
HAL Id: hal-03363234
https://hal.science/hal-03363234

Submitted on 3 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computational Efficiency Optimization of Optic Disc
Detection in Fundus Image

Sofien Ben Sayadia, Yaroub Elloumi, Rostom Kachouri, Mohamed Hedi
Bedoui

To cite this version:
Sofien Ben Sayadia, Yaroub Elloumi, Rostom Kachouri, Mohamed Hedi Bedoui. Computational
Efficiency Optimization of Optic Disc Detection in Fundus Image. Applications Médicales de
l’informatique : Nouvelles Approches (AMINA’2020), Dec 2020, Monastir, Tunisia. �hal-03363234�

https://hal.science/hal-03363234
https://hal.archives-ouvertes.fr

Computational Efficiency Optimization of Optic Disc

Detection in Fundus Image

Sofien BEN SAYADIA
1,2,3

 , Yaroub ELLOUMI
1,2,3

 , Rostom Kachouri
 2

, Mohamed

Hedi BEDOUI
1

1 Medical Technology and Image Processing Laboratory, Faculty of medicine, University of

Monastir, Tunisia.
2 LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée.

3 Université de Sousse, ISITCom, 4011, Hammam Sousse, Tunisie.

sofien.bensayadia@esiee.fr

Abstract. The OD detection is a mainly step in many methods for ophthalmic

diseases diagnosis. The work described in [7] proposes a performance optic

disk detection approach based on blood vessel tracking and optic disk contrast.

However, the method is characterized by a higher execution time which is about

10 s in STARE DB images. Moreover, the execution time increases proportion-

ally with the fundus image resolution. This computational performance is a lim-

iting factor to employ the method in diagnosis systems of ophthalmic diseases.

This paper aims to optimize the method processing in order to enhance the

computational performance. The first contribution consists of optimizing repet i-

tive steps with the aim of reducing times. Thereafter, all processing steps are

implemented in GPU architectures. The experimental results indicate that each

one of the contributions insures enhancing computational performance with

speedup equal to 1.7 and 2.5, respectively. The implementation with combined

contributions leads to a speedup equal to 8.6 which leads to an execution time

about 1 second.

Keywords: fundus image; Optic Disc localization, Parallel algorithms,

Graphics Processing unit (GPU), CUDA, Real-time GPU implementation.

1 Introduction

The Optic Disk (OD) is a main retinal anatomic structure in fundus image. The OD

detection is a critical step in many diagnostic systems for ophthalmic diseases. In the

case of diabetic retinopathy (DR), the OD has the same color and contrast than Hard

Exudates (HEs). Therefore, several works [11,2,3,4,5] proceed to detect and remove

OD before segment HEs. Moreover, the works described in [6,18,8] to detect the neo-

vascularized blood vessels in the OD in order to deduce the proliferative DR. In the

case of the Glaucoma, several works aim to extract the OD and the Cup Disc where

the size ratio indicate the presence of the disease [9,10,13] and the pathology level

[24]. Other works detect the Glaucoma by figuring out the position of the cup disc

2

with respect to the OD. The Age-related Macular Degeneration (AMD) is always

detected through the drusens segmentation which is located in the macula and has the

same contrast than the OD. Therefore, the works described in [32] aim to detect all

shape having a higher contrast, and then eliminate the OD in order to detect the

drusens. Moreover, several approaches are proposed in the objective of extracting the

macula [16,14], the fovea [15] and the blood vessels [17], which OD location is an

important processing step.

A significant number of OD localization methods are proposed in the literature. Re-

cent OD localization approaches offer both high and close detection performance.

Those methods proceed to detect the OD based on their retinal characteristics such as

the brightness, the contrast and circular shape. The algorithm described in [25] em-

ploys the Radon Transform (RT) to localize OD based on its brightness and round-

ness. The RT is applied with several angles to each sub-window in the objective of

detecting OD circular shape. Hashim et al. [26] apply a binary mask on the intensity

channel to exclude the background pixels. Then, morphological operators and contrast

enhancement techniques (Gamma transformations) are used in conjunction with the

difference of the Gaussian filter (DOG) to obtain the OD border. In the work of

Giraddi et al. [27], a thresholding is employed to eliminate false positive based on the

OD brightness and roundness shape. Then, the OD segmentation is performed using

the vector field gradient (GVF snake). These methods present high success rates in

normal images. However, the detection provides inaccurate results due to the presence

lesions having the same brightness or size than the OD.

Others OD detection methods are based on vessel tracking. Foracchia et al. [29] used

a parametric geometric model (parabolic path) to describe the typical direction of the

vessel structure. In the work proposed by Zhang et al. [28], the density, compactness

and uniformity of blood vessels are formulated to find the OD coordinates. Then, the

matched filter is applied in various dimensions in order to provide candidate location.

Those approaches tend to be the most Robust in OD appearance change. However,

they can provide a wrong OD detection if the vascular network is partially extracted.

Some others OD detection methods employ the OD characteristics, and exploit the

location and orientation of vessels. For example, Youssif et al. [30] uses the direc-

tional pattern of retinal blood vessels for the OD detection. Their method involves

normalizing contrast and luminosity. Xiong and Li [31] have proposed a method for

locating the OD center by extracting a variety of features including vertical and hori-

zontal vessel intensity and the size of the bright object. Soares et al.[7] proposes an

algorithm based on the cumulative sums of successive subdivisions and the vessel

enhancement. The next step consists at following vessel convergence to locate the

OD. These approaches tend to be the most effective and reliable, even in incomplete

appearance and change of OD, and in incomplete construction of the vascular stru c-

ture. The work proposed in [7] achieves an OD localization accuracy of 99:15%. This

performance is provided using eight public datasets including the STARE and DRIVE

ones.

However, the method is characterized by a higher execution time which is about 10 s

in STARE DB images where the resolution is equal to (700 * 605). Moreover, the

execution time increases proportionally with the fundus image resolution. As an ex-

3

ample, the current retinographs TRC-NW 7 SF[12] provides fundus images with reso-

lution equal to (3008 x 2000) which is 14 times greater than a STARE dataset image,

and hence a similar rise on execution time. This computational performance is a limit-

ing factor to employ the method in diagnosis systems of ophthalmic diseases.

This paper proposes optmize and parallelize the processing method proposed in [7]

with the aim of reducing the time of execution. The article is organized as follows. In

Section II, we describe the approach of OD detection. In section III, we analyze pro-

cessing times and complexity in terms of approximate number of operations. Then,

we describe our proposed contributions for the acceleration of the OD detection alg o-

rithm. The evaluation of proposed contributions using different retinal image dat a-

bases is done in Section V, followed by Discussion and conclusion in last section.

2 Optic Disc Detection method [7]

This section presents a description of the method proposed by Soares et al [7] for

detecting OD in the fundus image. The main idea is based on identifying the concen-

tration and the convergence of the main vessels in order to detect the OD location.

This method is composed by successive processing blocks as indicated in the

flowchart in Fig.1 and which are described to the following sessions.

Fig. 1. Method proposed by Soares et al [7]

V
e

ss
e

l E
n

h
a

n
ce

m
e

n
t

V
e

ss
e

l O
ri

e
n

ta
ti

o
n

D

e
te

ct
io

n
V

e
ss

e
l

co
n

ce
n

tr
a

ti
o

n

Preprocessing

« blood vessel extraction»

« local shape curvature »

« edge detection »

Opening

Maximization&Addition

Extract image Iv&Ih

Subdivide image

Apply cumulative SUM

postprocessing

I,BW

Y, Z, T

X

RES

OKI

Iv,IH

dvi,dhi

dv,dh

4

2.1 Preprocessing:

The first processing block entitled "preporcessing" starts by resizing the green

component of the image to a resolution of (900 * 900) using a bicubic interpolation

[7], in the case where the resolution is greater than (900 * 900). Then, the background

is separated from the fundus image using a binary mask applied to the red channel

where the threshold is equal to 28 whose result is saved in the BW image. The next

step eliminates the noise by applying the "Gaussian Blur" filter with a rectangular

structure of 13 × 13 pixels and σ = 4, the result is saved in image I.

2.2 Vessel Enhancement

The main objective of this block consists at extracting the main vessels from the ret i-

na vascular network based on their contrast and thickness. The first step, called

"bloodvessel extraction", aims to reconstruct the thicker vesselsthat cross the

OD.Thus, the Laplace and gradient filter are applied separately to the Iimage. Next,

thevascular network is constructed by calculating the difference between the square

absolute value of the gradient image and the Laplacian image.The result is saved in

the image X (M * N) as shown in fig.2 (b).

 The provided images are characterized by a higher noisy which avoid distinguish

between vascular structures and non-vascular ones. Therefore, the Hessian matrix [7]

is employed in order to and then removing the thin vessels, whose treatments are re-

spectively entitled «edgedetection» and «Local Shape Curvature» («LSC»).

The second step, called “edge detection”, consists of describing an edge detector by

using the second-order derivatives. The first-order derivatives are calculated by apply-

ing a "Sobel" filter three times on the image I, using three matrices with deriv ative

orders respectively in the x direction, the y direction, and the x and y directions. Then,

each "Sobel" filter is followed by a Gaussian filter for calculating the second -order

derivatives. The results are recorded respectively in the Y, Z and T images.

Fig. 2. Extract blood vessels networks.(a) Retinal imageI(M*N). (b)Image X(M*N).

 The third step, called “Local Shape Curvature (LSC)” leads to distinguish vascular

structures from non-vascular structures by minimizing the impact of false vessels and

avoiding lesions such as micro-aneurysms and exudates. In fact, the background pix-

els are characterized by a small magnitude of the derivatives (the eigenvalues) relative

to the values present in the sets of the vessel pixels. Therefore, the spatial derivative

5

matrix H is constructed for each point p of index i, j such that i∈ [0, N-1], j∈ [0, M -

1], as indicated in equation (1).

𝐻 = (
𝑌(𝑖, 𝑗) 𝑇(𝑖, 𝑗)

𝑇(𝑖, 𝑗) 𝑍(𝑖, 𝑗)
) (1)

Then, the eigenvalues λ1 and λ2, are calculated by solving the characteristic equation

of the Hessian. These values are essential to distinguish, respectively, the minimum

and maximum principal curvatures. The author indicates that the minimal eigenvalue

λ1 represents a low contrast corresponding to the pixels belonging to the regions of

the blood drops or the microaneurysms.However, the maximum Eigenvalue λ2 repre-

sents the points of interest corresponding to the pixels belonging to the main vessels

that cross the DO [7].

For this, at each point p, the minimum eigenvalue is removed from the image of the

vascular network X as presented in equation (2). The result is saved in RES images

(Fig.3 (b)).

𝑅𝐸𝑆 = 𝑋− 𝑚𝑖𝑛 ⁡(𝑋, 𝜆1) (2)

Then, to maximize the impact of the main vessels of the vascular network, each

pixel of the RES image is multiplied by the corresponding maximum eigenvalue

(Fig.3 (c)).

Fig. 3. Extract LSC:(a) Retinal image; (b) thin vessels removed;(c) Maximize the impact of

principal vessels.

2.3 Vessel Orientation Detection

This processing blockconsists in extracting the orientations of the main vessels. The

retinal vessels merge from the DO vertically and horizontally where directions are

between 45 ° and 135 °, respectively. Thus, the vessel structures are extracted in each

directionamong α = {0 °; 45 °; 90 °; 135 °}. Since the vessel segments may have dif-

ferentorientations, vessel in each direction α must be evaluated with different angles.

Each angles φα for each direction is presented in equation (3).

𝜑0° = ⁡ {0°, 15°, 30°, 45°, 135°, 150°, 165°}; (3)

6

𝜑45° =⁡ {30°, 40°, 50°, 60°};

𝜑90° =⁡ {45°, 60°, 75°, 90°, 105°, 120°, 135°};⁡

𝜑135° = ⁡{120°, 130°, 140°, 150°};

Since the author aims to enhance linear structures, a logical choice for a structuring

element is a “line” with a variable length and a variable angle covering both the short

and long vessels. The linear structure (M) is performed for all the lengths and the

deviation angles φα, where the line lengths designated by l={5; 10; 15; 20;25} pixels.

Thus, the first step in this processing block consists at applying Opening in order to

extract the vessels having a shape similar to the elements of linear structure M. The

application of this operator leadsv to conserve the vessels corresponding to the

element structure (Mki)in each image OKi, where k is the length number and i is the

angle number.The k * i = 80 images have the same resolution (M * N) of the image

input RES. The second step, each image provided by Opening are compared to of the

oneswith deviation φα, by fixing the length l. Then the vessel structure of each

orientation {0°; 45°; 90°; 135°} is defined as the sum of the maxima obtained for each

value of l. The approach of this step is illustrated by equation (4).

𝛼 = ∑ maxφα
𝑶
𝒍

φα5
𝑙=1 (4)

The third step leads to extract separately the horizontal and vertical coordinates of

the OD position (px, py). For this purpose, two images IH and IV are created which

correspond respectively to the horizontal axis and to the vertical axis.The first image

IH contains the structure of the vertical vessels, which is determined by subtracting

the orientations {0 °; 90}. Similarly, the second (IV) contains the structure of the

vertical vessels, which is determined by adding the orientations {45 °; 90 °; 135 °}.

2.4 Vessel concentration («VC»)

This processing block consists at detecting the converging points and finding the

concentration zone of the vessels network. Thus, the images IH and IV are subdivided

successively d times along the vertical and horizontal direction, respectively. The

maximum number of divisions dmax, is calculated such as formulated in equation (5).

d𝑚𝑎𝑥 = round (
max(N,M)

µ
) (5)

Where µ=70 or 45 respectively for IH and IV images. At each subdivision d, the

regions ri (i = 1; ...; d+1), disjoint vertical, are created on the image IH (each

resolution (N, M / d + 1)).Then, a vertical average of each region moy_ri is calculated

based on the image IH and BW (binary mask image), as indicated in equation (6).

Then, a vertical division image (dv) is created, whose pixel values are equal to the

average value of the corresponding region.Finally, the images extracted at each

subdivision are added together.Similarly, this is extended to image IV to create the

horizontal division image (dh), as indicated in equation (7).

7

𝑚𝑜𝑦_𝑟𝑖 =
∑ ∑ 𝐼𝐻

𝑖∗𝑀/𝑑
𝑖

𝑁
1

∑ ∑ 𝐵𝑊
𝑖∗𝑀/𝑑
𝑖

𝑁
1

 (6)

𝑚𝑜𝑦_𝑟𝑖 =
∑ ∑ 𝐼𝑉𝑀

1
𝑖∗𝑁/𝑑
𝑖

∑ ∑ 𝐵𝑊𝑀
1

𝑖∗𝑁/𝑑
𝑖

 (7)

2.5 Post-processing

In this processing block, the OD region is determined based on the highest vessel

concentration index.Therefore, a horizontal projection on the vertical division image

(dv) is performed to identify the pxposition. Similarly, a vertical projection on the

horizontal division image (dh) is performed to identify thepyone. The point selected

as point [px; py], is marked in the retinal image as the location of OD.

In some retinal images, (px; py) may be slightly outside the OD region. To over-

come these situations, the maximum point of vessel convergenceand the point of max-

imum intensity, designated respectively by (cx; cy) and (bx; by), are calculated within

these regions. The final OD position is given by the average of the three points

p(x,y),c(x,y) and b(x,y) (Fig.4).

Fig. 4. Final OD localisation

3 Complexity analysis & parallelism principles

The objective of this section is to study the computing performance of the OD detec-

tion method proposed by Soares [7]. Therefore, the computational complexitiesare

determined for each processing blocks and for each step of the vessel enhancement

and the vessel orientation detection blocks, in terms of the input image resolution M ×

N. similarly, the execution times are provided by implementing the method in C ++

&OpenCV and run using STARE database images whose resolution is (605 * 700).

The computational complexity in terms of approximate number of operations and

execution time values are indicated in Table 1.

The post processing complexity is modeled in terms of w which corresponds to the

OD diameter. Based on [1], the w value can be substituted by 1/7 M, which implies a

8

whole complexity equal to 245*M*N+3.5*M. The implementation leads to an execu-

tion time equal to 10.25s.

This approach is applied to image where the maximal resolution is 900 * 900 pixels.

However, actual ophthalmologic devices provide fundus images an important higher

resolution, such as the ones described in [12] where the resolution 4 to 7.4 times

greater. Based on the whole computational complexity in terms of approximate num-

ber of operations, such rising on fundus image resolution implies a similar increase on

the execution time. Consequently, the computational performance is a limiting factor

to employ the OD method [7]. Therefore, parallelizing the OD detection processing is

primordial in order to reduce execution time.

Table 1. OD detection treatments profiling.

 Complexity in terms

of approximate num-

ber of operations

Execution time

(seconds)

Preprocessing 5.NM 0,042

Vessels

Enhancement

« blood vessel extraction» 3.NM 0,11

« edge detection » NM 0,06

« LSC» 123. NM 4,14

Extract the 4

principal vessels

«Openning» 80. NM 2,57

«Maximization & Addi-

tion»
NM 0.052

«VC» 31.NM 2.58

Postprocessing NM+23.w 0,7

Total OD localization 245.NM+23w 10,25

Based on the method description in Section II, each step employs the result provid-

ed by the previous processing. Consequently, a parallelism on the processing step

level is inadequate. All processing steps can be performed in (n × MN) instructions

where n is an integer value n > 0. Each step corresponds to an iterative processing

with a higher iteration number. Therefore, a parallelism strategy is able to be applied

for each step separately. The SIMD principle is the adequate principle of parallelism

where the implementation is to run on GPU architectures .

4 Processing optimization

Our first contribution aims to optimize the processing in order to reduce the execution

time. The "LSC" processing consists at defining the H matrix of spatial derivatives for

each pixel, as indicated in the equation (1) in section III.A. The Hessian matrix pro-

cessing requires defining λ parameter by resolving the determinant of the matrix, for

each pixel as indicated in equation (8).

9

Det⁡(|⁡H⁡ − ⁡λA⁡| ⁡ = ⁡0)⁡ (8)

Where A is the identity matrix. Thereafter, the formulations of λ1 and λ2 parameters

are to be computed. The resolution of the matrix H and hence the formulation of λ1

and λ2 equations are done for each image pixel I whose number is M.N. However,

those tasks are performed with the same size (2 * 2) of the H matrix. Therefore, λ1

and λ2 will have the same formulation whatever the pixel is , where their equations are

indicated respectively in (9) and (10) [20, 21].

𝜆1(𝑖 ,𝑗) =
1

2
(−√2 ∗ 𝑌 ∗ 𝑍 + 𝑌2 +4 ∗ 𝑇2 + 𝑍2+ 𝑍 + 𝑌)

(𝑖 ,𝑗)
⁡ (9)

𝜆2(𝑖 ,𝑗) =
1

2
(√2 ∗ 𝑌 ∗ 𝑍 + 𝑌2 + 4 ∗ 𝑇2 + 𝑍2+ 𝑍 + 𝑌)

(𝑖,𝑗)
 (10)

Thereby, we proceed to determine the equations (8) and (9) only once in order to

optimize the "LSC" processing time. The Figure 5 illustrates the flowcharts of the

"LSC" step respectively before and after optimization, where the formulation steps of

λ1 and λ2 modeled with a green background, are removed from the iterative loop.

Equations λ1 and λ2 are provided as constant in the implementation. In this way, The

"LSC" is performed in O(22MN) times instead of O(123xMN) times, where the input

image size is (M*N).

Substract matrices

Compute λ1 and λ2

Select min values
between λ1 and λ2

delete min eigenvalue

multiply max eigenvalue

For each Pixel p

Define equation of λ1 and
λ2

Compute λ1 and λ2

Select min values
between λ1 and λ2

delete min eigenvalue

multiply max eigenvalue

For each pixel p

λ1 and λ2

Fig. 5. Optimization of treatment «LSC» (a) Computingλ1 and λ2 inside loop (b) computing λ1

and λ2 outside loop.

The proposed Vesselness measure [33], Hessian multiscale features [34] and Feature

Extraction [35] also based in the Hessian matrix eigenvalues . It can be observed that

the optimization principle of "LSC" can be in applied order to reduce the execution

time of these treatments.

For the vertical subdivision in the “VC” processing block, the column pixel sums

Vv and Bv are performed respectively from the image IH and BW, as indicated in

(Eq.6). Thereafter, the successive subdivision is applied. Those steps are repeated 10

times. However, Vv and Bv computing leads to the same results whatever the iteration

10

is. Similarly, the Vh and Vbh in the horizontal subdivision are performed 20 times to

result identical values.

Therefore, we proceed to optimize the processing by computing once the Vh, Vv,

Bv and Bvt vectors. Theirs processing are moved outside the loops, as modeled with a

red background in Fig 6. In this way, the treatment «VC» is performed in

O(MN+10.M+ 20.N) times.

Fig. 6. Optimization of treatment «VC» (a) Computing Vv, Bv, Vh and Bvt inside loop (b)

computing Vv, Bv, Vh and Bvt outside loop.

5 GPU implementation

In this section, we aim to parallelize the implementation of the pipeline image pro-

cessing proposed by [7] on GPU architecture. In fact, the Opencv / GPU library pro-

poses a predefined set of image processing functions that are run in GPU architecture,

proposing a higher computational performance.

Therefore, our parallel implementation principle consists of implementing the steps

using directly OpenCV/GPU library if they have corresponding functions. These pro-

cessing steps are joined in the GPU architectures to avoid communication time be-

tween host and device. The intermediate data is directly integrated into the memory of

the GPUs architecture. In the opposite case, the processing is implemented using

CUDA kernel as described in the following section. The implementation of all steps is

modeled in fig.7 where OpenCV/GPU functions and kernels are modeled respectively

by yellow and red rectangles.

Vv=Sum cols IH (∑N
1)

Bv=Sum cols BW (∑N
1)

Apply vertical
subdivision

10

Vv=Sum cols IH (∑N
1)

Bv=Sum cols BW (∑N
1)

Apply vertical
subdivision

10

Vh=Sum Row IV (∑M
1)

Bvt=Sum Row BW (∑
M

1)

Apply horizontal
subdivision

20

Vh=Sum Row IV (∑M
1)

Bvt=Sum Row BW (∑
M

1)

Apply horizontal
subdivision20

11

5.1 “LSC” processing kernel

“LSC”processing consists at computing the RES[i,j] in terms of the pixels X[i,j],

Y[i,j], Z[i,j] and T[i,j] where Res in the output image, X, Y, Z and T in the intputs

images. The “LSC” treatment can be processed independently for each pixel (N*M

values), giving significant computational effort.

V
es

se
l c

o
n

ce
n

tr
at

io
n

Preprocessing

Read Image

« blood vessel extraction»

« edge detection »

« Opening»

« Maximization &Addition »

Post-processing

« local shape curvature»

Sum of Columns

«Vertical_subdivision»

«horizontal_subdivision»

Sum of Rows

CPU

GPU\OpenCV

GPU\KERNEL

GPU\OpenCV

GPU\KERNEL

GPU\KERNEL

CPU

Fig. 7. Diagram block of the proposed GPU implementation.

The result is also that all pixels can be processed simultaneously by independent

computing threads.

we have previously uploaded the four images X,Y,Z and T, from the host memory

to the device global memory and a CUDA kernel is launched to make the LSC

treatment.

Firstly we designed an algorithm similar a ‘‘pixel by pixel’’ approach where each

thread will do the computations concerning one pixel and add the resultat to Image

RES. With this approach, The images are divided into several sub-images xi, yi, zi

and ti and each is processed into a thread block, as indicated by the yellow cell in the

image of Fig.8 (a). Each thread block (N threads) computes the LSC for a particular

sub-image RESi of the result image, where i correspndante to the number of thread

block is determined as indicated in equation (11).

12

NBblock⁡ = ⁡round⁡(NBpixels⁡/⁡(NBSM ∗ NBgpu)) (11)

Thereafter, we proceed to parallelize the processing of the resulting image pixels.

Therefore, each thread in the thread block provides single-pixel "LSC" processing of

the resulting image. The pixels of the same indices of images X, Y, Z and T represent

the parameters of single-thread Input, as indicated by cells in the input sub-images of

Fig.8 (b).

Thread
0

Thread

1
Thread

5
Thread

N

Xi

Yi

Zi

Ti

Thread block size

Threads
in block

Threads
in block

RESi

Thread block Thread block

Thread block

Thread block

Thread block Thread block

Thread block
size

Thread block
size

Image

Thread block
size

Input Sub-
images

Input Sub-
images

Output
Sub-image

Output
Sub-image

P
ix

e
ls

 0

P
ix

e
ls

 5

P
ixe

ls N

P
ix

e
ls

 1

Pixel 0

P
ix

e
l

N

(a) (b)

Fig. 8. Fragmentation of images: (a) Ordering on blocks of threads. (b) Ordering on threads

As a result, the complexity of the processing is reduced to the complexity of the a l-

gorithm executed in the kernel (LSC).

Algorithm 1 presents the kernel code executed by all threads, The KERNEL

« LSC» will be called in the host by the instruction:

*LSC<<<NBblock,N>>(INPUT:*X,*Y,*Z,*T, cols, rows, OUTPUT:*RES);

Algorithm 1 : LSC KERNEL

_global_void LSC (IN :X,Y,Z,T ; OUT :RES)

tx ← thread x position within the block

λ1[tx]← Apply Eq_8(Y[tx],Z[tx],T[tx])

λ2[tx]← Apply Eq_9(Y[tx],Z[tx],T[tx])

min_values←MIN(λ1[tx], λ2[tx])

RES[tx] ←X[tx]-min(X[tx], min_values)

max_values←MAX(λ1[tx], λ2[tx])

RES[tx] ←RES[tx] * max_values

synchtreads() _ Wait for all thread to finish their con-

tribution computations.

end KERNEL

13

5.2 «VC» processing kernel

The implementation of "VC" consists of creating subdivision images along the vert i-

cal and horizontal direction. The creations of the subdivision images are performed

respectively according to the input images BW and IH or IV.

Based on the VC processing optimization in Section III, we note that the sums of

the pixels of the columns of the images IH and BW «Compute ∑
N

1(IH) & ∑
N

1 (BW)

», are performed in parallel using the "cuda :: reduce ()" function of the

OpenCV/CUDA library. The results are recorded respectively in the vectors Vv and

Bv. The reduce() function can be used to compute horizontal and vertical sums of an

image.Thus, the sum of the pixels of the lines of the IV and BW images «Com-

pute∑
M

1(IV) & ∑
M

1(BW) », is performed using the same function.The results are

recorded respectively in the vectors Vh and Bvt.

Therefore, the parallelism of the "VC" processing consists in using two consecu-

tive kernels «Vertical_subdivision » and « horizontal_subdivision».

Based on section II.C (Eq (5)), the maximum division number dmax is computed

based on the largest dimension of the input image. Thus the images are proportionally

scaled in a way that the largest dimension is 900 pixels. Consequently, in the “verti-

cal_subdivision” processing allows only 10 subdivisions. Similarly, in the “horizon-

tal_subdivision” processing allows 20 subdivisions.

The implementation of the kernels on GPU involves the transfer of four vectors

Vh, Vv, Bv and Bvt into the global memory of the GPU.

Vv

Bv

Thread block

INPUT
VECTORS

OUPUT VECTORS

M

M

M

M

M

d = 4Block 0Block 0

Block 1Block 1

Block 2Block 2

Block 10Block 10

d = 5

d = 6

d = 14

M/d

Th0 Th1 Th2 Th3

Th0 Th1 Th2 Th3 Th4

Th0 Th13

Th0 Th5

G
LO

B
A

L
M

EM
O

R
Y

Fig. 9. Working on a GPU card, the first row shows Workflow of the « Vertical_subdivision ».

Vv and Bv are the input vectors for the «Vertical_subdivision » kernel. Firstly, the

parallelism principle leads to perform the 10 subdivisions, which are applied along the

vertical direction in parallel and each is processed into a thread block. The number of

thread blocks is equal to the number of subdivision. Each thread block applies a single

subdivision. Thereafter, at each vertical subdivision, we proceed to parallelize the

processing of the creation of rp (p = 0; ...; d) disjunct regions. Each thread in the

thread block is responsible for creating a single region by dividing the sum of vector

region Vv by the sum of region Bv. The size of each region is calculated by dividing

14

the vector size Vv by the division number d corresponding to each thread block (d =

blockIdx + 4), as shown in line 5 of the KERNEL «vertical_subdivision ». Conse-

quently, parallel processing between threads decreases the times from O(10M) to O

(M/4).

Algorithm 2 : Vertical_subdivision KERNEL
_global_void Vertical_subdivision (IN :Float* Vv,

Float* Bv, ,int cols; OUT :Float *dv)

tx ← thread x position

bx ← block x position

Idx←tx+ bx* block x dimensions

d← bx+4

TR ←cols/d;

for i = (Idx *TR) to ((Idx + 1)*TR) do

 If(i<cols)

 S1 ←S1+Vv[q] %Somme of region in Vv vector

 S2 ←S2+ Bv[q] %Somme of region in Bv vector

 end if

end for

S3 ← S1 / S2

for i = (tx *TR) to ((tx + 1)*TR) do

 if (i<cols)

 dv[i + Idx*cols] ← S3

 end if

end for

 end KERNEL

In the second kernel «horiz_subdivision», Vh and Bvt are the input vectors for the

subdivision application along the horizontal direction. Similarly, the same parallelism

principle is performed for the 20 subdivisions. The main difference consists at modi-

fying the line 6 by TR = Rows / d. The times of parallel processing between threads is

decreased from O (20 N) to O (N/4).

6 Experimental Results

6.1 Experiment principles

As mentioned earlier, three contributions are used to reduce the execution time. After

introducing the soft and hard environment employees described in session 6.2, we

conducted three experiments to evaluate the execution time and the speed up of each

contribution. The first experiment evaluates the impact of the algorithmic optimiza-

tion on the OD detection execution time. The second experiment examines the GPU

parallel implementation. Thus, we compare the performance of the Opencv/CPU

functions and OpenCV/GPU ones. Hence, the impact of the kernel implementation is

studied. Finally, we quantify the rising of the execution time of the whole implemen-

15

tation after the contributions. To insure a credible experimentation, the implementa-

tions are applied using 10 images of the STARE database, chosen randomly.

6.2 Hardware &software resources

All implementations are tested on an I7 architecture having a processor frequency

equal to 3.67 GHz with 8 GB of main memory and Windows 8.1 running. The paral-

lel version is implemented using the CUDA v8.0 programming environment on

NVIDIA Geforce GTX 980. This architecture belongs to the Maxwell family. It con-

tains 16 streaming multiprocessors (SM). Each containing 128 processors (GPU) that

operates at 1216 MHz.

OpenCV (Open Source Computer Vision) is an open source library originally d e-

veloped by Intel, which provides functions for creating real time applications of co m-

puter vision and image processing. This library is written in C and C++ and can be

run in environments such as Linux, Windows and Mac OS X. Initially, the implemen-

tation of the sequential OD detection algorithm was performed by combining the

OpenCVversion 3.2 and C ++ programming languages.

In the parallel version, the operations are performed on the GPU using the appro-

priate OpenCV/GPU extension. OpenCV/GPU are open source libraries that provide

an interface for video input, display and programming on GPU using a bunch of high -

level implementations of various image processing and computer vision algorithms

[22]. The processing time with OpenCV/cuda up to 18 times faster than native

OpenCV function [23].

6.3 Algorithmic optimization evaluation

In this session, the algorithmic optimizations described in session V are evaluated.

Each processing is coded before and after optimization, and run for all image set. The

execution times are illustrated in Fig.10.(a) and Fig.10.(b) respectively for “LSC” and

“VC”. In this optimization phase an increased speedup, compared to the normal im-

plementation phase, can be determined.

(a) (b)

Fig. 10. Execution time: (a) Without “LSC” optimized code Vs With“LSC” optimized code. (b)

Without “VC” optimized code VsWith“VC” optimized code.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 2 3 4 5 6 7 8 9 10

Time(s)

Images

LSC

without_opt with_opt

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 2 3 4 5 6 7 8 9 10

Time(s)

Images

VC

without_opt with_opt

16

Then, the whole method is implemented before and after algorithmic optimization,

where execution times are illustrated in Fig.11. This optimization allowed achieving

averages speed up of 1.7.

Fig. 11. Time needed to perform the whole OD detection algorithm without “LSC” &

“VC”optimized code Vs. T ime with “LSC” and “VC” optimized code.The speedup of the OD detection

algorithm depending on the “LSC” and “VC” optimized code. The speedup is always given as relative to a

CPU runtime.

6.4 GPU implementation evaluation

Evaluation of Implementing OpenCV functions on GPU architecture.

The OpenCV function set is implemented by default on the CPU and there after

implemented in GPU-architecture. The execution times of the Opencv function set, on

CPU and GPU are indicated in Fig.12.(a). Similarly, the whole execution time is

shown in Fig.12.(b) where values prove that running OpenCV functions on GPU ar-

chitecture leads to a speedup equal to 2.

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 10

speedup Time(s)

Images

whole implementation

without_opt with_opt speedup

17

Evaluation of GPU kernels

To implement the “LSC” processing on GPU, we proceed to split the input image

into 16 sub-images in order to distribute then to 16 blocks, with respect to the SMs

number. Thus, each sub-image with (57 * 900) resolution is processed on a separate

block. In fact, each SM is composed of Id.x *Id.y =128 GPUs. Thereby, each thread

of the same block generates (1 * 900) pixels of the result image. For the distribution

of images X, Y, Z and T between the threads, the pseudo code "*App_Hessien" will

be called by the host with the following instructions :

*App_Hessien<<< 16, 128>>(INPUT:*X,*Y,*Z,*T, cols, rows,

OUTPUT:*RES);

The LSC processing is run on both CPU and GPU architectures where execution

times are shown in Fig.13 (a). To implement the “VC” on GPU architecture, we pro-

ceed to perform consecutively tow kernels of subdivision image. For the kernel «ver-

ical subdivision », the maximum number of subdivisions performed on the vector Vh

and Vv is less than the number of GPUs in a single SM of the GTX980 graphics card.

Thereby, the processing of each subdivision is assigned to a single SM. In such a way,

each thread consists of applying a single vertical subdivision. Similarly, in the second

kernel «horiz_subdivision », the number of subdivisions performed horizo ntally does

not exceed the number of GPUs in single SM. Thereby; each thread consists of apply-

ing a single horizontal subdivision.

Fig. 12. (a)Time needed to perform all OpenCVfuction Vs. Time needed to perform all OpenCV GPU fuction. (b) Time needed to

perform the whole optimized OD detection algorithm: With OpenCV Vs. With OpenCV-GPU. The speedup is given as relative to a

GTX 980 runtime.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

Time (s)

Images

 Function Time: Opencv/CPU Vs

OpenCV/GPU

OpenCV/CPU OpenCV/GPU

0

0.5

1

1.5

2

2.5

3

0

1
2
3
4

5
6

7
8

9

1 2 3 4 5 6 7 8 9 10

speedup Time(s)

Images

Implementation Time with: Opencv Vs

OpenCV/GPU

OpenCV/CPU OpenCV/GPU speedup

18

The blood vessel concentration execution times in both CPU and GPU architectures

are illustrated in Fig.13 (b). The implementation of both “LSC” and “VC”processing

on GPU architecture allows to enhance considerably the execution times, where val-

ues is illustrated in Fig.13 (c). The execution time improvement leads to a speedup is

equal to 2.5.

7 Conclusion

The paper objective consists at optimizing the method processing, proposed in [7], in

order to enhance the computational performance.

First, we proceeded to optimize processing by shifting steps outs ide loops to re-

duce the time. Afterwards, all processing are implemented in GPU architectures.

Fig. 13. Time needed to perform “LSC” sequential optimized code Vs “LSC” parallel optimized code. (b) Time needed to

perform “VC” sequential optimized code Vs “VC” parallel optimized code.(c) Time needed to perform whole OD detection

optimized algorithm with Opencv-cuda and with : the sequential “LSC” & “VC” code Vs. The parallel “LSC” and “VC”

code. The speedup is given as relative to a GTX 980 runtime.

0

0.00005

0.0001

0.00015

0.0002

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10

Time
parallel(s)

Time
Seq(s)

Images

“LSC” : CPU Vs GPU

0

0.0002

0.0004

0.0006

0.0008

0.001

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 2 3 4 5 6 7 8 9 10

Time
parallel(s)

Time
 Seq(s)

Images

“VC” : CPU Vs GPU

Seq VC parallel VC

2.35

2.4

2.45

2.5

2.55

2.6

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

speedup Time

Images

GPU implementation

without kernel with kernel speedup

19

Based on experimental results, the contributions insure enhancing computational

performance where the speedups are respectively equal to 1.7 and 2.5. Then, all con-

tributions provide a significant computational efficiency enhancement where the

speedup is equal to 8.6, as indicated in Fig.14. Consequently, the average execution

time is reduced from 10.2 to 1.1 seconds.

Fig. 14. whole implementation of OD detection: first version (c++/OpenCv version without

optimization) vs. last version (parallel/Opencv-Cuda with Optimization).

The robustness of the technique proposed in [7] is guaranteed by evaluating the meth-

od in eight publicly-available datasets. Experiments revealed an OD localization accu-

racy of 99.15%, the proposed model reduces the average computation time 8.6 times

when compared to the sequential method

References

1. S. BEN SAYADIA, Y. ELLOUMI, M.AKIL, M.H. BEDOUI, “Computational Efficiency

of Optic Disk Detection on Fundus Image: A survey”, SPIE Proceeding on Real-Time Im-

age and Video Processing 2018, 15 - 19 April 2018, Orlando, Florida, United States,

DOI:https://doi.org/10.1117/12.2304941

2. WorapanKusakunniran, Qiang Wu, PanraseeRitthipravat, Jian Zhang, HardExudates

Segmentation based on Learned Initial Seeds and Iterative Graph Cut, Computer Methods

and Programs in Biomedicine (2018), DOI: 10.1016/j.cmpb.2018.02.011

3. PavlePrentašić, Sven Lončarić, Detection of exudates in fundus photographs using deep

neural networks and anatomical landmark detection fusion, Computer Methods and Pro-

grams in Biomedicine (2016), DOI:http://dx.doi.org/doi:10.1016/j.cmpb.2016.09.018.

4. askiratKaur , Deepti Mittal, A generalized method for the segmentation of exudates from

pathological retinal fundus images, Biocybernetics and Biomedical Engineering, Volume

38, Issue 1, 2018, Pages 27-53, DOI:https://doi.org/10.1016/j.bbe.2017.10.003

5. Javeria Amin, Muhammad Sharif, MussaratYasmin, Hussam Ali, Steven Lawrence Fer-

nandes, A Method for the Detection and Classification of Diabetic Retinopathy Using

Structural Predictors of Bright Lesions, Journal of Computational Science.

DOI:https://doi.org/10.1016/j.jocs.2017.01.002

7

7.5

8

8.5

9

9.5

0
1
2
3
4
5
6
7
8
9

10
11
12

1 2 3 4 5 6 7 8 9 10

speedup Time(s)

Images

whole implementation

without_contrib with_all_contrib speedup

20

6. SudeshnaSilKar, Santi P. Maity, Detection of neovascularization in retinal images using

mutual information maximization, Computers and Electrical Engineering.

DOI:https://doi.org/10.1016/j.compeleceng.2017.05.012

7. Soares I, Castelo-Branco M, Pinheiro AM. , Optic Disc Localization in Retinal Images

based on Cumulative Sum Fields, IEEE J Biomed Health Inform. 2016 Mar.PP. 574-85.

DOI: 10.1109/JBHI.2015.2392712.

8. Shuang Yu, Di Xiao, Yogesan Kanagasingam, Machine Learning Based Automatic Neo-

vascularization Detection on Optic Disc Region. IEEE Journal of Biomedical and Health

Informatics.2018. DOI:10.1109/JBHI.2017.2710201.

9. Soorya M.a, Ashish Issacb, Malay Kishore Dutt , “An automated and robust image pro-

cessing algorithm for glaucomadiagnosis from fundus images using novel blood vessel

tracking and bendpoint detection “, International Journal of Medical Informatics , Novem-

ber 2017. DOI: https://doi.org/10.1016/j.ijmedinf .2017.11.015

10. Fengshou Yin1, Jiang Liu1, Damon Wing Kee Wong1, Ngan Meng Tan1, Carol Cheung2,

Mani Baskaran2,Tin Aung2 and Tien Yin Wong2 , “Automated Segmentation of Optic

Disc and Optic Cup in Fundus Images for Glaucoma Diagnosis” , IEEE ,2012. DOI:

10.1109/CBMS.2012.6266344

11. KittipolWisaeng,Worawat Sa-ngiamvibool, Improved fuzzy C-means clustering in the

process of exudates detection using mathematical morphology, April 2018, Volume 22, Is-

sue 8, pp 2753–2764. DOI: https://doi.org/10.1007/s00500-017-2532-8.

12. Xavier Zanlonghi., "Un comparatif de rétinographes non mydriatiques, " Slate, 2005,

http://www.ophtalmo.net/bv /Doc/2005-5918-XZ-RNM.pdf asp (20 Mars 2018).

13. Jun Cheng, Jiang Liu, Yanwu Xu, Fengshou Yin, Damon Wing Kee Wong, Ngan-Meng

Tan, Dacheng Tao,”Superpixel Classification Based Optic Disc and Optic Cup Segmenta-

tion for Glaucoma Screening”,IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL.

32, NO. 6, JUNE 2013.DOI: 10.1109/TMI.2013.2247770

14. Jyoti Prakash Medhi , Samarendra Dandapat : "An effective fovea detection and automatic

assessment of diabetic maculopathy", Computers in Biology and Medicine, journal (Com-

puters in Biology and Medicine 2015) 1-15.

15. Ravi Kamble, Manesh Kokare, Girish Deshmukh, Fawnizu Azmadi Hussin, Fabrice M é-

riaudeau :"Localization of Optic Disc and Fovea in Retinal Images using Intensity Based

Line Scanning Analysis",journal (Computers in Biology and Medicine 2017)1-29.

16. R. GeethaRamani-2018, Macula Segmentation and Fovea Localization employing Image

Processing and Heuristic based Clustering for Automated Retinal Screening.

17. Sudeshna Sil Kar, Santi P. Maity ;Retinal blood vessel extraction using tunable bandpass

filter and fuzzy conditional entropy

18. M. Usman Akram, Shehzad Khalid, Anam Tariq, M. Younus Javed, Detection of neovas-

cularization in retinal images using multivariatem-Mediods based classifier, Computerized

Medical Imaging and Graphics .

19. Fully Automatized Parallel Segmentation of the Optic Disc in Retinal Fundus Images

,Daniel D«ıaz-Pernil et al.

20. [book, 20] biological and medical physics, biomedical engineering.

21. CURVATURE DETECTION AND SEGMENTATION OF RETINAL EXUDATES.

22. GpuCV: A GPU-Accelerated Framework for Image Processing and Computer Vision

YannickAllusse

23. Point to point processing of digital images using parallel computing ,EricOlmedo

24. Superpixel Classification Based Optic Disc and Optic Cup Segmentation for Glaucoma

Screening, Jun Cheng et al.

21

25. R.Pourreza.S ,MeysamTavakoli and Nasser Kehtarnavaz, "Computationally efficient optic

nerve head detection in retinal fundus images, "BiomedicalSignal Processing and Control.

63–73(2014).

26. F. A. Hashim, N. M. Salem, and A. F. Seddik. "Optic Disc Boundary Detection from Digi-

tal Fundus Images. " Journal of Medical Imaging and Health Informatics, 50–56 (2015).

27. S.Giraddi, JagadeeshPujari and P.S.Hiremath., "Optic Disc DetectionUsing Geometric

Properties and GVF snake. " Intelligent Systems and Information Management (2017).

28. DongboZhang and YuanyuanZhao. "Novel Accurate and Fast Optic Disc Detection in Ret-

inal Images With Vessel Distribution and Directional Characteristics"; IEEE Journal of

Biomedical and Health Informatics,333–342 (2016).

29. M. Foracchia, E. Grisan, A. Ruggeri, "Detection of optic disc in retinal images by means

of a geometrical model of vessel structure", IEEE Trans. Med. Imaging. 1189–1195

(2004).

30. Li Xiong and HuiqiLi, "An approach to locate optic disc in retinal images with pathologi-

cal changes", Computerized Medical Imaging and Graphics, 40–50 (2016).

31. A. Youssif, A.Z. Ghalwash, and A.R. Ghoneim, "Optic disc detection from normalized

digital fundus images by means of a vessels’ direction matched filter, " IEEE

Trans.Med.Imaging.11–18 (2008).

32. Khai Sing Chin, Emanuele Trucco , Lailing Tan , Peter J. Wilson :Automatic fovea loca-

tion in retinal images using anatomical priors and vessel density; journal (Pattern Recogni-

tion Letters2013)1-7.Tolias, Y., Panas, S., 1998. “A fuzzy vessel tracking algorithm for

retinal based on fuzzy clustering”, IEEE Trans. Med. Imaging 17, Iss.2, pp. 263-273.

33. Shahab Aslani , Haldun Sarnel “A new supervised retinal vessel segmentation method

based on robust hybrid features”, Biomedical Signal Processing and Control 30 (2016) 1–

12.

34. Sumathi Thangaraj, Vivekanandan Periyasamy, Ravikanth Balaji, “Retinal vessel segmen-

tation using neural network”, IET Image Processing (2018), pp. 669-678.

35. Chengzhang Zhuc, Beiji Zoua, Rongchang Zhao, Jinkai Cui, Xuanchu Duan, Zailiang

Chen, Yixiong Liang, “Retinal vessel segmentation in colour fundus images using Extreme

Learning Machine”, Computerized Medical Imaging and Graphics (2016), DOI:

10.1016/j.compmedimag.2016.05.004.

