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ABSTRACT

We consider the problem of program clone search, i.e. given a target
program and a repository of known programs (all in executable
format), the goal is to find the program in the repository most
similar to the target program - with potential applications in terms
of reverse engineering, program clustering, malware lineage and
software theft detection. Recent years have witnessed a blooming
in code similarity techniques, yet most of them focus on function-
level similarity and function clone search, while we are interested
in program-level similarity and program clone search. Actually, our
study shows that prior similarity approaches are either too slow
to handle large program repositories, or not precise enough, or yet
not robust against slight variations introduced by compilers, source
code versions or light obfuscations. We propose a novel spectral
analysis method for program-level similarity and program clone
search called Programs Spectral Similarity (PSS). In a nutshell, PSS
one-time spectral feature extraction is tailored for large repositories,
making it a perfect fit for program clone search. We have compared
the different approaches with extensive benchmarks, showing that
PSSreaches a sweet spot in terms of precision, speed and robustness.

CCS CONCEPTS

« Security and privacy — Software reverse engineering; Mal-
ware and its mitigation.
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binary code analysis, clone search, spectral analysis

1 INTRODUCTION

Binary code similarity approaches identify similarities or differ-
ences [31] between pieces of assembly code (e.g., basic blocks, bi-
nary functions or whole programs). We focus on program-level
similarities (coined program similarity in the following), that is,
computing a similarity index between whole programs which is
capable of telling at which degree two programs are similar — with
potential applications in terms of reverse engineering, program
clustering, malware lineage and software theft detection.

Program clone search. Given a query composed of a target pro-
gram and a repository, the program clone search ranks repository
programs by their program similarity to the target program. The
search is successful if the most similar program is a clone of the
target program. These clones may be (i) compiled with slightly
different compiler chains, or (ii) produced from a slightly different
version of the source code, or (iii) altered by slight obfuscations.

Applications. Searching program clones between x86 or ARM bi-
naries over a large program repository is necessary when the origi-
nal program written in source code is unavailable, which happens
with commercial off-the-shelf (COTS), legacy programs, firmware
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or malware. For example, detecting malware clones is a major is-
sue [4, 18, 57, 73], as most malware are actually variants of a few
major families active for more than five years!. Another applica-
tion is the identification of libraries [3, 20, 32, 36, 69, 70], which is
both a software engineering issue and a cybersecurity issue due to
vulnerabilities inside dynamically linked libraries. The problem of
library identification, while in between programs and functions in
terms of size, is much closer to the case of program clones by its
nature, as libraries are not arbitrary collections of functions and
require inter-procedural analysis. The situation is similar for patch
and firmware analysis [75], or software theft detection [20, 32, 58],
which also need to consider a global view of the code.

In all these cases, we see function clone search as only a proxy to a
problem that is by nature at the level of programs.

Prior work. Given its potential applications and challenges, the
field of similarity detection has been extremely active over the
last two decades, starting from the pioneering work of Dullien
in 2004 [22, 23] on call-graph isomorphisms and the popular Bin-
Diff tool for recognizing similar binary functions among two re-
lated executables. Other approaches include for example symbolic
methods [28], graph edit distances [34, 44] and matching tech-
niques [4, 73]. Interestingly, the last five years have seen a strong
trend toward machine learning based approaches to binary function
similarity [19, 52, 55, 74, 77]. Overall, most prior work focuses on
function clone search and function-level similarity.

The challenges. Program clone search presents specific challenges
compared to standard function similarity. (1) As already stated, it re-
quires comparing programs, i.e. much larger objects than functions,
hence similarity checks must be scalable in typical program sizes;
(2) We do not consider two programs taken in isolation, but a target
program and a (possibly large) program repository, hence the need
for very efficient similarity checks that will be iterated over all the
programs in the repository; (3) The repository could contain similar
but slightly different programs, due to variations in compilers or
code versions. Clone search must be robust to such variations; (4)
Finally, the technique must work equally well on stripped binary
codes (where symbols have been removed at compile time), han-
dle the case where external function names are unavailable (for
example IoT device firmware), and handle lightweight obfuscations
(such as adding deadcode, or hiding literal identifiers).

All these constraints do not fit well with prior work on similarity,
as state-of-the-art is increasingly focused on function-level simi-
larities?, with unclear scalability toward the program-level case.
For example, we found in our experiments that SMIT [34] takes
more than 43 hours to compute a similarity index between the main
library of Geany and the cp command, while DeepBinDiff [21] is

Lhttps://www.cisa.gov/uscert/ncas/alerts/aa22-216a
2 According to Haq and Caballero [31], since 2014, among 40 binary code similarity
approaches, only 7 approaches have taken programs as input.
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reported to take 10 minutes to compute basic bloc matching on
small binaries from the Coreutils package.

Goal. From the program clone search point of view, there is a strong
need for a binary-level program-level similarity technique that is
precise, robust to slight variation, and fast enough to operate over
large code bases. This is exactly what we want to address in this paper.

Our proposal. We explore the application of spectral graph analy-
sis [14] to the problem of program clone search. It seems a very good
starting point as, on graphs, it is both affordable and competitive
against graph edit distances (GED) [66] in terms of precision, while
GED is arguably a very good (but expensive to compute) notion of
graph similarity. Yet, programs are not standard graphs: on the one
hand programs seen as graphs can be very large (especially at the
binary level), while on the other hand they are highly structured
due to their function hierarchy.

We take advantage of this specificity and propose Program
Spectral Similarity (PSS), the first spectral analysis tailored to
program similarity. The techniques extract eigenvalues related fea-
tures from both function call graphs and control flow graphs, and
take advantage of a preprocessing step (done once for the whole
program repository) to achieve similarity checks in time linear in
the number of functions of the program (done for each program in
the repository), making it a perfect fit for program clone search -
most prior works have at least a quadratic runtime.

We experimentally show that PSS outperforms state-of-the-art
approaches and is resilient to code variations as well as lightweight
obfuscations (e.g., instruction substitution, bogus control flow, con-
trol flow flattening). Moreover, PSS does not rely on literal identi-
fiers (e.g., function names, constant string values), making it robust
against a range of basic obfuscations. In our experiments, a program
clone search with PSS (optimized version) takes on average less
than 3s (0.3s and 0.4s for Linux and IoT benchmarks) where, as a
comparison, the function embedding Gemini [74] requires roughly
2 minutes per clone search.

We set up a strong comprehensive evaluation framework (14 com-
petitors and 3 baselines) to systematically compare PSS with state-of-
the-art methods, covering string based methods [69, 70], graph edit
distance [27, 34], N-grams [33], vector embedding [19, 52, 55, 74],
standard spectral methods [27] and matching algorithms [4, 73].
Our experiments cover our own dataset of diverse open-source
projects along with classical Coreutils, Diffutils, Findutils, and Binu-
tils packages along two dimensions (optimization levels and code
versions) for a total of 950 programs. Moreover, we consider part of
the BinKit dataset [43] (98K samples), covering four optimization
levels, 9 compilers, 8 architectures and 4 obfuscations. Finally, we
gather 19, 959 IoT malware and 84, 992 Windows goodware.

Contribution. As a summary, we claim the following:

e A novel technique named PSS (together with its optimiza-
tion PSSp) for code similarity (Section 4), tailored to pro-
gram clone search over large repositories. PSS is the first
spectral technique tailored to program-level similarity. Es-
pecially, PSS takes advantage of a preprocessing step to
perform latter similarity checks in time linear w.r.t. the
number of functions in the program, making it a perfect fit
for program clone search over large repositories;

Tristan Benoit, Jean-Yves Marion, and Sébastien Bardin

e A comprehensive evaluation framework for program clone
search (Section 5), encompassing (1) 97,760 programs from
BinKit [43], 19,959 IoT malware, 84,992 Windows programs
and a smaller Linux dataset of 950 programs, and (2) three
baselines and 14 state-of-the-art methods — 10 of them being
reimplemented. The complete framework is available online,
which is rare in this field [54];

o Experimental evidence (Sections 5) that PSSreaches a sweet
spot in terms of speed, precision and robustness, making it
a perfect fit for program clone search, where prior works
in the field are more specialized to function-level similarity
evaluation. Especially, PSS appears to scale well and to
retain good precision in demanding clone search scenarios
(cross-compilers, cross-architecture or obfuscation);

e Finally, as another notable result, we show that prior work
targeting function clones cannot cope with program clones
due to scalability issues.

Besides providing a novel and efficient method for program
clone search, our results also shed new light on prior work on code
similarity. First, we make the case for the program clone search
application scenario and show that it behaves differently enough
than the well-studied pairwise function similarity setting, requiring
dedicated methods. Second, we are the first to pinpoint the sepa-
ration in prior work between techniques using literal identifiers
and those that do not. As a side result, during our experiments,
we identify two simple methods based on literal identifiers (string
values and external function names), which despite their simplic-
ity, appear to perform well when these identifiers are available.
These methods came from the simplification of ideas coming from
the state-of-the-art in library identification by using literal iden-
tifiers [20, 32, 69, 73]. Third, we show the potential of dedicated
spectral methods for program clone search. Overall, we believe that
these results pave the way for novel research directions in the field.

Research artifacts are available on Zenodo [9].

2 PROBLEM STATEMENT

2.1 Program Clone Search Procedure

Given an unknown target program P and a program repository R,
the goal is to identify a clone of P in R.
A clone of a program P is defined as follows:

e A program Q compiled from the same source code S as P,
but with a different compiler toolchain is a clone of P. For
example, P has been compiled with GCC v9.1 using the
optimization level -O0 from the source code S, and Q has
also been built from S using the same compiler but another
optimization level, say -O3;

e A program Q compiled from another version of P source
code is a clone of P. For example, both instances of the git
application compiled from two source code versions, say
v2.35.2 and v2.37.1, are clones.
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In the last case, we have to be a bit careful. Indeed, we can
only consider incremental versions of an application or library, not
major revisions that completely change the source code. In our
experiments, the newest and oldest versions of most packages are
usually separated by 4 years. However, it goes up to 15 years for
the most standard packages: Coreutils, Diffutils, and Findutils.

1:svn  0.82
Unknown . Py
Query Preprocessing ~ | Features 2:git  0.65

Repository
+ 4 Similarity

» Checks
Similarity Metric

Figure 1: Architecture of a program clone search procedure

Figure 1 illustrates a clone search procedure architecture. Note
that all along, we suppose that there is no exact copy of P in the
repository R. The repository is a database containing enough in-
formation for a clone search procedure. As a result, in practice, a
repository is quite an extensive program database w.r.t. the applica-
tion domain (firmware, plagiarism, malware, etc.).

An evaluation of clone search procedures should take into con-
sideration the three criteria below in order to be realistic:

o The efficiency w.r.t. both the size of the unknown target
program and the size of the repository,

e The robustness not only to compiler toolchains but also
to slight program variations coming from different source
code versions,

o The ability to deal with stripped programs. Moreover, exter-
nal symbols are not necessarily available when dealing with
firmware, lightweight obfuscations, or yet from payload
extracted from packers[13].

As we said previously, the main difference between program
clone search and function clone search is the size of the binary
codes, which is much larger in the case of programs.

At a high level, all program clone search procedures work in a
similar way. The repository is already built, and the query process
is divided into three steps:

(1) Query preprocessing. Upon query, we receive the target
program P. We can perform some preprocessing at this step,
extracting relevant features for the rest of the procedure;

(2) Similarity checks. For each program Q € R, we perform
a similarity check with a similarity metric M on (P, Q) —
possibly taking advantage of the preprocessing — and record
the computed similarity index M(P, Q);

(3) Decision. The program Qp,; with the highest similarity
index is considered the most similar. The program clone
search succeeds if Qp,; is a clone of P, otherwise it fails.

2.2 Motivating Example

Let us consider a repository containing 1420 libraries obtained from
the compilation of 20 libraries® with four optimization levels, five
versions of GCC, four versions of clang, and to the 32 and 64 bits x86

3From packages libiconv, coreutils, libtool, gss, gdbm, libtasn1, gsl, libmicrohttpd, osip,
readline, gsasl, lightning, recutils, gmp, libunistring, and glpk.

Table 1: Clone searches results

Framework Average Total runtime
precision@1 | (preprocess. time included)
Asm2Vec [19] T 0.7 35h
Gemini [74] T 1 17h
SAFE [55] ¥ 0.95 160h
aDiff[52] 1 140h
LibDB [70] ¥ 1 2h
PSS 1 26s
(includ. 26s of preprocess)

T learning time not included

platforms. Next, let us imagine we have the 20 libraries as targets
(compiled for x86 32 bits with gcc 6.4 and the -O2 optimization
level).

Lifting function-level clone searches in order to detect program-
level clones is attractive. However, to obtain a similarity index
between two programs from function embedding methods, we
need to find a distance between two sets of function embeddings.
Let embeds(P) be the set of function embeddings of a program P. A
first solution is to perform a matching between the two sets. Such
matching could be an instance of the assignment problem where
assigning a function embedding x of P to a function embedding y
of P’ has a cost ||x — yl|,. However, this problem has complexity
O(n®) where n is the number of functions. We relax the matching
so that a function embedding of a program P can be assigned to
multiple function embeddings of a program P’.

We define F as the similarity metric for an embedding embeds:

F(P,P) := —
xecembeds(P

min x - 1
) ycembeds(P’) ” sz ( )

We consider the following function-level methods and lift them
to programs as just explained: Asm2Vec [19], Gemini [74], SAFE [55],
aDiff [52]. We also consider LibDB [70], which is directly designed
for libraries (i.e., large pieces of code).

Results. We report in Table 1 the average precision@1, equivalent
to the proportion of successful clone searches, as well as clone
searches total runtime. PSS is precise and successful in all clone
searches. Most function-level methods can also find a clone in all
clone searches. However, PSS takes only 26s in total, while pure
function embedding methods take from 17h with Gemini to 160h
with SAFE. Even with pre-filtering, LibDB is close to 2h. Moreover,
PSS runtime is due to its preprocessing; the total similarity checks
runtime is negligible. As a result, PSS scales up to large repositories
with good precision.



3 BACKGROUND

Graph similarity, GED and spectral distance. As programs can
be naturally seen as graphs, any good notion of graph similarity is
in principle a good candidate for a good program similarity metric.

Graph edit distance (GED) is such a good notion [29]. GED is the
smallest cost of an edit path between two graphs, i.e. the smallest
transformation going from one of the graphs to the other. Graph
edit operations typically include removing or adding a vertex or an
edge. Yet, the main drawback of GED is that its computation is NP-
hard. Worst, usual approximations have a complexity of O(n®) [68]
where n is the number of nodes in the graph, which is far too
expensive for graphs coming from programs. As an example, the
graph edit distance method SMIT [34] is the slowest method we
have tested (cf. Table 4), with 3634 hours of computation on a task
where our method takes 1h18m.

The spectral distance between graphs provides an interesting
trade-off, as it gives a decent approximation of the graph edit dis-
tance between graphs [72] for an affordable linear cost once eigen-
values are computed. We introduce spectral analysis and define
spectral distance hereafter.

Spectral (Graph) Analysis. Spectral graph analysis is a method
used to investigate properties of graphs by studying the eigenval-
ues (or, spectrum) of standard matrices associated with the graph,
such as the adjacency matrix or the Laplacian matrix. Patterns and
structures within the graph can be identified, providing key insights
about how the graph nodes are interconnected. Distances between
graph spectra are called spectral distances. The starting intuition
for using graph spectrum is that two isomorphic graphs have the
same spectrum; however, the converse is not true. Nevertheless,
the spectrum may be used as a proxy for graph similarities.

More formally, an undirected graph G = (V, E) of n vertices is
represented by an n X n adjacency matrix A, where a; ; is one if
(V1,V}) € E and zero otherwise. Let d; be the degree of the vertex V.
It is useful to compute the Laplacian matrix [14] L of G. An eigen-
value A and its corresponding eigenvector # is a solution to the equa-
tion: (L — Al 4 = 0. The spectrum is the set {41(G), ..., 4,6|(G)}
where 11(G) > ... 2 A|g|(G) and where |G| is the number of
vertices in G. The enhanced Lanczos algorithm [60] computes the
spectrum in time O(dn?), where d is the average degree of G. We
define the spectral distance between G and G, (analogous to[39]):

SD(G1,G) = L MIGHGED (3,(Gy) - 14(G))2

4 PROGRAM SPECTRAL SIMILARITY (PSS)

Spectral analysis is suitable for comparing graphs because it pro-
vides quantitative metrics, such as spectral distances, which can
be used to compare key graph properties regarding connectivity,
structure, and distribution. This approach also allows for the nor-
malization of graph size, enabling fair comparisons among varying
graph scales. However, computing the spectrum of a graph is cubic
in its number of nodes. Therefore, applying spectral analysis to a
whole program CFG is too expensive. Moreover, the CFG itself is
not stable with respect to compiler toolchains, optimizations and
obfuscations.

As a result, our key insight is that a program has more structure
than a mere graph: there is a call graph over functions while local
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functions hold their own control flow graph. We take advantage of
this hierarchical structure to devise a quick and stable similarity
metric called Program Spectral Similarity (PSS).

The PSS method is based on the combination of two criteria.

e The first measure is the spectral distance between call
graphs, including both internal and external calls*. More-
over, most compiler optimizations have a small-scale effect
on the call graph, as they only impact the content of func-
tions;

e The second measure is a coarse spectral analysis of func-
tion control flow graphs, simply considering their number
of edges, as it is related to the sum of the eigenvalues as
shown below. Since we use only one number to represent
a function CFG, we can fit these numbers into a vector
comparable to the eigenvalues vectors. Adding function
embeddings to the second measure is left for further work.

By the way, we tried to consider only the control flow graphs,
and we found that the results were worse than when both above
criteria were considered.

The PSS method proceeds into two independent steps: the pre-
processing step, which is done once and for all, and the similarity
check step, which is made for each candidate.

4.1 Preprocessing

Figure 2: A call graph

Given a program P, the preprocessing first begins by building the
function call graph CG of P, including local and external (API) calls.
An example of a function call graph is given in Figure 2. It contains
external calls such as a call to mempcpy as well as local functions
such as sub_403780. From this, we extract two key vector-features
(o, w) of P as follows:

e From an undirected version of the call graph CG, we com-
pute the spectrum A = {11 (CG), ..., 1,(CG)}, and we com-
pute ¥ == m the normalized spectrum of the call graph;

e We compute the number of edges E = (ey, ez, . . ., e;) from
each control flow graph F; of local functions in descending
order, and we normalize E as previously: w := ﬁ Exter-
nal functions are ignored at this step since we do not have
access to their control flow. Note also that the number of
edges is a simple sort of spectral measure since it is related
to the spectrum by the relation 2 X e; = 3} A; (F;).

Recall that || - ||2 is the Euclidean norm. We normalize features
o and w to deal with differences between program sizes.

4Call graphs are useful for a number of tasks. For example, GraphEvo [71] has been
able to understand software evolution through call graphs.
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4.2 Similarity Check

Given two programs, Py and P;, the preprocessing step has com-
puted features (0p, W) from Py, and (07, W) from P;. The similarity
check outputs a similarity index by averaging two measures. The
first measure (2) is related to call graphs, while the second (3) is
related to function control flow graphs. Then, the similarity metric
PSS is defined as the average of both above measures (Equation 4).

simCG(Py, 1) = V2 —

=0

min (|, %)
simCFG(Py, P1) = V2 — (woi —wii)®  (3)

i=0

simCG(Py, Py) + simCFG(Py, Py)
2vV2

4.3 The PSSO Optimization

We found out that PSS preprocessing may be quite long over large
programs (cf. our own "Windows dataset” in Section 5.5, where
computing all eigenvalues of a call graph takes 16.95 seconds per
program clone search.). In order to tackle this issue, instead of
computing the complete spectrum A, we propose to compute only
the first K greater eigenvalues so that A = {1;(CG), ..., Ax(CG)}.
For this, we can take advantage of a variant of the Lanczos algorithm
proposed by the ARPACK library [49].

We plot in Figure 3 the preprocessing runtimes and precision
scores (see Section 5.2) for different values of K from 30 to 180 on
our "Windows data set". We remark that runtimes grow quickly
with K, going from 0.06s to 1.31s. On the other hand, there is
little change in the precision score between 50 and 150; the score
varies from 0.4657 to 0.4664. We select 100 as the value for K since
the preprocessing runtime per clone search is only 0.39s, and the
precision score is already 0.4661.

We thus propose PSSp, an optimized version of PSS that com-
putes only the first K = 100 greater eigenvalues.

PSS(Po, Py) := 4

4.4 Method Runtimes

Recall that a repository is a database of preprocessed programs. A
given unknown target program is first preprocessed, then, from
the extracted features, a similarity check is made on the repository.
It is clear that the query runtime linearly depends on the size of
the repository. In other words, for a repository size of M, and n the
number of functions inside a program, if the runtime of a similarity
check is T(n) and the preprocessing runtime is Pr(n), then the
complexity of a query is bounded by M x T'(n) + Pr(n). As a result,
all methods with similarity checks with superlinear time complexity
are not feasible over large repositories of large codes, which is
confirmed by our experiments.

PSS and PSS runtimes. Graphs and Laplacian matrices are sparse
in our application domain, offering quick eigenvalues computation.
Nevertheless, the complexity of the query prepossessing, described
in Section 4.1, is still O(dnz), where n is the number of functions
and d is the average number of calls per function. However, once

180
0.4675 L ]

04670 o

04665 o 130
. .150

100
04660 - L]

04655 o

0.4650 1

Precision Score on the Windows dataset
u
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©
oS

0.4645 o

04640 o L]

T T T T T T
0.0 02 0.4 0.6 08 1.0 12
Average Preprocessing Runtime per Program (sec) on the Windows dataset

Figure 3: Impact on the Windows dataset of the number of
largest eigenvalues computed by PSS optimized version

Table 2: Complexity of program clone search procedures

Method Class Similarity | Preprocess.
checkt

SMIT [34] GED o(n%) 0(dn)

CGC [73] Matching o(n*) O(dn)

MutantX-S [33] | N-gram o(1) 0(i)

Asm2Vec [19] Functions ML | O(n?) O(n)

Gemini [74] Functions ML | O(n?) O(n)

SAFE [55] Functions ML | O(n?) O(n)

aDiff [52] Functions ML | O(n?%) O(n)

LibDX [69] Strings O(s) O(s)

LibDB [70] Functions ML | O(n® +5s) | O(n+s)
and Strings

DeepBinDiff [21] | ML O(n®*m3) | no preproc.

PSS Spectral O(n) 0(dn?)

PSSo Spectral O(n) O(dn)

n: # functions, i: # instructions, s: # constant string values
d: # calls per function, m: # basic blocks in a function,
T between two programs
i performed once for the whole clone search

such prepossessing is done, the runtime of a similarity check, de-
scribed in Section 4.2, is O(n). Moreover, the runtime of the query
preprocessing of PSSp is reduced to O(dn).

Comparison with prior work. That is in contrast with function
embedding methods which have a similarity check runtime of O(n?)
on this problem using a direct adaptation (see Section 2.2 for further
details). Moreover, DeepBinDiff [21] contains a step with a linear
assignment between basic blocs with a runtime of O(n*m?). Worse,
both the graph edit distance approximation SMIT [34] and the
matching method of Xu et al. [73] have a complexity of O(n%).
However, the runtime of MutantX-S [33], designed to scale up to
large repositories, is only O(1) - yet experiments (Tables 8 and 9
in Section 5.7) show that its robustness is not fully satisfactory.



5 SYSTEMATIC EVALUATION

We evaluate the potential of PSS in terms of speed, precision and
robustness — the ability to overcome changes in compilation.
Then, we consider here the following Research Questions:

RQ1 What are the fastest methods for clone search?
RQ2 What are the most precise methods for clone search?
RQ3 What are the most robust methods for clone search?
RQ4 What is the impact of each component of PSS?

5.1 Datasets

Basic dataset. We first collect a limited dataset of 950 programs
to study the full range of methods along different optimization
levels and code versions. The average program has a size of 442 KB.
This dataset covers the Coreutils, Diffutils, and Findutils packages
compiled with GCC v5.4 on the x86 architecture, and taken from the
DeepBinDiff [21] dataset. Moreover, we add the Binutils package as
well as 15 open-source projects , including Bash, Code::Blocks, Dia,
Graphviz, Geany, Git, Lua, Make, OpenSSH, OpenSSL, Perl, Ruby,
SDL, SVN, and VLC, compiled by GCC v9.4 on an x86 architecture.
Each unique source code comes in four different version levels, and
four different optimization levels. These programs are all clones of
each other.

BinKit dataset. To study scalable methods along different opti-
mization levels, compilers, architectures, and obfuscations, we reuse
two Linux programs datasets from BinKit [43]:

e Normal: From 51 GNU software packages, 235 unique
source codes were extracted. They are compiled with 288
different toolchains for a total of 67,680 programs of an
average size of 201 KB. It covers eight architectures (arm,
x86, mips, and mipseb, each available in 32 and 64 bits),
nine compilers (five versions of GCC and four versions of
Clang), and the four optimization levels from -O0 to -O3;

e Obfuscation: Four obfuscation options (instruction sub-
stitution (SUB), bogus control flow (BCF), control flow
flattening (FLA), and all combined) are considered using
Obfuscator-LLVM [40] as a compiler. The same architec-
tures and optimization levels as before are covered, for a
total of 30,080 programs of an average size of 514 KB.

IoT Malware dataset. We consider 19,959 IoT malware samples,
with an average size of 84 KB, from MalwareBazaar®, submitted be-
tween March 2020 and May 2022, spanning 8 architectures (mostly
arm, mips, motorola and sparc). Using available meta-data from
antivirus reports and YARA rules, we split the data into only three
families of clones: 12,357 Mirai, 5,842 Gafgyt, and 1,760 Tsunami.

Windows dataset. We assemble a dataset of 84,992 benign pro-
grams running under Windows operating systems (x86, Visual
Studio). This amounts to more than 50 GB of raw programs, with
an average size of 771 KB. Excluding security updates, the dataset
contains more than 28,000 dynamic-link libraries. Samples are di-
vided by target platforms (e.g., Windows 7). We consider that two
programs sharing the same file name and the same target platform
are clones, yielding 49,443 programs with a clone.

Shttps://bazaar.abuse.ch
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5.2 Methodology

A test field (T, R) comprises targets set T and a repository R. We
break down Basic datasets along version levels and optimization lev-
els. For instance, the test field (-00,-O1) of the subdataset "Coreutils
Option" consists of a repository of Coreutils programs compiled
with -O1 paired with the same programs but compiled with -O0 as
targets. Similarly, we break down BinKit datasets along optimiza-
tion levels, compilers, architectures, and obfuscations.

Measures of success: precision@ 1. Program clone search is an
information retrieval task. The standard evaluation metrics of in-
formation retrieval are precision and recall. This study uses the
evaluation metric described in the Asm2Vec paper [19], that is Pre-
cision at Position 1 (precision@1). Precision@1 is equal to one if
and only if a clone of the target is the most similar program in the
repository, as ranked by a similarity metric. We define the precision
score of a similarity metric as the average precision@1 for every
target in every test field against a repository.

5.3 Competitors

We evaluate 14 competitors, 3 baselines and two new heuristics
based on literal identifiers (constant string values and external
function names) (cf. Table 3). 8 of these frameworks have been
adapted (A) to the case of program clone search, as it was not their
primary objective (e.g., function embedding). Moreover, 10 had to
be reimplemented (R) because the original implementation was
unavailable or due to inherent challenges in effectively utilizing the
original implementation within the specific domain of clone search.
As highlighted by Marceli et al. [54], code similarity artifacts are
rarely available, and even when they are, they are often incomplete.
Baseline. We first investigate basic heuristics such as Bgjze, the size
of the program, and Dg;,e, the size of the disassembled program.
For instance, the similarity metric Bgjz, is defined as Bsjze(a,b) =
—|a — b|, where a and b are program sizes in bits. We also consider
a crude shape of the call graph. Let n; and e; (respectively nz and
e2) be the number of vertices and edges of the first (respectively
second) call graph. Then the similarity measure Shape is defined as:

min(ny, nz) _ min(my, mp)

Shape(ny, e1, na, e3) =

max(ny,nz)  max(ms, mz)

Standard spectral methods. From the spectral method developed
by Fyrbiak et al. [27], we derive two methods. The first, ASCG (A)
(R), is based on the call graph. Let X and Y be the two spectrums
in descending order of Laplacians of the two call graphs. There is a
normalization X’ := X /Xy and Y’ := Y/Y;. Then:
min(|X'],|Y'])
ASCG(X',Y') = - X/ - Y|
i=0

Likewise, we derive a method based on the control flow graph,
ASCFG (A) (R). Instead of computing the spectrum from the call
graph, we select the top 1000 eigenvalues from a reduced control
flow graph as vectors X and Y.
Graph edit distance. We implement various basic GED based
methods. First, we implement GED-0 (A) (R), a basic computation
of the GED applied between call graphs. The algorithm goes back
to the work of Sanfeliu and Fu [66]. Second, we implement GED-L
(A) (R), a computation of the GED between call graphs with labels.
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The algorithm is presented by Fyrbiak et al. [27]. In our application,
labels are sets of external function names. Third, we implement the
specific GED computation of Hu et al. [34] called SMIT (R). We do
not integrate the indexing tree of SMIT as we are more interested
in their GED measure.

Matchings. We compare with the matching algorithm CGC (R)
from Xu et al. [73]. This algorithm needs three parameters along
with a complete classification of mnemonics. We perform prelimi-
nary works to find good values for these parameters.

Table 3: Methods included in the evaluation

Framework Class A | R | Similarity | LIR
check

Bgize Baseline 0(1)

Dsize Baseline 0(1)

Shape Baseline 0(1)

ASCG [27] Spectral X | X | O(n)

ASCFG [27] Spectral X | X | 0(1)

GED-0 [66] GED X | X | 0(n?)

MutantX-S [33] | N-gram X 1 0(1)

Asm2Vec [19] Function ML | X o(n?)

Gemini [74] Function ML | X o(n?)

SAFE [55] Function ML | X o(n?)

DeepBinDiff [21] | ML o(n*m?)

PSS Spectral O(n)

PSSo Spectral O(n)

GED-L [27] GED X | X | o3 X

SMIT [34] GED X | o(n*) X

CGC [73] Matching X | o(n*) X

aDiff [52] Function ML | X | X | O(n?) X

LibDX [69] Strings X 1 O(s) X

LibDB [70] Strings and X | O(n?+s) | X

Function ML
StringSet Strings O(s) X
FunctionSet Strings O(n) X

A: Adapted for program clone search, R: Reimplemented
LIR: Some literal identifiers are required

N-gram. We reproduce MutantX-S (R) from the work of Hu et
al. [33]. We extended it to multiple architectures. Each program is
represented by the frequencies of 4-grams obtained from the opcode
sequence. These frequencies are embedded into a 4096-dimension
vector by hashing.

Function embeddings. As previously, we use the similarity metric
F to compare sets of vector embeddings (refer to Equation 1 in
Section 2.2). We first consider Asm2Vec (A) [19]. We employ an
unsupervised training strategy on the Basic dataset inspired by
the original paper. Multiple training phases are performed, with
each time one optimization level for training and one for testing.
Then, we take Gemini (A) embedding from Xu et al. [74] in an
optimistic setting. We build a version of the basic dataset retaining
function names and employ these as ground truths for training.
Moreover, we use the embedding of Massarelli et al. [55] with SAFE
(A). We downloaded a pre-trained model made available by one of

the authors®. Lastly, we reproduce aDiff (A) (R) from the framework
of Liu et al. [52]. It is tailored to binary function similarity between
versions. We sample 25% of the oDiff dataset’ as our training set.
aDiff incorporates external function names and in-out degrees in
the call graphs.

DeepBinDiff. The framework DeepBinDiff from Duan et al. [21]
attempts to match basic blocs between two binaries. The similarity
metric computes the number of matched basic blocs by DeepBinDiff
between two programs. Due to its runtime, we were unable to per-
form experiments, and it is only considered inside the preliminary
evaluation.

LibDX. We reproduce the framework LibDX (R) from Kim et al. [69].
It extracts constant string values from well-defined read-only sec-
tions of programs. Constant string values are compared with match-
ings and the tf-idf statistic.

LibDB. We reproduce the framework LibDB (R) from Kim et al. [70].
They combine function embeddings and matchings, while using
constant string values as pre-filters. We reimplemented LibDB with
our trained Gemini model and ScaNN [30] as the nearest vector
search engine.

Function set method. Xu et al. [73] describe a simple method
that first matches functions between two programs by using only
external function names and mnemonics similarities. Then, the
similarity measure is computed by a distance over the two function
sets. We simplify this idea and invent the similarity metric Function-
Set, which computes the Jaccard similarity index® between external
function names. Let F; be the external function names set of a

program a. The similarity metric is: FunctionSet(a, b) = I?“Si’;} .
a

String set method . We invent a straightforward metric that com-
pares constant string values inside programs. Let S, be the set of
all constant string values of a program a. The similarity metric is:

StringSet(a,b) = I“;“U“;’;I .
a

We present in Table 3 the characteristics of the different methods
considered here. We record the runtime complexity of a similarity
check between two programs. We note with n, m, and s, the number
of functions, basic blocs in a function CFG, and literal identifiers re-
spectively. We indicate whether a method requires literal identifiers.
Note that machine learning approaches require a learning phase,
and Gemini and GCG require manual mnemonics classification.

Implementation. Disassembly is implemented by running the
IDA Pro disassembler v7.5 along with a script from the Kam1n0
assembly analysis platform®. See the recent survey of Pang et al. [62]
on disassembling for more details. Our experiments are run on a
cloud server node containing two CPUs with a frequency of 2.10
GHz and 20 cores per CPU. All reported runtimes are equivalent to
runtimes using only one core.

®https://github.com/facebookresearch/SAFEtorch
"https://twelveand0.github.io/AlphaDiff- ASE2018- Appendix
8https://en.wikipedia.org/wiki/Jaccard_index
https://github.com/McGill-DMaS/Kam1n0- Community
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Table 4: (RQO) Total runtimes on the Basic dataset

Bgize < 1h30m ASCFG 128h
Dsize < 1h30m GED-0 81h

Shape < 1h30m GED-L 46h

ASCG < 1h30m SMIT 3634h
MutantX-S | < 1h30m CGC 171h
PSS < 1h30m Asm2vect | 141h
PSSo < 1h30m Gemini & 102h
LibDX < 1h30m SAFE % 655h
StringSet < 1h30m aDiff & 642h
FunctionSet | < 1h30m LibDB % 16h

fast methods selected for further analysis
i: Learning time not included

5.4 Preliminary Evaluation: Method Selection

First, we want to identify methods unable to scale to large benchmarks,
in order to not consider them in further analysis. We perform a speed
assessment on the basic dataset of 950 programs, and remove the
methods unable to achieve it in less than 1h30m.

Results. Results are presented in Table 4. Please note that we could
not experiment on DeepBinDiff [21] (with an observed average
of more than 10 minutes per similarity check, we estimate that
it would have taken more than 20,000h to apply it to the whole
basic benchmark), and the training time of ML based methods
is not counted in the reported timing. Results show a significant
dichotomy between methods, 10 of them being able to succeed in
less than 1h30m (often far less), while the other ten methods require
far more time (from 16h to 3634h).

Conclusion. This preliminary experiment shows that function-
level clone search methods (typically based on ML) [19, 52, 55, 70,
74] or graph-edit distance approaches [27, 34, 66] cannot scale to
program-level clone search. In the following, we will consider only
the scalable-enough methods, namely our three baselines (Bsize,
Dysize, Shape), as well as ASCG [27], MutantX-S [33], LibDX [70] and
our own PSS, PSSp, StringSet and FunctionSet.

5.5 RQ1: Evaluation of Speed

We report in Table 5 the runtimes and the preprocessing time on
each dataset to be fully comprehensive.

Basic. On the Basic dataset containing 950 programs, our method is
the slowest and takes 1h18m. Nearly everything is spent during the
prepossessing. The adapted spectral method for call graph ASCG
has similar runtimes. PSSp takes only 15m8s, the optimization
dividing the runtime of PSS by more than 5. LibDX takes 1m4s, and
StringSet 38s. The N-gram method MutantX-S and the FunctionSet
method are very fast and take less than ten seconds.

BinKit. On the BinKit dataset, which contains 97,760 programs of
an average size of 313 Ko, PSS takes 190h, PSS 116h, and MutantX-
S is slower with 220h. With literal identifiers, LibDX and StringSet
are much slower (1965h and 542h, resp.). FunctionSet is fast (37h).

IoT Malware. On the IoT dataset containing 19,959 IoT malware,
PSS takes only 2h9m. It is faster than MutantX-S (3h34m). Sur-
prisingly, PSSo is a bit slower than PSS and takes 2h12m. Among
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Table 5: (RQ1) Total runtimes. Include preprocessing time.
Significant preprocessing times reported in "( )"

Dataset Basic BinKit IoT Windows
# Programs 1K 98K 20K 85K
Bsize 6s 43h 47m 8h41m
Dsize 55 43h 47m 8h45m
Shape 1m22s | 21h25m | 21m26s 4h16m
ASCG 1h18m 143h 1h23m 243h
preproc. | (1h18m) (81h) (19m12s) (228h)
MutantX-S 4s 220h 3h34m 41h
PSS 1h18m 190h 2h9m 263h
preproc. | (1h18m) (81h) (16m42s) (233h)
PSSo 15m8s 116h 2h12m 31h29m
preproc. | (15mé6s) | (14h3m) | (33m3s) | (5h23m)
LibDX 1m4s 1965h 7h47m 170h
StringSet 38s 542h 9h21m 253h
FunctionSet 3s 37h 7m47s 27h34m

Table 6: (RQ1) Runtimes per clone search (sec). Include pre-
process. time. Significant preprocess. times reported in "( )"

Dataset Basic BinKit IoT Windows
# Programs 1K 98K 20K 85K
Bsize < 0.01 0.11 0.14 0.63
Dsize < 0.01 0.11 0.14 0.63
Shape 0.02 0.05 0.06 0.31
ASCG 1.42 (1.42) | 0.37 (0.21) | 0.25 (0.06) | 17.68 (16.60)
MutantX-S < 0.01 0.57 0.64 3.00
PSS 1.41(1.41) | 0.49 (0.21) | 0.39 (0.05) | 19.17 (16.95)
PSSo 0.27 (0.27) | 0.30(0.04) | 0.40 (0.10) | 2.29 (0.39)
LibDX 0.02 5.09 1.40 12.43
StringSet 0.01 1.40 1.69 18.47
FunctionSet < 0.01 0.10 0.02 2.01

methods using literal identifiers, FunctionSet is fast, with less than 8
minutes in total. LibDX takes 7h47m, while StringSet is the slowest
with 9h21m.

Windows. PSS takes 263h on the Windows dataset. That is far
higher than MutantX-S (41h) and a bit higher than StringSet (253hh).
However, PSSp takes less than 32 hours. Table 6 reports average
runtimes per clone search. We can see that PSS preprocessing time
can sometimes be important, e.g., on large Windows binaries (
16.95s on similarity checks). First, note that preprocessing time does
not increase with the repository size. Second, PSSp is especially
optimized for such cases, and its preprocessing time remains low
in all cases.

Conclusion (RQ1)

PSS is often roughly as fast as MutantX-S on larger datasets, yet
it struggles on large Windows programs. PSSp remedies this

default and is consistently faster than other approaches, but
the baselines and FunctionSet. Interestingly, StringSet is slow
on large benchmarks.
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Table 7: (RQ2) Precision scores

Dataset Basic | BinKit | IoT | Windows
Bsize 017 | 0.166 | 0.819 | 0.19
Dsize 0.16 | 0.062 | 0.787 | 0.445
Shape 0.19 0.297 0.818 0.389
ASCG 0.24 0.554 | 0.759 0.444
MutantX-S 0.38 0.354 | 0.870 0.472
PSS 0.38 0.619 0.863 0.475
PSSo 0.38 0.619 0.862 0.466
LibDX 0.70 0.882 0.707 0.044
StringSet 0.94 0.970 0.922 0.501
FunctionSet | 0.87 0.500 0.644 0.426

Random

[ 002 | 0.004 [0477 [ <0.001

5.6 RQ2: Evaluation of Precision

We compute precision scores on each dataset. We report the results
in Table 7.

BinKit. PSS and PSSp attain a score of 0.619 on BinKit, while the
other spectral method ASCG has only 0.554. MutantX-S is well
behind with 0.354. In fact, we show in Table 8 that it achieves
scores of 0.01 in cross-architecture scenarios as well as against
obfuscations. With literal identifiers, StringSet attains 0.970 and
LibDX 0.882. The FunctionSet method has only a score of 0.500.

IoT Malware. PSS has a score of 0.863, close to MutantX-S (0.870).
PSSp is very close with 0.862, while ASCG attains 0.759. With
literal identifiers, StringSet achieves a score of 0.922. Other literal
identifier methods have some troubles. FunctionSet has a score of
0.644 because only very few external names are available. Moreover,
LibDX attains 0.707 because LibDX extracts constant string values
from read-only sections, which are scarce inside IoT firmware.

Windows. PSS attains a score of 0.475 on Windows, just above
MutantX-S (0.472) and well above ASCG (0.444). PSSo is a bit be-
hind PSS and MutantX-S with 0.466. Among methods with literal
identifiers, StringSet attains 0.501. LibDX attains only 0.044. Again,
LibDX extracts constant string values from well-defined read-only
sections, which are not prevalent in Windows programs. As before,
FunctionSet has a rather low score here of only 0.426.

Conclusion (RQ2)

PSS and PSSp are usually as precise as MutantX-S except
in cross-architecture and obfuscations scenarios, for which

MutantX-S fails. When literal identifiers are meaningful,
StringSet is the most precise method in all datasets, while Func-
tionSet and LibDX struggle on IoT and Windows datasets.

5.7 RQ3: Evaluation of Robustness

The last evaluation measures the robustness of the ten clone search
methods that survived the speedtest. For this, we consider four
scenarios with (i) cross-optimization, (ii) cross-compiler, (iii) cross-
architecture and (iv) in the presence of obfuscations. The evaluation
leans on the BinKit dataset that we presented earlier.

Results. We report the most crucial test field scores in Table 8.
When literal identifiers are available, StringSet and LibDX are very
stable in all scenarios. FunctionSet is stable except in scenarios
involving cross-architecture because external function names differ
between architectures. Note that a strong limitation to this finding
is that the considered obfuscations do not hide nor encrypt literal
strings and external calls (API), while it is common practice.

PSS and PSS are much more robust than MutantX-S in cross-
architecture, cross-optimization and obfuscations scenarios. For
instance, MutantX-S falls to 0.02 from the arm to mips architecture,
while PSS maintains a score of 0.39. The more basic spectral method
ASCG also falls to 0.08 in this scenario. Interestingly, PSS and PSSp
perform better in the cross-architecture test fields than in the (-
00, -03) and (-0O0, -O2) test fields. We hypothesize that while the
architecture does not impact that much the produced call graph,
advanced optimizations do - function inlining is precisely turned
on by the -O2 optimization level in both GCC and Clang.

Statistical analysis. A common pitfall of similarity detection is
that a method could in the end consider as similar two programs
based on some side aspects (e.g., architecture, compiler used or
optimization version) irrelevant from the clone search point of view.
We evaluate the sensitivity of the different approaches to such bias
by computing rank-biserial correlations between (a) similarity rank
in new clone searches and (b) sharing an optimization level. We
report average correlations in Table 9 (the lower, the better and less
sensitive). PSS, PSSo, ASCG and LibDX have very small correlations
ofless than 0.10. On the other hand, the StringSet method correlation
is moderate (0.45), indicating some bias. Surprisingly, this bias does
not seem to impact the robustness of StringSet (Table 8). The N-gram
method MutantX-S has a lower correlation of 0.33 and FunctionSet
has a small correlation of 0.20.

Conclusion (RQ3)

PSS and PSSo are robust to cross-optimization, cross-compiler,

cross-architecture and obfuscations scenarios, while MutantX-S
suffers significant precision loss in the cross-architecture and
obfuscations cases.

5.8 RQ4: Ablation Study

In Table 10, we report the precision scores of the two components
of PSS: simCG and simCFG. The first is a comparison between
eigenvalues of the call graph, while the second is a comparison
between the number of edges of functions control flow graphs. PSS
always attains a higher precision score than simCG and simCFG
on every dataset. We remark that simCFG alone is not precise on
the Windows dataset (0.163 vs. 0.459 for simCG). In Table 11, we
report each component’s average runtimes per clone search. As
expected, PSS runtimes are the addition of simCG and simCFG
runtimes. Therefore, PSS is at worse one second slower than simCG.

Conclusion (RQ4)

PSS is more precise than its components for the price of a slight
increase in runtimes.
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Table 8: (RQ2,RQ3) Precision scores on the BinKit dataset

Category Optimization level Cross-compiler Cross-architecture vs. Obfuscationf
00 00 OO0 O1 O1 02 |gce4 clang-4 clang | arm arm mips 32

vs. 01 02 03 02 03 03 |gce-8 clang-7 gec | mips x8 x8 64 | bef fla sub all
Bgize 0.04 0.04 007 0.19 011 0.21| 0.11 0.45 0.07 0.03 0.10 0.04 0.04 | 0.04 0.01 0.08 0.01
Dgize 0.03 0.03 0.03 0.06 005 0.07 | 0.07 0.09 0.04 0.02 0.05 0.03 0.04|0.02 0.01 0.05 0.01
Shape 0.19 0.07 0.06 0.17 0.11 033 | 0.38 0.65 0.16 004 0.16 004 0.19] 025 027 048 0.23
ASCG 040 0.12 0.10 043 024 0.68 | 0.78 0.91 0.46 0.08 046 006 059|054 0.64 0.78 048
MutantX-S | 0.04 0.03 0.03 043 036 0.64 | 0.67 0.80 0.14 0.02 0.01 001 0.06 | 0.09 0.03 054 0.01
PSS 054 0.23 0.17 0.59 038 0.70 | 0.79 0.91 0.51 039 055 039 0.66 | 053 057 082 0.46
PSS o 053 0.24 0.17 0.60 039 0.68 | 0.78 0.90 0.51 044 054 044 0.66 | 0.52 0.56 0.82 0.46
LibDX 089 0.89 089 0.89 089 0.89 | 0.89 0.86 0.78 087 0.89 090 0.88 | 0.87 0.86 0.86 0.86
StringSet 097 097 097 097 097 097 | 097 0.97 0.97 096 098 096 097|096 097 096 0.97
FunctionSet | 0.55 0.53 0.53 0.55 0.55 0.56 | 0.46 0.68 0.55 0.29 0.02 000 0.23]| 061 061 0.61 0.61

Random clone search results in a precision score inferior to 0.005 on all test fields.
+: The BinKit dataset does not consider any obfuscation of literal identifiers

Table 9: (RQ3) Average rank-biserial correlation for H

Framework | Basic dataset Framework | Basic dataset
Bsize 0.02 PSS 0.06
Dsize 0.01 PSS o 0.06
Shape 0.04 LibDX -0.07
ASCG 0.08 StringSet 0.45
MutantX-S 0.33 FunctionSet 0.20

Table 10: (RQ4) Components precision scores

Dataset | Basic BinKit | IoT | Windows
simCG 0.29 0.596 0.856 0.459
simCFG | 0.29 0.424 | 0.856 0.163
PSS 0.38 0.619 0.863 0.475

Table 11: (RQ4) Components runtimes per clone search (sec).

Include preprocess. time. Significant preprocess. times reported in "( )".

Dataset Basic BinKit IoT Windows
simCG | 1.41(1.41) | 0.36 (0.21) | 0.22(0.05) | 18.07 (16.95)
simCFG < 0.01 0.14 0.16 1.06
PSs 1.41(1.41) | 0.49 (0.21) | 0.39 (0.05) | 19.17 (16.95)

Table 12: Informal summarized comparison

Method speed | precision | robust. beware
ASCG [27] + - +
MutantX-S [33] + --
PSS/PSSo +/++ +
LibDX [69] - ++ ++ str. extraction
str. obf.
StringSet -- e+t ++ str. obf.
FunctionSet 4+ - - fun. name obf.
static linking

10

5.9 Summary of Our Main Results

Our novel spectral methods PSS and PSS reach a sweet spot re-
garding the trade-off between speed, precision and robustness. They
do not need any training phase, scale very well to large repositories
and are very robust, even in cross-architecture or cross-compiler
scenarios and in case of lightweight obfuscation. Therefore, they
are the best candidates for intensive program clone search. Also, it
is worth mentioning that direct adaptations of graph based spectral
methods lack precision compared to PSS, and that the optimization
PSSo is necessary over large programs. A summarized informal
comparison with other methods is given in Table 12.

This large study also allowed us to highlight that most prior
approaches in the field [19, 52, 55, 74], mostly focused on function-
level similarity, are far too slow for program clone search.

6 RELATED WORKS

Binary code similarities are extensively studied. As a testimony,
the review of Haq and Caballero [31] reports numerous input and
output granularities on which to study similarities.

Pioneering approaches. Dullien in 2004 [22] introduced a graph
based program diffing approach that constructs a call graph isomor-
phism. A follow-up [23] extended it to match basic blocks inside
matched functions. These two results are the basis for the popular
BinDiff program diffing plugin for the IDA disassembler. BinDiff
aims to recognize similar binary functions among two related exe-
cutables. In 2006, Kruegel et al. [46] presented an approach based on
coloring small graphs with fixed size from the control flow graph
to identify structural similarities between different worm muta-
tions. In 2008, Gao et al. proposed BinHunt [28] to find differences
between two versions of the same program. BinHunt employs sym-
bolic execution with a constraint solver to prove that two basic
blocks implement the same functionality.

Program similarity. The few recent works about program-level
similarity [57, 75] have already been thoroughly discussed. Still,
we can mention a few more approaches. N-gram methods com-
pare instruction sequences [33, 41, 58, 67]. While we could have
employed more fine-grained methods than MutantX-S [33] - for
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example Exposé [58] considers trigrams inside a function match-
ing, it quickly leads to serious scalability issues. Some other works
explore similarities based on dynamic executions and input-output
observations [2, 38, 51, 56]. Nevertheless, it is hard to thoroughly
explore the execution space with dynamic traces — leading to poor
precision, and handling large code repositories requires automating
the task of detecting the sources of input and output of all pro-
grams in the repository, which can be very complicated. Bruschi
et al. [11] tackle the problem of detecting some malware inside a
program by matching control flow graphs. But, again, this approach
suffers from scalability issues (in the size of the programs) and is
thus not amenable to the search over large code repositories. The
symbolic method by Luo et al. [53] is robust to simple obfuscations
as well as simple changes. However, the running time of symbolic
execution is a critical issue on large programs, and anti-analysis
obfuscation hinders symbolic approaches [6, 61]. We have already
studied the matching method CGC [73]. The complex matching by
Xu et al. [73] outperforms a baseline based on external function
names and mnemonics. However, we propose StringSet, a faster,
highly precise method comparing sets of constant string values. A
few other matching approaches [4, 10, 48] share the same strengths
and weaknesses.

Function similarity. The last five years have seen a tremendous in-
crease in the popularity of binary function similarity with machine
learning [19, 52, 55, 74, 77]. Yet, as already discussed, these methods
lead to poor scalability when applied to a program similarity setting.
More expensive methods than function embeddings do exist. No-
tably, dynamic analysis seeks to build upon the semantics of binary
codes instead of their mere structural properties. BinGo [12] ana-
lyzes various execution traces with concepts such as pruning. The
work of Hu et al. [35] emulates binary functions to create semantic
signatures. Pewny et al. [63] propose to translate binary code to an
intermediate representation. This representation allows observing
inputs and outputs of basic blocs. These frameworks suffer from the
already mentioned pitfalls of dynamic execution: the exploration is
either imprecise or very slow. Furthermore, it is unclear how to lift
these methods to the case of program similarity, as comparing all
functions between multiple codes is costly. Built on the idea of in-
termediate representation, several approaches [17, 47, 64] perform
simplification before comparing. In FirmUp [16], the matching be-
tween intermediate representations incorporates multiple functions.
The formula has to be transformed into an embedding. The larger
the code segment it represents, the less precise the embedding is.
Finally, other feature selection methods have been investigated:
Rendez-vous [42] extracts statistical features at various granulari-
ties, while discovRE [24] and Genius [25] extract features such as
the number of arithmetic instructions. Gemini [74] leverages static
features from Genius into a machine learning framework.

Source code similarity. Computing source similarities can be per-
formed with different structures such as Abstract Syntax Trees [7,
8, 76] or Program Dependency Graphs [8]. It is also possible to
normalize instructions and compare code fragments [8, 37]. Match-
ing tokens, fragments and structures is effective because there is
no compiler optimization step which would introduce variations.
Moreover, critical information such as types are lost by compilation,
while data dependencies are harder to retrieve on binary programs.
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Graph similarity. A key question in program similarity is how to
compare graphs efficiently. New suggestions for graph similarities
include novel graph kernels [26, 45, 59] and the use of machine
learning to approximate intractable properties such as graph edit
distance [5, 50, 65]. Recently, the work of Bay-Ahmed et al. [1] in-
troduced a new graph similarity metric incorporating both spectral
information from the Adjacency Matrix and from the Laplacian.
Moreover, the work of Crawford et al. [15] proposed spectral anal-
ysis as a similarity metric of real-world networks. Furthermore,
the study of Fyrbiak et al. [27] reveals that spectral analysis can
compete with more energy-intensive approaches such as GED.

Library identification. The pioneering BAT [32] has proposed
three methods for library identification, based on strings, compres-
sion algorithms and edit distances between bit sequences. They re-
port that edit distance computations are too costly, while strings can
be easily obfuscated. OSSPolice [20] has developed similarity mea-
sures based on strings. The special structure of Java programs allows
the use of properties such as class and package inclusions [3, 36] in
order to identify Android libraries.

7 DISCUSSION AND LIMITATIONS

While PSS and PSSp perform well in our experiments, there are
still a number of potential corner cases that must be considered.
Generally speaking, these methods will suffer on program clones
with very different call graphs. Such differences could come for
example: (1) from significant source code revisions - it is why we
support only incremental changes of an application or library, (2) or
from aggressive inter-procedural compiler optimizations, such as
function inlining or function sharing — link-time optimizations may
be a growing problem here, (3) or from aggressive inter-procedural
obfuscation schemes, such as function merging or virtualization.

Also, as the programs we consider mainly come from C/C++
source codes, it would be interesting to evaluate all the considered
methods over programs written in emerging programming lan-
guages (e.g., Rust, Go) that may contain language-specific function
call patterns.

8 CONCLUSION

We consider the problem of searching program clones in large code
repositories. While most prior works have been devoted to function
clones, the few existing techniques for program similarity suffer
either from scalability issues, low precision, or low robustness to
code variations. We propose a novel method called Program Spectral
Similarity (PSS, and especially its optimized version PSSp) that
reaches a sweet spot in terms of speed, precision, and robustness —
even in cross-compiler or cross-architecture setups.
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