴’s group. In the other cases (i.e., 𝐴 has done part or all of its
assigned work), the replacement induces a significant overhead (𝑅
must require 𝐴’s children to re-send their data, potentially redo
the aggregation and re-send the aggregated data to 𝑃 ). Thus, all
the strategies described in Section 6 replace any node dropping
out before receiving any data while the replacement policy in the
other cases depends on the strategy, with an impact on the over-
head/completeness trade-off. Obviously, contributors that drop out
cannot be replaced. Thus, a synchronization between the paral-
lel aggregation trees must take place to ensure validity if some
contributors or some –not replaced– aggregators dropped out.

5.3 Ensuring Validity
This section introduces two complementary mechanisms for ensur-
ing result validity. The first is based on recording and checking the
contributors’ footprints in each of the parallel aggregation trees.
The second uses inter-tree synchronization between aggregators
in the same group allowing for contributors’ convergence between
the parallel aggregation trees.

5.3.1 Check Contributors Footprint (CCF). Validity is ensured as
long as the 𝑠 last IntRes messages (see Algorithm 1), computed
by the 𝑠 parallel aggregation trees and received by 𝑄 , contain the
secret share contributions of the exact same list of contributors. To
this end, we employ a hashing scheme similar to a Merkle Hash
Tree , i.e., computing incrementally a hash of the identifier lists
of the contributors whose shares are aggregated. We add a new
field, CF , to IntRes messages which contains, for leaf aggregators, a
hash of all contributors IPs that are included in that intermediate
result. Contributors thus send IntRes(MyShare, 1, hash(MyIP)). Then
aggregators, leaf or not, sort the incoming CFs, hash that sorted list
to produce their own CF and send it with their intermediate result.
The process repeats to all intermediate levels up to the querier 𝑄 .
Therefore, 𝑄 can ensure the production of a valid result iff all the
CFs received together with the 𝑠 intermediate results are equal.
Thus CF can be considered as a version identifier of a given IntRes.

CCF allows for efficient detection of inconsistent shares but not for
a convergence of those shares. Hence, the lack of even a single share
leads to invalidating the entire aggregation, i.e., 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 = 0%.

5.3.2 Inter-tree Synchronization ( sync). To correct inconsistencies
between the parallel aggregation trees, we need a synchronization
mechanism to eliminate from the IntRes message the contributions
of any contributor that provided less than 𝑠 secret shares. Note
that this can arrive either because of a contributor dropout but
also as a result of an aggregator dropout which is not replaced.
This synchronization called sync can be applied in a blocking or
non-blocking manner as described below.
Blocking sync. A blocking sync is performed between the aggre-
gators in a same group (e.g., the blue, red and green nodes of any
group in Fig. 1.d), which synchronize their contributing children list
to produce an IntRes containing only the data from children nodes
in the intersection of those lists. If the children data was synchro-
nized before aggregation, the resulting IntRes is then consistent (i.e.,
will have the same 𝐶𝐹 ). Each aggregator in a group waits for all its
children data and then broadcasts the list of contributing children
to the other aggregators in its group. After receiving 𝑠 −1 lists, each
aggregator produces through intersection the final list, aggregates
the corresponding shares and sends the result to its parent.
Non-blocking sync. The idea is to allow aggregators to send
the aggregated shares up the tree without synchronization with
the other 𝑠 − 1 leaf aggregators in the group, but just informing
them of the actual Children List (CL) used to compute the IntRes.
A leaf aggregator who receives a CL must react in different ways,
depending on its own status: (a) if it has not sent any IntResmessage,
it must ignore the data from children that are not in the received
CL; (b) if it has already sent an IntRes with its own CL (𝐶𝐿𝑙𝑎𝑠𝑡 ), it
computes𝐶𝐿𝑛𝑒𝑤 = 𝐶𝐿𝑙𝑎𝑠𝑡

⋂
𝐶𝐿. If𝐶𝐿𝑛𝑒𝑤 ≠ 𝐶𝐿𝑙𝑎𝑠𝑡 , the aggregator

sends a new IntRes message based on 𝐶𝐿𝑛𝑒𝑤 data and informs the
other aggregators of its group, sending 𝐶𝐿𝑛𝑒𝑤 . Thus, if the querier
receives inconsistent IntRes messages, it detects it through the CF
inconsistency and just has to wait for new IntRes messages that
will eventually become consistent.

For a leaf aggregator group (e.g., the 𝑓 group in Fig. 1.d), the sync
eliminates the contributors that provided only a part of the 𝑠 shares.
In the upper tree levels, the sync eliminates entire tree branches
and therefore, possibly a significant number of contributors (e.g., if
𝑐-blue drops out and is not replaced, the sync at the 𝑎 group in Fig.
1.d leads to prune the whole 𝑐 sub-tree since there are no means to
retrieve the blue shares in this sub-tree). Thus, sync operations may
hurt completeness. A blocking sync guarantees that all the group
aggregators send consistent IntRes up the tree and thus potentially
entails a lower cost (i.e., both bandwidth and computation cost) than
a non-blocking sync wherein aggregators may send several IntRes
messages (i.e., eventual consistency). However, in strategies that
replace dropped out aggregators, a replaced aggregator may require
another sync with the members of its group, thus reducing the
interest of a blocking sync. Moreover, blocking syncs may increase
query latency since any slowdown in one of the parallel aggregation
tree will impact the others. Finally, we should underline that a
blocking sync does not require CCF if applied in all groups, whereas
this is required for non-blocking sync.



Federated Learning on Personal Data Management Systems:
Decentralized and Reliable Secure Aggregation Protocols SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA

5.4 Ensuring Termination
Ensuring query termination is straightforward insofar as dropouts
are detected (see Section 5.1). The protocol can gracefully terminate
if the querier receives a consistent set of 𝑠 IntRes. In this case, the
querier ’broadcasts’ a termination message (i.e., which is propa-
gated recursively down the 𝑠 aggregation trees). Depending on the
aggregation strategy (see Section 6) a dropout can also trigger termi-
nation. For instance, in a straw-man-like protocol a single dropout
can invalidate the entire result. Hence, on detecting a dropout,
an aggregator informs the querier which sends termination to all
nodes. Finally, nodes within sub-trees can receive an early termina-
tion message (i.e., before the protocol end) following a sync at the
sub-tree root group requiring pruning.

6 PROPOSED AGGREGATION STRATEGIES
Several strategies can be envisioned around the building blocks in-
troduced above leading to different trade-offs between aggregation
cost (i.e., the latency, total work and bandwidth of the protocol)
and result completeness. In this section we first present two ex-
treme strategies called 𝐿𝑜𝑤𝐶𝑜𝑠𝑡 and𝐻𝑖𝑔ℎ𝐶𝑝𝑙 trying each to push in
one direction of the conflicting overhead/completeness objectives.
Then, we introduce two more strategies called 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 and
𝐻𝑦𝑏𝑟𝑖𝑑 which target interesting trade-offs between completeness
and cost. For each strategy, we describe its overall objective, its
design principles, then describe the protocol through the choice of
the adequate building blocks, concluding with a short discussion
which is completed by experimental results in Section 7.

6.1 Low-Cost Protocol
Objective. 𝐿𝑜𝑤𝐶𝑜𝑠𝑡 bets on an "almost ideal" world and is thus
really optimistic in terms of dropouts. It leverages the straw-man
protocol, correcting its main issues (validity and termination) with
low-cost mechanisms to make it reliable.
Design principles. We observe that the straw-man protocol is
near-optimal since (i) the data is sent up the tree only once by each
node, and (ii) there is no sync between the parallel aggregation
trees. The idea is to keep these good properties while still ensuring
the protocol validity and termination.
Protocol. Recall that contributors transmit their 𝑠 shares simulta-
neously to the 𝑠 leaf aggregators. In case of contributor dropout,
it is unlikely, but not impossible, that the shares are transmitted
completely to, e.g., 𝑠-1 aggregators and incompletely to the last one.
Node replacement policy.An aggregator is replaced only if its dropout
occurs before the node receives any data from any of its children.
For instance, node 𝑐 in Fig. 1.d can be replaced only if it drops out
before receiving any data from 𝑖 , 𝑓 , ℎ or 𝑔. Replacing 𝑐 after this
would violate the ’send-only-once’ principle since one or several of
its children would need to re-send data.
Validity. It is ensured by leveraging the low cost CCF mechanism
which does not require any inter-tree communication.
Termination. 𝐿𝑜𝑤𝐶𝑜𝑠𝑡 terminates either (i) gracefully after the
querier receives all 𝑠 shares from its children or (ii) abruptly if
any aggregator dropout is detected. Note also that due to the ’send-
only-once’ principle, any node can safely leave the protocol after it
has sent its IntRes to its parent (i.e., a progressive termination from
the leaves to the root).

Discussion. This basic protocol minimizes cost and is reliable.
However, it has a binary behavior w.r.t. completeness. That is, com-
pleteness drops to 0% if (i) a single fatal aggregator dropout occurs or
(ii) a single contributor drops out after sending only a sub-set of its
𝑠 shares (thus leading to different versions in the parallel subtrees).
This makes the completeness of 𝐿𝑜𝑤𝐶𝑜𝑠𝑡 extremely sensitive to
dropouts. The reason is that there is no inter-tree sync mechanism
allowing a convergence between the 𝑠 parallel aggregates.

6.2 High-Completeness Protocol
Objective. To have a complete view of the design space, we also
need a strategy that eagerly searches to maximize completeness
regardless of cost. We call this strategy 𝐻𝑖𝑔ℎ𝐶𝑝𝑙 .
Design principles. To achieve this objective 𝐻𝑖𝑔ℎ𝐶𝑝𝑙 adopts the
opposite behavior compared with 𝐿𝑜𝑤𝐶𝑜𝑠𝑡 : (i) any tree node (con-
tributor or aggregator) can re-send its data whenever required (e.g.,
following a node replacement) and (ii)𝐻𝑖𝑔ℎ𝐶𝑝𝑙 propagates the data
upward in the tree as fast as possible to maximize the chances of
diffusion and then uses non-blocking sync for convergence between
trees with eventual consistency thanks to CCF.
Protocol. Node replacement policy. In 𝐻𝑖𝑔ℎ𝐶𝑝𝑙 , any dropped out
aggregator is replaced as soon as the dropout is detected by its
parent node regardless if the dropout node has already sent one or
several times its data up the tree. The replacement node asks IntRes
from its children after replacement and sends the aggregate to its
parent if that aggregate has a different version (𝐶𝐹 ) compared with
the last sent aggregate (recorded by the parent). This may happen,
for instance with the replacement of a leaf aggregator with some
dropped out contributors.
Validity.Non-blocking sync is required at the leaf aggregator level to
ensure validity despite contributor dropouts (and a leaf aggregator
replacement requires a new synchronization anyway).For the other
levels, no sync is required since aggregators are replaced in case
of dropouts and any new version sent at the leaf aggregator level
triggers new computations up to the tree root.
Termination. 𝐻𝑖𝑔ℎ𝐶𝑝𝑙 can terminate after the querier receives 𝑠
consistent shares from its children.
Discussion.𝐻𝑖𝑔ℎ𝐶𝑝𝑙 searches to maximizes completeness through
systematic dropout replacements, subsequent data re-sends, and
minimalist non-blocking sync. The consequence is obviously an
increased overhead since the same data can be transmitted and
aggregated multiple times.

6.3 Sync-and-Prune Protocol
Objective. The extreme behavior of 𝐿𝑜𝑤𝐶𝑜𝑠𝑡 and 𝐻𝑖𝑔ℎ𝐶𝑝𝑙 may
make them impractical to use in real case scenarios. 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒
offers an adapted trade-off between completeness and cost, trying
to minimize overhead but without completely hurting completeness
Design principles. 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 leverages the same ’send-only-
once’ principle to minimize cost like in 𝐿𝑜𝑤𝐶𝑜𝑠𝑡 . However, different
from 𝐿𝑜𝑤𝐶𝑜𝑠𝑡 , 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 allows for convergence between the
parallel trees by using sync.
Protocol. Node replacement policy. Same as 𝐿𝑜𝑤𝐶𝑜𝑠𝑡 given the
’send-only-once’ principle.
Validity. Non-blocking sync is not compatible with the ’send-only-
once’ principle. Thus 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 employs blocking sync to ensure
validity at all tree levels. Indeed, since dropout aggregators are



SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA Mirval, Bouganim and Sandu-Popa

b de

Q

a

c

i h f g✘

Failure is 
detected 
à abort 
through Q

b de

Q

a

c

i h f g✘

if failure is 
detected then 
prune branch

1

b de

Q

a

c

i h f g✘

Failure detected 
(1) replace node

(2) reask
data…

(3)
resend
data

(4) check CFs 
consistency

b de

Q

a

c

i h f g

replace any 
failing node 
as in HighCpl

Blocking sync (&prune) 
for leaf aggregators

check CFs 
consistency

(a) LowCost strategy                (b) HighCpl strategy                  (c) Sync&Prune strategy                (d) Hybrid strategy    

Blocking sync 
everywhere

2

if ≠ CFs then
terminate 
(no result)

Figure 2: Envisioned strategies

not replaced, synchronization is required at all levels to ensure a
consistent result between the parallel trees. Syncing at each tree
level allows 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 to progressively prune the tree branches
corresponding to dropped out aggregators from leaves to the root.
Termination. 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 terminates when the querier receives 𝑠
shares from its child group or if it detects a dropout in the root
group. Lower level nodes progressively terminate, from leaves to
the root, after sending their IntRes to their parents.
Discussion. 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 is expected to have a low cost due to the
’send-only-once’ strategy. Syncing also adds an overhead but we
expect it to be low compared with the data transmission and the
message decryption/encryption cost.

6.4 Hybrid Protocol
Objective. 𝐻𝑦𝑏𝑟𝑖𝑑 is a second, less extreme strategy attempting to
maximize completeness and maintain a reasonable cost.
Design principles. The idea is to have a hybrid approach com-
bining principles from 𝐻𝑖𝑔ℎ𝐶𝑝𝑙 and 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 . In 𝐻𝑦𝑏𝑟𝑖𝑑 , the
contributors employ a ’send-only-once’ strategy like in 𝑆𝑦𝑛𝑐&
𝑃𝑟𝑢𝑛𝑒 , while the aggregators re-send data whenever necessary like
in 𝐻𝑖𝑔ℎ𝐶𝑝𝑙 . The rationale is: (i) a significant part of the query cost
comes from the data transmission at the contributors’ level given
the large number of contributors; and (ii) in the upper part of the
tree, replacement induces less costs and provides comparatively
more benefits, in terms of completeness.
Protocol. Node replacement policy. In 𝐻𝑦𝑏𝑟𝑖𝑑 , a leaf aggregator
that drops out is replaced only if the dropout occurs before the
node receives any data from its contributors to comply with the
’send-only-once’ principle for contributors. On the other hand, any
dropout aggregator in the upper levels is systematically replaced
and require their children to re-send their IntRes.
Validity. To minimize overhead, 𝐻𝑦𝑏𝑟𝑖𝑑 uses a blocking sync strat-
egy at the leaf aggregators. Thus, leaf aggregators send a single
version of IntRes to their parent. Moreover, since leaf aggregators
are not replaced in case of dropout, the sync at the leaf aggre-
gator parent level induces pruning as in 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 . However,
the aggregator replacements in the upper levels avoid pruning a
large number of contributors and thus favors completeness. Also,
replacements in the upper levels can generate multiple versions.
Termination. As in𝐻𝑖𝑔ℎ𝐶𝑝𝑙 ,𝐻𝑦𝑏𝑟𝑖𝑑 can terminate after the querier
receives 𝑠 consistent IntRes from its child group. The contributor
nodes and leaf aggregators nodes terminate after sending all the 𝑠
shares to their parent(s).
Discussion.This hybrid strategy inherits the best of the twoworlds:
maximized completeness through replacement in the upper levels
and limited cost due to ’send-only-once’ at the contributors’ level.

send use blocking use replaceStrategy
once sync sync CCF agg.

𝐿𝑜𝑤𝐶𝑜𝑠𝑡 yes no n/a yes no
𝐻𝑖𝑔ℎ𝐶𝑝𝑙 no leaf agg. no yes yes
𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 yes all levels yes no no
𝐻𝑦𝑏𝑟𝑖𝑑 contrib. leaf agg. yes yes yes

Table 1: Design and building blocks

However, it also inherits, but at a smaller scale, the limitations of
the two approaches: some loss in completeness because of the non-
replacement of leaf aggregators as well as some overhead generated
by data re-sends in the upper levels.

6.5 Summary
Table 1 and Fig. 2 summarize the design and the behavior of each
strategy (with only 2 shares for readability). By eagerly replacing
nodes, 𝐻𝑖𝑔ℎ𝐶𝑝𝑙 favors completeness to the expense of cost while
𝐿𝑜𝑤𝐶𝑜𝑠𝑡 does not make any significant effort to favor complete-
ness. 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 still favors low overhead but avoids the binary
behavior of 𝐿𝑜𝑤𝐶𝑜𝑠𝑡 by pruning subtrees. Finally𝐻𝑦𝑏𝑟𝑖𝑑 leverages
the best of both 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 and 𝐻𝑖𝑔ℎ𝐶𝑝𝑙 .

7 PERFORMANCE EVALUATION
We present the evaluation platform and used metrics in Section 7.1,
then describe in Section 7.2 the experimental parameters and the
system security configuration. We present and analyze the experi-
mental results varying the dropout rate and the other parameters
in Sections 7.3 and 7.4, then conclude with an analysis on the best
fitted strategy depending on the context in Section 7.5.

7.1 Experimental Platform and Metrics
Our main goal is to evaluate the four proposed protocols in a large
P2P PDMS system wherein the nodes are structured leveraging a
Chord DHT overlay [31]. To this end, we follow the same general
approach as in the related works on P2P systems [? ? ? ], i.e., our re-
sults are based on a simulator which creates a logical DHT between
simulated nodes1. Besides, we cannot quantitatively compare our
protocols to other SA strategies (see Section 2) given the lack of
similar secure aggregation solutions in P2P.

Our experimental evaluation is focused on the tension between
cost and completeness in the proposed protocols for different pa-
rameters impacting security and/or performance. With respect
to cost, our simulator captures the typical metrics for evaluating

1The simulator is available on https://github.com/JulienMirval/dissec_cozy/tree/
master/simulation

https://github.com/JulienMirval/dissec_cozy/tree/master/simulation
https://github.com/JulienMirval/dissec_cozy/tree/master/simulation


Federated Learning on Personal Data Management Systems:
Decentralized and Reliable Secure Aggregation Protocols SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA

distributed protocols. At the the network level, we measure the
required bandwidth (or bytes per query) at the node or system
levels. The consumed bandwidth is of particular interest especially
in the FL context wherein transmitted model parameters can have a
significant size (see Table 2). The required amount of work (or CPU
time per query) at the node or system levels is equally important.
Finally, we also need to estimate the latency to process a query.
For the network, we consider network links with latency and band-
width based on average values of domestic Internet in France [24]
and add random noise to these values to be more representative
of PDMSs heterogeneous connections. For the local work on each
PDMS impacting the total work and the latency, we consider the
most costly operations during the protocols, i.e., the cryptographic
operations. To calibrate the simulator (see Table 2), we measured
on a standard laptop computer equipped with Intel i5-9400H CPU
@ 2.50GHz the cost of classical asymmetric encryption for sign-
ing and verifying messages, which is required to open the secure
channels between communicating nodes. We also measured the
time required by contributors/aggregators to process their data (e.g.,
encryption/decryption of a model of different sizes using AES256).

7.2 Experimental and Security Parameters
System setup and security. We consider a large P2P system of
𝑁 = 106 nodes. We consider that the most powerful attacker can
control up to𝐶 nodes. Our goal is to avoid data leakage with a very
high probability (e.g., a value of the security threshold 𝛼 < 10−6).
To determine the number of shares 𝑠 , we use a revised version of the
formula given in Section 4.1 to account for the node replacements,
i.e.,

∑1
𝑖=0

( 𝑠+1
𝑠+1−𝑖

)
( 𝐶
𝑁
)𝑠+1−𝑖 (1− 𝐶

𝑁
)𝑖 < 𝛼 . For simplicity, we set 𝑠 and

deduce, depending on 𝛼 and 𝑁 , the maximum number of controlled
nodes𝐶 . With 𝛼 = 10−6, the group size of 4, 5 or 6 allows to tolerate
up to, respectively, 21K, 44K or 72K colluding nodes.
Dropout rate and simulation of dropouts.We vary the dropout
rate from none up to extreme values, considering the most interest-
ing, medium range values. The no dropout case allows providing a
lower bound for the cost metrics. The extreme dropout rates are not
representative of a real system setup (e.g., 1% dropout rate means
that all the nodes drop out –for that query– after 100 seconds!)
but allows observing trends and limitations of each strategy. Note
also that dropouts during a query are only related to that query
(i.e., nodes may be still working correctly, e.g., for the DHT over-
lay). Finally, we should stress that nodes dropout are pre-computed
before the query execution and independently of the strategy to
produce the exact same dropouts at the same moment and allow a
fair comparison of the different strategies.
System scalability. We use a fan-out of 8 for the aggregation
trees since this value offers the best trade-off between latency and
total work in our setting (see [22] for the fan-out tuning detail).
To measure the system scalability, we consider different values for
selectivity and model size. The selectivity determines the number
of contributors for a query and consequently, the aggregation tree
height (the tree height of 3, 4 and 5 corresponds, with a fan-out of 8,
to a selectivity of respectively 0.05%, 0.4% and 3.2%). For the model
size, we considered very small (1KB) to large (16 MB) models to
cover a wide range of FL applications. For instance, [8, 29] consider
the size of 1MB.

Description (notation) Values (default)
Network latency [24] 30ms
Network bandwidth [24] 6MB/s
Asymmetric cryptographic operation 10ms/op
Local processing including symmetric crypto 5ms/MB
Number of PDMS nodes (𝑁 ) 106

Group size (𝑠), based on 𝛼 , 𝑁 ,𝐶 4, 5 or 6 (5)
Maximum number of replacement per group 1
Percentage of node dropouts per second (𝐷) 0% to 1.2% (0.25%)
Aggregation tree fanout (𝑓 ) 8
Aggregation tree height (𝐻 ) 3, 4, or 5 (4)
ML model size (𝑀) 1KB to 16MB (1MB)
Number of runs (to account for variability) 50

Table 2: Simulation parameters

Number of runs and box plots. We aggregate the results of
50 runs to obtain statistically representative results. In addition,
we use box plots which helps visualizing this variability and the
distribution of runs. In the figures, the lower and upper whiskers of
the box respectively represent the min and the max for the plotted
metric, and the lower and upper edges of the box represent first
and third quartile respectively. To make the boxes easier to read,
we exclude outliers (i.e., points that are further away than 1.5 the
interquartile range) which are directly represented as points. Finally,
the line connecting the mean values is also represented.

7.3 Performance with Varying Dropout Rate
Fig. 3, 4, 5 and 6 depict respectively the completeness, latency, band-
width and work by node, varying the dropout rate 𝐷 All strategies
perform identically when there are no dropouts since the overhead
of advanced strategies (e.g., blocking sync) is negligible compared
to the transmission cost of the 1MB model.
LowCost cannot handle even a few dropouts: As soon as some
nodes drop out, 𝐿𝑜𝑤𝐶𝑜𝑠𝑡 fails to obtain any result. The strategy
uses an abrupt termination (see Section 6.1), sometimes even before
contributors have a chance to contribute data. Fig. 5 shows that
despite early termination, some contributors do manage to send
their shares, which consumes some bandwidth even though these
data are never used. In the rest of the study, 𝐿𝑜𝑤𝐶𝑜𝑠𝑡 is often
ignored because we focus on settings where dropouts prevent it
from succeeding.
HighCpl has the best completeness but it degrades rapidly
with large dropout rates:𝐻𝑖𝑔ℎ𝐶𝑝𝑙 degrades rapidlywhen𝐷 ≥ 0.4
with a variability between runs that explodes. Indeed, the over-
head induced by dropout handling increases significantly with the
dropout rate (see Fig. 4 and 5). 𝐻𝑖𝑔ℎ𝐶𝑝𝑙 gives up replacing nodes
after having exhausted the maximum number of replacement nodes.
On the one hand, this allows maintaining a path between the re-
maining contributors and the root of the tree, which in turn allows
for aggregates to move faster up the aggregation path. On the other
hand, because data are eagerly sent along the parallel trees without
explicit synchronization mechanisms, it can generate a lot of aggre-
gate re-sends before the final CCF convergence, impacting work,
latency and bandwidth. Hence, 𝐻𝑖𝑔ℎ𝐶𝑝𝑙 is subject to a snowball
effect making it unsuitable for large dropout rates.
Sync&Prune has stable cost but lower completeness: Opposite
to 𝐻𝑖𝑔ℎ𝐶𝑝𝑙 , 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 starts out with a lower completeness and



SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA Mirval, Bouganim and Sandu-Popa

Dropout rate (% of node dropout each second)

0.0 0.25 0.3 0.35 0.4 0.45 0.5

C
o

m
lp

le
te

n
e

s
s
 (

%
)

50
55
60
65
70
75
80
85
90
95
100

LowCost
HighCpl
Sync&Prune
Hybrid

Figure 3: Completeness, 1 MB model

0.0 0.25 0.3 0.35 0.4 0.45 0.5

L
a

te
n

c
y

 (
s
)

0

5

10

15

20

25

30

35

Dropout rate (% of node dropout each second)

LowCost
HighCpl
Sync&Prune
Hybrid

Figure 4: Latency, 1 MB model

0.0 0.25 0.3 0.35 0.4 0.45 0.5

T
o

ta
l 

e
x
c
h

a
n

g
e

d
 d

a
ta

 (
G

B
)

0

10

20

30

40

50

60

70

80

90

Dropout rate (% of node dropout each second)

LowCost
HighCpl
Sync&Prune
Hybrid

Figure 5: Bandwidth, 1 MB model

14 27 157

Dropout rate: 0.25Dropout rate: 0 Dropout rate: 0.5

W
o

rk
 b

y
 n

o
d

e
 (

s
)

LowCost
HighCpl
Sync&Prune
Hybrid

Figure 6: Work by node, 1 MB model

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

C
o

m
lp

le
te

n
e

s
s
 (

%
)

0
10
20
30
40
50
60
70
80
90
100

Dropout rate (% of node dropout each second)

LowCost
HighCpl
Sync&Prune
Hybrid

Figure 7: Extreme dropout rates

0.0 0.25 0.3 0.35 0.4 0.45 0.5

C
o

m
lp

le
te

n
e

s
s
 (

%
)

86

88

90

92

94

96

98

100

Dropout rate (% of node dropout each second)

LowCost
HighCpl
Sync&Prune
Hybrid

Figure 8: Completeness, 1 KB model

higher dispersion. The rationale is that for 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 , complete-
ness is determined by the location of dropouts in the tree, with
dropouts higher in the tree severely affecting it. Also, 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒
has a more stable performance on all metrics as the dropout rate
increases. Since the strategy ensures that any node works at most
once, dropouts reduce the load of their parents. Thus, this strategy
is beneficial for cost, but has a negative impact on completeness.
Hybrid combines the best of the two previous strategies:
𝐻𝑦𝑏𝑟𝑖𝑑 has a stable completeness, work and bandwidth throughout
the dropout rate spectrum. Compared with 𝐻𝑖𝑔ℎ𝐶𝑝𝑙 , the complete-
ness is lower for low dropout rates because contributors never
resend their data, but a lot better for high dropout rates because
leaf aggregators are never replaced, preventing the snowball effect.
To our surprise, 𝐻𝑦𝑏𝑟𝑖𝑑 has only about 0.8 − 1.7% larger commu-
nication cost than 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 but up to 20% higher latency. The
rationale is that at the leaf aggregators level, where the vast major-
ity of the protocol bandwidth is consumed, both protocols behave
the same. In upper levels, 𝐻𝑦𝑏𝑟𝑖𝑑 can resend data, but this has also
a limited impact due to blocking sync.
HighCpl suffers from too many aggregate versions: Fig. 6
shows the distribution of the work across the tree layers, i.e., the
average work per node in each tree level, for each strategy. We
observe first that the work per aggregator in all levels is similar
when the dropout rate is low. Thanks to our tree structure, the load
is effectively and fairly distributed across system nodes.

Contributors have less work to do in this setting since they
transmit 𝑠 = 5 shares while aggregators receive and process 𝑓 = 8
shares and send one more to their parent. We also observe that the
snowball effect in 𝐻𝑖𝑔ℎ𝐶𝑝𝑙 mainly affects the aggregators closer
to the root since those nodes receive a large number of different
aggregate versions. 𝐻𝑦𝑏𝑟𝑖𝑑 also concentrates the load on higher

level aggregators but manages to keep this overhead in a reasonable
range thanks to the synchronization at the leaf aggregators.
Hybrid and Sync&Prune tolerate extreme dropout rates: Fig. 7
presents the behavior of our strategies with extreme dropout rates
(𝐷 ≥ 0.5). With dropout rates 𝐷 > 0.7, 𝐻𝑖𝑔ℎ𝐶𝑝𝑙 fails to obtain any
result for most of its executions, but 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 and 𝐻𝑦𝑏𝑟𝑖𝑑 only
have a small reduction in completeness because they are pruning
the nodes and branches that prevent the execution from finish-
ing. We note that despite wider boxes for 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 , 𝐻𝑦𝑏𝑟𝑖𝑑 has
some outlying executions (even with no results) that fail to com-
plete. Indeed with extreme dropout rates, the maximum number of
replacements can be reached leading to pruning entire sub-trees
and thus, reducing drastically completeness.
HighCpl andHybridworkwell with smallmodels: Fig. 8 shows
the obtained completeness with a small model of only 1KB. Small
models change the protocol bottlenecks since the model transmis-
sion becomes less impacting. Moreover, since the overall latency
is much smaller (not shown given to the space limitation), there
are less dropouts and thus better completeness for all strategies.
𝐻𝑖𝑔ℎ𝐶𝑝𝑙 and 𝐻𝑦𝑏𝑟𝑖𝑑 obtain almost 100% completeness with low
overhead (not shown). Fig. 8 shows also something interesting: we
can observe a set of outlier executions for 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 with a com-
pleteness of about 87% (i.e., missing a fraction of 1/8 of the results).
This is explained by the dropout of an aggregator in the second
level group happening after its children have sent some data and is
generally the reason for the higher variability of completeness in
the executions of 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 .

7.4 Scalability and Security
Very large models require less dropouts: For a model size of
16 MB, none of the strategies reaches a completeness above 50%



Federated Learning on Personal Data Management Systems:
Decentralized and Reliable Secure Aggregation Protocols SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA

Model size (KB)

1 256 1024 4096 16384

C
o

m
p

le
te

n
e

s
s
 (

%
)

0
10
20
30
40
50
60
70
80
90
100

LowCost
HighCpl
Sync&Prune
Hybrid

Figure 9: Varying model size
Aggregation tree height 

3.0 4.0 5.0

C
o

m
lp

le
te

n
e

s
s
 (

%
)

80
82
84
86
88
90
92
94
96
98
100

LowCost
HighCpl
Sync&Prune
Hybrid

Figure 10: Varying tree height
Number of shares (group size)

4 5 6

C
o

m
p

le
te

n
e

s
s
 (

%
)

75

80

85

90

95

100

LowCost
HighCpl
Sync&Prune
Hybrid

Figure 11: Varying security

CRITERIA: Best completeness

LowCost HighCpl Sync&Prune Hybrid
Height Size 0 0.01 0.25 0.5 1

3 1 K 100% 100% 100% 100% 100%
4 1 K 100% 100% 100% 100% 99%
3 1 M 100% 100% 99% 99% 96%
4 1 M 100% 100% 99% 93% 84%
3 4 M 100% 100% 97% 78% 59%
4 4 M 100% 100% 87% 68% 28%

Figure 12: Strategy / Completeness

CRITERIA: Least total work, at least 80% of best completeness

LowCost HighCpl Sync&Prune Hybrid
Height Size 0 0.01 0.25 0.5 1

3 1 K 100% 100% 100% 99% 97%
4 1 K 100% 95% 99% 98% 91%
3 1 M 100% 80% 89% 90% 87%
4 1 M 100% 100% 93% 83% 84%
3 4 M 100% 100% 81% 60% 59%
4 4 M 100% 100% 78% 51% 28%

Figure 13: Strategy / 80% Completeness

CRITERIA: Least total work, at least 95% of best completeness

Height Size 0 0.01 0.25 0.5 1
3 1 K 100% 100% 100% 99% 97%
4 1 K 100% 95% 99% 98% 99%
3 1 M 100% 100% 97% 99% 96%
4 1 M 100% 100% 97% 93% 84%
3 4 M 100% 100% 97% 76% 59%
4 4 M 100% 100% 87% 68% 28%

LowCost HighCpl Sync&Prune Hybrid

Figure 14: Strategy / 95% Completeness

as shown in Fig. 9. We can see that 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 starts outperform-
ing 𝐻𝑦𝑏𝑟𝑖𝑑 , which only manages to finish a few low completeness
(10%) executions. This is linked to the snowball effect caused by
aggregator replacements: even if most nodes are not replaced (i.e.,
the leaf aggregators), the replacements upper in the tree are enough
to create conflicts in the aggregate versions, which cannot be re-
solved since models transmission takes time, thereby leading to
more dropouts. 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 is outperforming here because it only
sends once the data that has been explicitly agreed upon by all
group members, and prunes branches that fail to come to an agree-
ment. More generally, we can conclude that very long queries (due
to the transmission of 16 MB model) are not compatible with the
default dropout rate (with too many dropouts) while 4 MB models
are correctly supported.
Hybrid and Sync&Prune support large aggregation trees: An-
other important aspect of scalability is the number of participants
contributing to the query, which is characterized by the selectivity
𝜎 in our system (appearing as the tree height). 𝐻𝑖𝑔ℎ𝐶𝑝𝑙 is once
again failing when the height is greater than 4, taken down by
the snowball effect of 8 times more nodes constantly resending
new aggregate versions and never converging to a stable version.
𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 and 𝐻𝑦𝑏𝑟𝑖𝑑 on the other hand are scalable with in-
creasing number of contributors showing that they are able to fully
benefit from the distributed nature of the execution.
Larger groups (better security) are well supported: Finally, we
study the impact of the security parameter on all strategies. We can
see in Fig. 11 that increasing the security only has a mild impact on
completeness for 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 and 𝐻𝑦𝑏𝑟𝑖𝑑 while 𝐻𝑖𝑔ℎ𝐶𝑝𝑙 remains
mostly unaffected. The opposite is however happening in terms of
work per node. Increasing the group size makes synchronization
harder for 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 and 𝐻𝑦𝑏𝑟𝑖𝑑 , resulting in more frequent
pruning. The security parameter also impacts𝐻𝑖𝑔ℎ𝐶𝑝𝑙 by requiring
more work to make the parallel trees come to an agreement.

7.5 Best Fit Strategy
In this last section, we first choose some typical parameters settings
that best exemplify realistic scenarios, then define different objec-
tives that guide us in our comparisons of the strategies. Finally, we
report in Fig. 12, 13 and 14 the region of the parameter space where
each strategy performs best. We study two heights for the trees,
corresponding to aggregating data from 500 and 4000 contributors.
It includes the default height as well as a smaller height since they
are representative for the context of federated learning (i.e., it is
pertinent to aggregate from less contributors more frequently). We
choose three model sizes: one for tiny models (e.g., for training
simple models or computing aggregate statistics), and the default
value of 1MB and then 4MB (which correspond to models used in a
wider range of applications, ranging from image classification to
natural language processing). The last parameter that we vary is
the dropout rate in order to observe the robustness of each strategy.

Our first objective is simply the highest completeness. Since a
marginal increase in completeness can be costly, and unfairly ad-
vantage a strategy, we select, for the second and third objective, the
strategy that incurs the least work after a pre-selection of strategies
reaching a completeness of 80% and 95% of the strategy with the
best completeness. We present the results in Fig. 12, 13 and 14 in
the form of a table where rows correspond to a couple of height
and model size and columns to a dropout rate. The color of each
cell corresponds to the strategy that best fits the given objective
while the value is the averaged completeness of 50 executions.
LowCost best fitswith very fewor no dropouts:Without dropouts,
𝐿𝑜𝑤𝐶𝑜𝑠𝑡 always wins. All strategies have 100% completeness in
this case but 𝐿𝑜𝑤𝐶𝑜𝑠𝑡 has the lowest cost since parallel trees are
not synchronized. The same happens with very few dropouts and
small models.



SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA Mirval, Bouganim and Sandu-Popa

HighCpl maximizes completeness but is costly: In Fig. 12,
𝐻𝑖𝑔ℎ𝐶𝑝𝑙 is the strategy that offers the best completeness in a ma-
jority of cases, i.e., except for bigger models or extreme dropout
rates. It is also the best strategy in few settings on Fig. 14.
Sync&Prune is efficient and reaches 80% best completeness:
When being more tolerant about completeness, 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 often
becomes preferable because of its lower cost. With 80%, it even
outperforms in almost all cases. 𝐻𝑦𝑏𝑟𝑖𝑑 performs better for ex-
treme dropout rates because maintaining the tree prevents pruning
the most impacting aggregators. With 95%, 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 can still
outperform in some cases (Fig.14), although in those cases, all strate-
gies perform well anyway or oppositely, 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 is the only
strategy that gets a result.
Hybrid is efficient and reaches 95% best completeness:𝐻𝑦𝑏𝑟𝑖𝑑
fulfills its role as a trade-off strategy for every objective. It mostly
outperforms in settings where 𝐻𝑖𝑔ℎ𝐶𝑝𝑙 suffers from the snowball
effect and 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 already has degraded performances. More-
over, for high completeness (i.e., the 95% objective), 𝐻𝑖𝑔ℎ𝐶𝑝𝑙 has
smaller overhead compared with 𝑆𝑦𝑛𝑐&𝑃𝑟𝑢𝑛𝑒 .
8 CONCLUSION
Personal Data Management Systems arrive at a rapid pace allowing
users to share their personal data within large P2P communities,
which opens exciting perspectives. Federated learning is a prime
example that could benefit from this abundant, diverse and complete
source of personal data to train high quality ML models. However,
this requires new protocols that protect the users’ privacy and are
adapted to the fully-decentralized nature of the PDMS ecosystem.
To this end, we proposed a set of secure aggregation protocols for
federated learning which are fully-decentralized, scalable, accurate
and reliable.We analyzed the secure aggregation problem in the P2P
PDMS context and showed that reliability is a key aspect raising a
tension between the potential completeness of the result and the
aggregation cost. We then proposed four protocols having different
trade-offs between completeness and cost.We extensively evaluated
these protocols for a wide range of settings of the dropout rates,
security setting, trained model size, or contributors’ selectivity. Our
results showed that these protocols can offer high completeness
results at reasonable cost in a wide range of settings.

ACKNOWLEDGEMENT
This work has been supported by the ANR 22-PECY-0002 IPOP
(Interdisciplinary Project on Privacy) project of the Cybersecurity
PEPR.

REFERENCES
[1] Naman Agarwal, Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, et al. 2018.

cpSGD: Communication-Efficient and Differentially-Private Distributed SGD. In
NeurIPS.

[2] Mário S. Alvim, Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Anna
Pazii. 2018. Local Differential Privacy on Metric Spaces: Optimizing the Trade-Off
with Utility. In IEEE CSF.

[3] Nicolas Anciaux, Philippe Bonnet, Luc Bouganim, Benjamin Nguyen, et al. 2019.
Personal Data Management Systems: The Security and Functionality Standpoint.
Information Systems (2019).

[4] Nicolas Anciaux, Luc Bouganim, Philippe Pucheral, Iulian Sandu Popa, et al. 2019.
Personal Database Security and Trusted Execution Environments: A Tutorial at
the Crossroads. PVLDB (2019).

[5] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. 2017. Privacy-
Preserving Deep Learning via Additively Homomorphic Encryption. IEEE Trans.
Inf. Forensics Secur. (2017).

[6] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, et al. 2017. SMCQL:
Secure Query Processing for Private Data Networks. PVLDB (2017).

[7] Aurélien Bellet, Rachid Guerraoui, Mahsa Taziki, and Marc Tommasi. 2018. Per-
sonalized and Private Peer-to-Peer Machine Learning. In AIStat.

[8] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, et al. 2017.
Practical Secure Aggregation for Privacy-Preserving Machine Learning. In ACM
CCS.

[9] Luc Bouganim, Julien Loudet, and Iulian Sandu Popa. 2023. Highly Distributed
and Privacy-Preserving Queries on Personal Data Management Systems. The
VLDB Journal (2023).

[10] EU Commission. 25 October 2020. Proposal for a Regulation on European Data
Governance (Data Governance Act), COM/2020/767.
[eur-lex].

[11] Graham Cormode, Tejas Kulkarni, and Divesh Srivastava. 2019. Answering Range
Queries Under Local Differential Privacy. PVLDB (2019).

[12] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, Robust, and Scalable
Computation of Aggregate Statistics. In NSDI.

[13] Cozy Cloud. 2023. Cozy Cloud (See https:// cozy.io/ fr/ ).
[14] Ye Dong, Xiaojun Chen, Kaiyun Li, Dakui Wang, et al. 2021. FLOD: Oblivious De-

fender for Private Byzantine-Robust Federated Learning with Dishonest-Majority.
In ESORICS.

[15] Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, et al.
2021. SAFELearn: Secure Aggregation for Private Federated Learning. In IEEE
SPW.

[16] David Froelicher, Juan Ramón Troncoso-Pastoriza, Joao Sa Sousa, and Jean-Pierre
Hubaux. 2020. Drynx: Decentralized, Secure, Verifiable System for Statistical
Queries and Machine Learning on Distributed Datasets. IEEE Trans. Inf. Forensics
Secur. (2020).

[17] Xiaojie Guo, Zheli Liu, Jin Li, Jiqiang Gao, et al. 2021. VeriFL: Communication-
Efficient and Fast Verifiable Aggregation for Federated Learning. IEEE Trans. Inf.
Forensics Secur. (2021).

[18] Peeyush Gupta, Yin Li, Sharad Mehrotra, Nisha Panwar, et al. 2019. Obscure:
Information-Theoretic Oblivious and Verifiable Aggregation Queries. PVLDB
(2019).

[19] Julien Loudet, Iulian Sandu Popa, and Luc Bouganim. 2019. SEP2P: Secure and
Efficient P2P Personal Data Processing. In EDBT.

[20] MohamadMansouri, Melek Önen,Wafa Ben Jaballah, andMauro Conti. 2023. SoK:
Secure Aggregation Based on Cryptographic Schemes for Federated Learning.
PETS (2023).

[21] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. 2017.
Communication-Efficient Learning of Deep Networks from Decentralized Data.
PMLR.

[22] Julien Mirval, Luc Bouganim, and Iulian Sandu-Popa. 2021. Practical Fully-
Decentralized Secure Aggregation for Personal Data Management Systems. In
SSDBM.

[23] Yilin Mo and Richard M Murray. 2016. Privacy Preserving Average Consensus.
IEEE TACON (2016).

[24] nPerf. [n. d.]. Baromètre des Connexions Internet Fixes en France Métropolitaine.
https://perma.cc/DP8V-5ABT.

[25] Amaury Bouchra Pilet, Davide Frey, and François Taïani. 2019. Robust Privacy-
Preserving Gossip Averaging. In SSS.

[26] Iulian Sandu Popa, Dai Hai Ton That, Karine Zeitouni, and Cristian Borcea.
2021. Mobile Participatory Sensing with Strong Privacy Guarantees using Secure
Probes. GeoInformatica (2021).

[27] Bartosz Przydatek, Dawn Song, and Adrian Perrig. 2003. SIA: Secure Information
Aggregation in Sensor Networks. In SenSys.

[28] César Sabater, Aurélien Bellet, and Jan Ramon. 2022. An Accurate, Scalable and
Verifiable Protocol for Federated Differentially Private Averaging. Mach. Learn.
(2022).

[29] Jinhyun So, Başak Güler, and A Salman Avestimehr. 2021. Turbo-Aggregate:
Breaking the Quadratic Aggregation Barrier in Secure Federated Learning. IEEE
JSAIT (2021).

[30] Jinhyun So, Chaoyang He, Chien-Sheng Yang, Songze Li, et al. 2022. Lightsecagg:
A Lightweight and Versatile Design for Secure Aggregation in Federated Learning.
MLSys (2022).

[31] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, et al. 2001. Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications. ACM SIGCOMM
(2001).

[32] Quoc-Cuong To, Benjamin Nguyen, and Philippe Pucheral. 2016. Private and
Scalable Execution of SQL Aggregates on a Secure Decentralized Architecture.
ACM TODS (2016).

[33] Aleksei Triastcyn and Boi Faltings. 2019. Federated Learning with Bayesian
Differential Privacy. In IEEE BigData.

[34] Ge Yang, Shaowei Wang, and Haijie Wang. 2021. Federated Learning with
Personalized Local Differential Privacy. In IEEE ICCCS.

[35] Zhikun Zhang, Tianhao Wang, Ninghui Li, Shibo He, et al. 2018. CALM: Con-
sistent Adaptive Local Marginal for Marginal Release under Local Differential
Privacy. In ACM CCS.

https://cozy.io/fr/
https://perma.cc/DP8V-5ABT

	Abstract
	1 Introduction
	2 Related Works
	3 System Overview and Threat Model
	3.1 System Architecture
	3.2 Threat Model

	4 Straw-Man Protocol
	4.1 Background
	4.2 Straw-man Protocol in an Ideal World
	4.3 Analysis and Problem Formulation

	5 Handling Dropouts
	5.1 Dropout Model and Detection
	5.2 Replacing (or not) a Dropped Out Node
	5.3 Ensuring Validity
	5.4 Ensuring Termination

	6 Proposed Aggregation Strategies
	6.1 Low-Cost Protocol
	6.2 High-Completeness Protocol
	6.3 Sync-and-Prune Protocol
	6.4 Hybrid Protocol
	6.5 Summary

	7 Performance Evaluation
	7.1 Experimental Platform and Metrics
	7.2 Experimental and Security Parameters
	7.3 Performance with Varying Dropout Rate
	7.4 Scalability and Security
	7.5 Best Fit Strategy

	8 Conclusion
	References

