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Abstract. The OD detection is a mainly step in many methods for ophthalmic 

diseases diagnosis. The work described in [7] proposes a performance optic 

disk detection approach based on blood vessel tracking and optic disk contrast. 

However, the method is characterized by a higher execution time which is about 

10 s in STARE DB images. Moreover, the execution time increases proportion-

ally with the fundus image resolution. This computational performance is a lim-

iting factor to employ the method in diagnosis systems of ophthalmic diseases. 

This paper aims to optimize the method processing in order to enhance the 

computational performance. The first contribution consists of optimizing repet i-

tive steps with the aim of reducing times. Thereafter, all processing steps are 

implemented in GPU architectures. The experimental results indicate that each 

one of the contributions insures enhancing computational performance with 

speedup equal to 1.7 and 2.5, respectively. The implementation with combined 

contributions leads to a speedup equal to 8.6 which leads to an execution time 

about 1 second. 

Keywords: fundus image; Optic Disc localization, Parallel algorithms, 

Graphics Processing unit (GPU), CUDA, Real-time GPU implementation. 

1 Introduction 

The Optic Disk (OD) is a main retinal anatomic structure in fundus image. The OD 

detection is a critical step in many diagnostic systems for ophthalmic diseases. In the 

case of diabetic retinopathy (DR), the OD has the same color and contrast than Hard 

Exudates (HEs). Therefore, several works [11,2,3,4,5] proceed to detect and remove 

OD before segment HEs. Moreover, the works described in [6,18,8] to detect the neo-

vascularized blood vessels in the OD in order to deduce the proliferative DR. In the 

case of the Glaucoma, several works aim to extract the OD and the Cup Disc where 

the size ratio indicate the presence of the disease [9,10,13] and the pathology level 

[24]. Other works detect the Glaucoma by figuring out the position of the cup disc 
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with respect to the OD. The Age-related Macular Degeneration (AMD) is always 

detected through the drusens segmentation which is located in the macula and has the 

same contrast than the OD. Therefore, the works described in [32] aim to detect all 

shape having a higher contrast, and then eliminate the OD in order to detect the 

drusens. Moreover, several approaches are proposed in the objective of extracting the 

macula [16,14], the fovea [15] and the blood vessels [17], which OD location is an 

important processing step. 

A significant number of OD localization methods are proposed in the literature. Re-

cent OD localization approaches offer both high and close detection performance. 

Those methods proceed to detect the OD based on their retinal characteristics such as 

the brightness, the contrast and circular shape. The algorithm described in [25] em-

ploys the Radon Transform (RT) to localize OD based on its brightness and round-

ness.  The RT is applied with several angles to each sub-window in the objective of 

detecting OD circular shape. Hashim et al. [26] apply a binary mask on the intensity 

channel to exclude the background pixels. Then, morphological operators and contrast 

enhancement techniques (Gamma transformations) are used in conjunction with the 

difference of the Gaussian filter (DOG) to obtain the OD border. In the work of 

Giraddi et al. [27], a thresholding is employed to eliminate false positive based on the 

OD brightness and roundness shape. Then, the OD segmentation is performed using 

the vector field gradient (GVF snake). These methods present high success rates in 

normal images. However, the detection provides inaccurate results due to the presence 

lesions having the same brightness or size than the OD. 

Others OD detection methods are based on vessel tracking. Foracchia et al. [29] used 

a parametric geometric model (parabolic path) to describe the typical direction of the 

vessel structure. In the work proposed by Zhang et al. [28], the density, compactness 

and uniformity of blood vessels are formulated to find the OD coordinates. Then, the 

matched filter is applied in various dimensions in order to provide candidate location. 

Those approaches tend to be the most Robust in OD appearance change. However, 

they can provide a wrong OD detection if the vascular network is partially extracted.  

Some others OD detection methods employ the OD characteristics, and exploit the 

location and orientation of vessels. For example, Youssif et al. [30] uses the direc-

tional pattern of retinal blood vessels for the OD detection. Their method involves 

normalizing contrast and luminosity. Xiong and Li [31] have proposed a method for 

locating the OD center by extracting a variety of features including vertical and hori-

zontal vessel intensity and the size of the bright object. Soares et al.[7] proposes an 

algorithm based on the cumulative sums of successive subdivisions and the vessel 

enhancement. The next step consists at following vessel convergence to locate the 

OD. These approaches tend to be the most effective and reliable, even in incomplete 

appearance and change of OD, and in incomplete construction of the vascular stru c-

ture. The work proposed in [7] achieves an OD localization accuracy of 99:15%. This 

performance is provided using eight public datasets including the STARE and DRIVE 

ones.  

However, the method is characterized by a higher execution time which is about 10 s 

in STARE DB images where the resolution is equal to (700 * 605). Moreover, the 

execution time increases proportionally with the fundus image resolution.  As an ex-
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ample, the current retinographs TRC-NW 7 SF[12] provides fundus images with reso-

lution equal to (3008 x 2000) which is 14 times greater than a STARE dataset image, 

and hence a similar rise on execution time. This computational performance is a limit-

ing factor to employ the method in diagnosis systems of ophthalmic diseases. 

This paper proposes optmize and parallelize the processing method proposed in [7] 

with the aim of reducing the time of execution. The article is organized as follows. In 

Section II, we describe the approach of OD detection. In section III, we analyze pro-

cessing times and complexity in terms of approximate number of operations. Then, 

we describe our proposed contributions for the acceleration of the OD detection alg o-

rithm. The evaluation of proposed contributions using different retinal image dat a-

bases is done in Section V, followed by Discussion and conclusion in last section. 

2 Optic Disc Detection method [7] 

This section presents a description of the method proposed by Soares et al [7] for 

detecting OD in the fundus image. The main idea is based on identifying the concen-

tration and the convergence of the main vessels in order to detect the OD location. 

This method is composed by successive processing blocks as indicated in the 

flowchart in Fig.1 and which are described to the following sessions. 

 

Fig. 1. Method proposed by Soares et al [7]  
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2.1 Preprocessing: 

The first processing block entitled "preporcessing" starts by resizing the green 

component of the image to a resolution of (900 * 900) using a bicubic interpolation 

[7], in the case where the resolution is greater than (900 * 900). Then, the background 

is separated from the fundus image using a binary mask applied to the red channel 

where the threshold is equal to 28 whose result is saved in the BW image. The next 

step eliminates the noise by applying the "Gaussian Blur" filter with a rectangular 

structure of 13 × 13 pixels and σ = 4, the result is saved in image I. 

2.2 Vessel Enhancement 

The main objective of this block consists at extracting the main vessels from the ret i-

na vascular network based on their contrast and thickness. The first step, called 

"bloodvessel extraction", aims to reconstruct the thicker vesselsthat cross the 

OD.Thus, the Laplace and gradient filter are applied separately to the Iimage. Next, 

thevascular network is constructed by calculating the difference between the square 

absolute value of the gradient image and the Laplacian image.The result is saved in 

the image X (M * N) as shown in fig.2 (b). 

 The provided images are characterized by a higher noisy which avoid distinguish 

between vascular structures and non-vascular ones. Therefore, the Hessian matrix [7] 

is employed in order to and then removing the thin vessels, whose treatments are re-

spectively entitled «edgedetection» and «Local Shape Curvature» («LSC»). 

The second step, called “edge detection”, consists of describing an edge detector by 

using the second-order derivatives. The first-order derivatives are calculated by apply-

ing a "Sobel" filter three times on the image I, using three matrices with deriv ative 

orders respectively in the x direction, the y direction, and the x and y directions. Then, 

each "Sobel" filter is followed by a Gaussian filter for calculating the second -order 

derivatives. The results are recorded respectively in the Y, Z and T images. 

 

Fig. 2. Extract blood vessels networks.(a) Retinal imageI(M*N). (b)Image X(M*N). 

 

 The third step, called “Local Shape Curvature (LSC)” leads to distinguish vascular 

structures from non-vascular structures by minimizing the impact of false vessels and 

avoiding lesions such as micro-aneurysms and exudates. In fact, the background pix-

els are characterized by a small magnitude of the derivatives (the eigenvalues) relative 

to the values present in the sets of the vessel pixels. Therefore, the spatial derivative  
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matrix H is constructed for each point p of index i, j such that i∈ [0, N-1], j∈ [0, M -

1], as indicated in equation (1). 

𝐻 = (
𝑌(𝑖, 𝑗) 𝑇(𝑖, 𝑗)

𝑇(𝑖, 𝑗) 𝑍(𝑖, 𝑗)
)     (1) 

Then, the eigenvalues λ1 and λ2, are calculated by solving the characteristic equation 

of the Hessian. These values are essential to distinguish, respectively, the minimum 

and maximum principal curvatures. The author indicates that the minimal eigenvalue 

λ1 represents a low contrast corresponding to the pixels belonging to the regions of 

the blood drops or the microaneurysms.However, the maximum Eigenvalue λ2 repre-

sents the points of interest corresponding to the pixels belonging to the main vessels 

that cross the DO [7]. 

For this, at each point p, the minimum eigenvalue is removed from the image of the 

vascular network X as presented in equation (2). The result is saved in RES images 

(Fig.3 (b)). 

𝑅𝐸𝑆 = 𝑋− 𝑚𝑖𝑛 ⁡(𝑋, 𝜆1) (2) 

Then, to maximize the impact of the main vessels of the vascular network, each 

pixel of the RES image is multiplied by the corresponding maximum eigenvalue 

(Fig.3 (c)). 

 

Fig. 3. Extract LSC:(a) Retinal image; (b) thin vessels removed;(c) Maximize the impact of 

principal vessels. 

2.3 Vessel Orientation Detection 

This processing blockconsists in extracting the orientations of the main vessels. The 

retinal vessels merge from the DO vertically and horizontally where directions are 

between 45 ° and 135 °, respectively. Thus, the vessel structures are extracted in each 

directionamong α = {0 °; 45 °; 90 °; 135 °}. Since the vessel segments may have dif-

ferentorientations, vessel in each direction α must be evaluated with different angles. 

Each angles φα for each direction is presented in equation (3). 

 

𝜑0° = ⁡ {0°, 15°, 30°, 45°, 135°, 150°, 165°}; (3) 
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𝜑45° =⁡ {30°, 40°, 50°, 60°}; 

𝜑90° =⁡ {45°, 60°, 75°, 90°, 105°, 120°, 135°};⁡ 

𝜑135° = ⁡{120°, 130°, 140°, 150°}; 

Since the author aims to enhance linear structures, a logical choice for a structuring 

element is a “line” with a variable length and a variable angle covering both the short 

and long vessels. The linear structure (M) is performed for all the lengths and the 

deviation angles φα, where the line lengths designated by l={5; 10; 15; 20;25} pixels. 

Thus, the first step in this processing block consists at applying Opening in order to 

extract the vessels having a shape similar to the elements of linear structure M. The 

application of this operator leadsv to conserve the vessels corresponding to the 

element structure (Mki)in each image OKi, where k is the length number and i is the 

angle number.The k * i = 80 images have the same resolution (M * N) of the image 

input RES. The second step, each image provided by Opening are compared to of the 

oneswith deviation φα, by fixing the length l. Then the vessel structure of each 

orientation {0°; 45°; 90°; 135°} is defined as the sum of the maxima obtained for each 

value of l. The approach of this step is illustrated by equation (4).  

𝛼 = ∑ maxφα
𝑶
𝒍

φα5
𝑙=1  (4) 

The third step leads to extract separately the horizontal and vertical coordinates of 

the OD position (px, py). For this purpose, two images IH and IV are created which 

correspond respectively to the horizontal axis and to the vertical axis.The first image 

IH contains the structure of the vertical vessels, which is determined by subtracting 

the orientations {0 °; 90}. Similarly, the second (IV) contains the structure of the 

vertical vessels, which is determined by adding the orientations {45 °; 90 °; 135 °}. 

2.4 Vessel concentration («VC») 

This processing block consists at detecting the converging points and finding the 

concentration zone of the vessels network. Thus, the images IH and IV are subdivided 

successively d times along the vertical and horizontal direction, respectively. The 

maximum number of divisions dmax, is calculated such as formulated in equation (5). 

d𝑚𝑎𝑥 = round (
max(N,M)

µ
) (5) 

Where µ=70 or 45 respectively for IH and IV images. At each subdivision d, the 

regions ri (i = 1; ...; d+1), disjoint vertical, are created on the image IH (each 

resolution (N, M / d + 1)).Then, a vertical average of each region moy_ri  is calculated 

based on the image IH and BW (binary mask image), as indicated in equation (6). 

Then, a vertical division image (dv) is created, whose pixel values are equal to the 

average value of the corresponding region.Finally, the images extracted at each 

subdivision are added together.Similarly, this is extended to image IV to create the 

horizontal division image (dh), as indicated in equation (7). 



7 

𝑚𝑜𝑦_𝑟𝑖 =
∑ ∑ 𝐼𝐻

𝑖∗𝑀/𝑑
𝑖

𝑁
1

∑ ∑ 𝐵𝑊
𝑖∗𝑀/𝑑
𝑖

𝑁
1

 (6) 

𝑚𝑜𝑦_𝑟𝑖 =
∑ ∑ 𝐼𝑉𝑀

1
𝑖∗𝑁/𝑑
𝑖

∑ ∑ 𝐵𝑊𝑀
1

𝑖∗𝑁/𝑑
𝑖

 (7) 

2.5 Post-processing 

In this processing block, the OD region is determined based on the highest vessel 

concentration index.Therefore, a horizontal projection on the vertical division image 

(dv) is performed to identify the pxposition. Similarly, a vertical projection on the 

horizontal division image (dh) is performed to identify  thepyone. The point selected 

as point [px; py], is marked in the retinal image as the location of OD. 

In some retinal images, (px; py) may be slightly outside the OD region. To over-

come these situations, the maximum point of vessel convergenceand the point of max-

imum intensity, designated respectively by (cx; cy) and (bx; by), are calculated within 

these regions. The final OD position is given by the average of the three points 

p(x,y),c(x,y) and b(x,y) (Fig.4). 

 

Fig. 4. Final OD localisation 

3 Complexity analysis & parallelism principles 

The objective of this section is to study the computing performance of the OD detec-

tion method proposed by Soares [7]. Therefore, the computational complexitiesare 

determined for each processing blocks and for each step of the vessel enhancement 

and the vessel orientation detection blocks, in terms of the input image resolution M × 

N. similarly, the execution times are provided by implementing the method  in C ++ 

&OpenCV and run using STARE database images whose resolution is (605 * 700). 

The computational complexity in terms of approximate number of operations and 

execution time values are indicated in Table 1. 

The post processing complexity is modeled in terms of w which corresponds to the 

OD diameter. Based on [1], the w value can be substituted by 1/7 M, which implies a 
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whole complexity equal to 245*M*N+3.5*M. The implementation leads to an execu-

tion time equal to 10.25s. 

This approach is applied to image where the maximal resolution is 900 * 900 pixels. 

However, actual ophthalmologic devices provide fundus images an important higher 

resolution, such as the ones described in [12] where the resolution 4 to 7.4 times 

greater. Based on the whole computational complexity in terms of approximate num-

ber of operations, such rising on fundus image resolution implies a similar increase on 

the execution time. Consequently, the computational performance is a limiting factor 

to employ the OD method [7]. Therefore, parallelizing the OD detection processing is 

primordial in order to reduce execution time.  

Table 1. OD detection treatments profiling. 

 Complexity in terms 

of approximate num-

ber of operations 

Execution time 

(seconds) 

Preprocessing 5.NM 0,042 

Vessels 

Enhancement 

« blood vessel extraction» 3.NM 0,11 

« edge detection » NM 0,06 

   

« LSC» 123. NM 4,14 

Extract the 4 

principal vessels 

«Openning» 80. NM 2,57 

«Maximization & Addi-

tion» 
NM 0.052 

«VC» 31.NM 2.58 

Postprocessing NM+23.w 0,7 

Total OD localization  245.NM+23w 10,25 

 

Based on the method description in Section II, each step employs the result provid-

ed by the previous processing. Consequently, a parallelism on the processing step 

level is inadequate. All processing steps can be performed in (n × MN) instructions 

where n is an integer value n > 0. Each step corresponds to an iterative processing 

with a higher iteration number. Therefore, a parallelism strategy is able to be applied 

for each step separately. The SIMD principle is the adequate principle of parallelism 

where the implementation is to run on GPU architectures . 

4 Processing optimization 

Our first contribution aims to optimize the processing in order to reduce the execution 

time. The "LSC" processing consists at defining the H matrix of spatial derivatives for 

each pixel, as indicated in the equation (1) in section III.A. The Hessian matrix pro-

cessing requires defining λ parameter by resolving the determinant  of the matrix, for 

each pixel as indicated in equation (8). 



9 

Det⁡(|⁡H⁡ − ⁡λA⁡| ⁡ = ⁡0)⁡ (8) 

Where A is the identity matrix. Thereafter, the formulations of  λ1 and  λ2 parameters 

are to be computed. The resolution of the matrix H and hence the formulation of λ1 

and λ2 equations are done for each image pixel I whose number is M.N. However, 

those tasks are performed with the same size (2 * 2) of the H matrix. Therefore, λ1 

and λ2 will have the same formulation whatever the pixel is , where their equations are 

indicated respectively in (9) and (10) [20, 21]. 

𝜆1(𝑖 ,𝑗) =
1

2
(−√2 ∗ 𝑌 ∗ 𝑍 + 𝑌2 +4 ∗ 𝑇2 + 𝑍2+ 𝑍 + 𝑌)

(𝑖 ,𝑗)
⁡ (9) 

𝜆2(𝑖 ,𝑗) =
1

2
(√2 ∗ 𝑌 ∗ 𝑍 + 𝑌2 + 4 ∗ 𝑇2 + 𝑍2+ 𝑍 + 𝑌)

(𝑖,𝑗)
 (10) 

Thereby, we proceed to determine the equations (8) and (9) only once in order to 

optimize the "LSC" processing time. The Figure 5 illustrates the flowcharts of the 

"LSC" step respectively before and after optimization, where the formulation steps of 

λ1 and λ2 modeled with a green background, are removed from the iterative loop. 

Equations λ1 and λ2 are provided as constant in the implementation. In this way, The 

"LSC" is performed in O(22MN) times instead of O(123xMN)  times, where the input 

image size is (M*N). 

Substract matrices

Compute  λ1 and  λ2

Select min values 
between  λ1 and  λ2

delete min eigenvalue

multiply max eigenvalue

For each Pixel p

Define equation of  λ1 and  
λ2

Compute  λ1 and  λ2

Select min values 
between  λ1 and  λ2

delete min eigenvalue

multiply max eigenvalue

For each pixel p

λ1 and  λ2

 

Fig. 5. Optimization of treatment «LSC» (a) Computingλ1 and λ2 inside loop (b) computing λ1 

and λ2 outside loop. 

The proposed Vesselness measure [33], Hessian multiscale features [34] and Feature 

Extraction [35] also based in the Hessian matrix eigenvalues . It can be observed that 

the optimization principle of "LSC" can be in applied order to reduce the execution 

time of these treatments. 

For the vertical subdivision in the “VC” processing block, the column pixel sums 

Vv and Bv are performed respectively from the image IH and BW, as indicated in 

(Eq.6). Thereafter, the successive subdivision is applied. Those steps are repeated 10 

times. However, Vv and Bv computing leads to the same results whatever the iteration 
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is. Similarly, the Vh and Vbh in the horizontal subdivision are performed 20 times to 

result identical values. 

Therefore, we proceed to optimize the processing by computing once the Vh, Vv, 

Bv and Bvt vectors. Theirs processing are moved outside the loops, as modeled with a 

red background in Fig 6. In this way, the treatment «VC» is performed in 

O(MN+10.M+ 20.N) times. 

 

Fig. 6. Optimization of treatment «VC» (a) Computing Vv, Bv, Vh and Bvt inside loop (b) 

computing Vv, Bv, Vh and Bvt outside loop. 

5 GPU implementation 

In this section, we aim to parallelize the implementation of the pipeline image pro-

cessing proposed by [7] on GPU architecture. In fact, the Opencv / GPU library pro-

poses a predefined set of image processing functions that are run in GPU architecture, 

proposing a higher computational performance. 

Therefore, our parallel implementation principle consists of implementing the steps 

using directly OpenCV/GPU library if they have corresponding functions. These pro-

cessing steps are joined in the GPU architectures to avoid communication time be-

tween host and device. The intermediate data is directly integrated into the memory of 

the GPUs architecture.  In the opposite case, the processing is implemented using 

CUDA kernel as described in the following section. The implementation of all steps is 

modeled in fig.7 where OpenCV/GPU functions and kernels are modeled respectively 

by yellow and red rectangles. 

Vv=Sum cols IH (∑N
1)

Bv=Sum cols BW (∑N
1)

Apply vertical 
subdivision

10

Vv=Sum cols IH (∑N
1)

Bv=Sum cols BW (∑N
1)

Apply vertical 
subdivision

10

Vh=Sum Row IV (∑M
1)

Bvt=Sum  Row BW (∑
M

1)

Apply horizontal 
subdivision

20

Vh=Sum Row IV (∑M
1)

Bvt=Sum  Row BW (∑
M

1)

Apply horizontal 
subdivision20
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5.1 “LSC” processing kernel 

“LSC”processing consists at computing the RES[i,j] in terms of the pixels X[i,j], 

Y[i,j], Z[i,j] and T[i,j] where Res in the output image, X, Y, Z and T in the intputs 

images. The “LSC” treatment can be processed independently for each pixel (N*M 

values), giving significant computational effort.  
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Preprocessing
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« blood vessel extraction»

« edge detection »

« Opening»

« Maximization &Addition »
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«horizontal_subdivision»
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CPU

GPU\OpenCV

GPU\KERNEL

GPU\OpenCV

GPU\KERNEL

GPU\KERNEL

CPU
 

Fig. 7.  Diagram block of the proposed GPU implementation. 

The result is also that all pixels can be processed simultaneously by independent 

computing threads. 

we have previously uploaded the four  images  X,Y,Z and T, from the host memory 

to the device global memory and a CUDA kernel is launched to make the LSC 

treatment. 

Firstly we designed an algorithm similar a ‘‘pixel by pixel’’  approach where each 

thread will do the computations concerning one pixel and add the resultat to Image 

RES. With this approach, The images are divided into several sub-images xi, yi, zi 

and ti and each is processed into a thread block, as indicated by the yellow cell in the 

image of Fig.8 (a). Each thread block (N threads) computes the LSC for a particular 

sub-image RESi of the result image, where i correspndante to the number of thread 

block is determined as indicated in equation (11). 
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NBblock⁡ = ⁡round⁡(NBpixels⁡/⁡(NBSM ∗ NBgpu)) (11) 

Thereafter, we proceed to parallelize the processing of the resulting image pixels. 

Therefore, each thread in the thread block provides single-pixel "LSC" processing of 

the resulting image. The pixels of the same indices of images X, Y, Z and T represent 

the parameters of single-thread Input, as indicated by cells in the input sub-images of 

Fig.8 (b). 
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(a) (b) 

Fig. 8. Fragmentation of images: (a) Ordering on blocks of threads. (b) Ordering on threads 

As a result, the complexity of the processing is reduced to the complexity of the a l-

gorithm executed in the kernel (LSC). 

Algorithm 1 presents the kernel code executed by all threads, The KERNEL 

« LSC» will be called in the host by the instruction: 

*LSC<<<NBblock,N>>(INPUT:*X,*Y,*Z,*T, cols, rows, OUTPUT:*RES); 

 
Algorithm 1 : LSC KERNEL 

_global_void LSC (IN :X,Y,Z,T ; OUT :RES) 

tx ← thread x position within the block 

λ1[tx]← Apply Eq_8(Y[tx],Z[tx],T[tx]) 

λ2[tx]← Apply Eq_9(Y[tx],Z[tx],T[tx]) 

min_values←MIN(λ1[tx], λ2[tx]) 

RES[tx] ←X[tx]-min(X[tx], min_values) 

max_values←MAX(λ1[tx], λ2[tx]) 

RES[tx] ←RES[tx] * max_values 

synchtreads() _ Wait for all thread to finish their con-

tribution computations. 

end KERNEL 
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5.2 «VC» processing kernel  

The implementation of "VC" consists of creating subdivision images along the vert i-

cal and horizontal direction. The creations of the subdivision images are performed 

respectively according to the input images BW and IH or  IV. 

Based on the VC processing optimization in Section III, we note that the sums of 

the pixels of the columns of the images IH and BW «Compute ∑
N

1(IH) & ∑
N

1 (BW) 

», are performed in parallel using the "cuda :: reduce ()" function of the 

OpenCV/CUDA library. The results are recorded respectively in the vectors Vv and 

Bv. The reduce() function can be used to compute horizontal and vertical sums of an 

image.Thus, the sum of the pixels of the lines of the IV and BW images «Com-

pute∑
M

1(IV) & ∑
M

1(BW) », is performed using the same function.The results are 

recorded respectively in the vectors Vh and Bvt.  

Therefore, the parallelism of the "VC" processing consists in using two consecu-

tive kernels «Vertical_subdivision » and « horizontal_subdivision».  

Based on section II.C (Eq (5)), the maximum division number dmax is computed 

based on the largest dimension of the input image. Thus the images are proportionally 

scaled in a way that the largest dimension is 900 pixels. Consequently, in the “verti-

cal_subdivision” processing allows only 10 subdivisions. Similarly, in the “horizon-

tal_subdivision” processing allows 20 subdivisions. 

The implementation of the kernels on GPU involves the transfer of four vectors 

Vh, Vv, Bv and Bvt into the global memory of the GPU. 
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Fig. 9.  Working on a GPU card, the first row shows Workflow of the « Vertical_subdivision ». 

Vv and Bv are the input vectors for the «Vertical_subdivision » kernel. Firstly, the 

parallelism principle leads to perform the 10 subdivisions, which are applied along the 

vertical direction in parallel and each is processed into a thread block. The number of 

thread blocks is equal to the number of subdivision. Each thread block applies a single 

subdivision. Thereafter, at each vertical subdivision, we proceed to parallelize the 

processing of the creation of rp (p = 0; ...; d) disjunct regions. Each thread in the 

thread block is responsible for creating a single region by dividing the sum of vector 

region Vv by the sum of region Bv. The size of each region is calculated by dividing 
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the vector size Vv by the division number d corresponding to each thread block (d = 

blockIdx + 4), as shown in line 5 of the KERNEL «vertical_subdivision ». Conse-

quently, parallel processing between threads decreases the times from O(10M) to O 

(M/4). 

Algorithm 2 : Vertical_subdivision KERNEL 
_global_void Vertical_subdivision (IN :Float* Vv, 

Float* Bv, ,int cols; OUT :Float *dv)  

tx ← thread x position  

bx ← block x position  

Idx←tx+ bx* block x dimensions 

d← bx+4 

TR ←cols/d;  

for i = (Idx *TR) to  ((Idx + 1)*TR) do 

   If(i<cols) 

   S1 ←S1+Vv[q]   %Somme of region in Vv vector 

   S2 ←S2+ Bv[q] %Somme of region in Bv vector  

   end if  

end for 

S3 ← S1 / S2 

for i = (tx *TR) to  ((tx + 1)*TR) do  

    if (i<cols) 

   dv[i + Idx*cols] ← S3 

   end if 

end for  

 end KERNEL 

In the second kernel «horiz_subdivision», Vh and Bvt are the input vectors for the 

subdivision application along the horizontal direction. Similarly, the same parallelism 

principle is performed for the 20 subdivisions. The main difference consists at modi-

fying the line 6 by TR = Rows / d. The times of parallel processing between threads is 

decreased from O (20 N) to O (N/4). 

6 Experimental Results 

6.1 Experiment principles 

As mentioned earlier, three contributions are used to reduce the execution time. After 

introducing the soft and hard environment employees described in session 6.2, we 

conducted three experiments to evaluate the execution time and the speed up of each 

contribution. The first experiment evaluates the impact of the algorithmic optimiza-

tion on the OD detection execution time. The second experiment examines the GPU 

parallel implementation. Thus, we compare the performance of the Opencv/CPU 

functions and OpenCV/GPU ones. Hence, the impact of the kernel implementation is 

studied. Finally, we quantify the rising of the execution time of the whole implemen-
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tation after the contributions. To insure a credible experimentation, the implementa-

tions are applied using 10 images of the STARE database, chosen randomly. 

6.2 Hardware &software resources 

All implementations are tested on an I7 architecture having a processor frequency 

equal to 3.67 GHz with 8 GB of main memory and Windows 8.1 running. The paral-

lel version is implemented using the CUDA v8.0 programming environment on 

NVIDIA Geforce GTX 980. This architecture belongs to the Maxwell family. It con-

tains 16 streaming multiprocessors (SM). Each containing 128 processors (GPU) that 

operates at 1216 MHz. 

OpenCV (Open Source Computer Vision) is an open source library originally d e-

veloped by Intel, which provides functions for creating real time applications of co m-

puter vision and image processing. This library is written in C and C++ and can be 

run in environments such as Linux, Windows and Mac OS X. Initially, the implemen-

tation of the sequential OD detection algorithm was performed by combining the 

OpenCVversion 3.2 and C ++ programming languages. 

In the parallel version, the operations are performed on the GPU using the appro-

priate OpenCV/GPU extension. OpenCV/GPU are open source libraries that provide 

an interface for video input, display and programming on GPU using a bunch of high -

level implementations of various image processing and computer vision algorithms 

[22]. The processing time with OpenCV/cuda up to 18 times faster than native 

OpenCV function [23]. 

6.3 Algorithmic optimization evaluation 

In this session, the algorithmic optimizations described in session V are evaluated. 

Each processing is coded before and after optimization, and run for all image set. The 

execution times are illustrated in Fig.10.(a) and Fig.10.(b) respectively for “LSC” and 

“VC”. In this optimization phase an increased speedup, compared to the normal im-

plementation phase, can be determined.  

 

  
(a) (b) 

Fig. 10. Execution time: (a) Without “LSC” optimized code Vs With“LSC” optimized code. (b) 

Without “VC” optimized code VsWith“VC” optimized code. 
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Then, the whole method is implemented before and after algorithmic optimization, 

where execution times are illustrated in Fig.11. This optimization allowed achieving 

averages speed up of 1.7. 

 
Fig. 11. Time needed to perform the whole OD detection algorithm without “LSC” & 

“VC”optimized code Vs. T ime with “LSC” and “VC” optimized code.The speedup of the OD detection 

algorithm depending on the “LSC” and “VC” optimized code. The speedup is always given as relative to a 

CPU runtime. 

 

6.4 GPU implementation evaluation 

Evaluation of Implementing OpenCV functions on GPU architecture.  

The OpenCV function set is implemented by default on the CPU and there after 

implemented in GPU-architecture. The execution times of the Opencv function set, on 

CPU and GPU are indicated in Fig.12.(a). Similarly, the whole execution time is 

shown in Fig.12.(b) where values prove that running OpenCV functions on GPU ar-

chitecture leads to a speedup equal to 2. 
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Evaluation of GPU kernels  

To implement the “LSC” processing on GPU, we proceed to split the input image 

into 16 sub-images in order to distribute then to 16 blocks, with respect to the SMs 

number. Thus, each sub-image with (57 * 900) resolution is processed on a separate 

block. In fact, each SM is composed of Id.x *Id.y =128 GPUs. Thereby, each thread 

of the same block generates (1 * 900) pixels of the result image. For the distribution 

of images X, Y, Z and T between the threads, the pseudo code "*App_Hessien" will 

be called by the host with the following instructions : 

*App_Hessien<<< 16, 128>>(INPUT:*X,*Y,*Z,*T, cols, rows, 

OUTPUT:*RES); 

The LSC processing is run on both CPU and GPU architectures where execution 

times are shown in Fig.13 (a). To implement the “VC” on GPU architecture, we pro-

ceed to perform consecutively tow kernels of subdivision image. For the kernel «ver-

ical subdivision », the maximum number of subdivisions performed on the vector Vh 

and Vv is less than the number of GPUs in a single SM of the GTX980 graphics card. 

Thereby, the processing of each subdivision is assigned to a single SM. In such a way, 

each thread consists of applying a single vertical subdivision. Similarly, in the second 

kernel «horiz_subdivision », the number of subdivisions performed horizo ntally does 

not exceed the number of GPUs in single SM. Thereby; each thread consists of apply-

ing a single horizontal subdivision.  

   

Fig. 12.  (a)Time needed to perform all OpenCVfuction Vs. Time needed to perform all OpenCV GPU fuction. (b) Time needed to 

perform the whole optimized OD detection algorithm: With OpenCV Vs. With OpenCV-GPU. The speedup is given as relative to a 

GTX 980 runtime. 
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The blood vessel concentration execution times in both CPU and GPU architectures 

are illustrated in Fig.13 (b). The implementation of both “LSC” and “VC”processing 

on GPU architecture allows to enhance considerably the execution times, where val-

ues is illustrated in Fig.13 (c). The execution time improvement leads to a speedup is 

equal to 2.5. 

7 Conclusion 

The paper objective consists at optimizing the method processing, proposed in [7], in 

order to enhance the computational performance.  

First, we proceeded to optimize processing by shifting steps outs ide loops to re-

duce the time. Afterwards, all processing are implemented in GPU architectures. 

 

  

 

Fig. 13. Time needed to perform “LSC” sequential optimized code Vs “LSC” parallel optimized code. (b) Time needed to 

perform “VC” sequential optimized code Vs “VC” parallel optimized code.(c) Time needed to perform whole OD detection  

optimized algorithm with Opencv-cuda and with : the sequential  “LSC” & “VC” code Vs.  The parallel “LSC” and “VC” 

code. The speedup is given as relative to a GTX 980 runtime. 

0

0.00005

0.0001

0.00015

0.0002

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10

Time 
parallel(s) 

Time 
Seq(s) 

Images 

“LSC”  : CPU Vs GPU 

0

0.0002

0.0004

0.0006

0.0008

0.001

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 2 3 4 5 6 7 8 9 10

Time 
parallel(s) 

Time 
 Seq(s) 

Images 

“VC” : CPU Vs GPU 

Seq VC parallel VC

2.35

2.4

2.45

2.5

2.55

2.6

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

speedup Time 

Images 

GPU implementation  

without kernel with kernel speedup



19 

Based on experimental results, the contributions insure enhancing computational 

performance where the speedups are respectively equal to 1.7 and 2.5. Then, all con-

tributions provide a significant computational efficiency enhancement where the 

speedup is equal to 8.6, as indicated in Fig.14. Consequently, the average execution 

time is reduced from 10.2 to 1.1 seconds.  

 

Fig. 14. whole implementation of OD detection: first version (c++/OpenCv version without 

optimization) vs. last version (parallel/Opencv-Cuda with Optimization). 

The robustness of the technique proposed in [7] is guaranteed by evaluating the meth-

od in eight publicly-available datasets. Experiments revealed an OD localization accu-

racy of 99.15%, the proposed model reduces the average computation time 8.6 times 

when compared to the sequential method 
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