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Abstract

In this paper, the heat conductivity of two-dimensional (2D) material con-
taining arbitrary shape pore with highly conducting pore boundary are con-
sidered. To model the distinct heat transfer behavior of the pore boundary,
the line conduction model is used. The heterogeneity problem of a single
void embedded in an in�nite matrix is then investigated and solved with the
complex variable and the Conformal Mapping techniques. The results of the
latter are then used to obtain the e�ective heat conductivity of the porous
material with di�erent homogenization schemes.

Keywords: Heat conductivity, Numerical conformal mapping, 2D heat
transfer, Eshelby problem, arbitrary shape void, surface e�ect

1. Introduction

Two dimensional thermal properties of materials containing defects or in-
clusions have been predicted, analytically or numerically, by numerous meth-
ods. Analytical solutions can be obtained for simple regular shape of defects
close to circular and elliptical (Stroh, 1958; Florence and Goodier, 1959; Gao

�Corresponding authors. E-mail address: quang-hung.le@u-pem.fr, quy-dong.to@u-
pem.fr.

Preprint submitted to Elsevier December 20, 2019



et al., 2002; Zhang and Wang, 2016). However, for more complex shapes in
the general cases, numerical methods are available. For 2D materials, one
of the popular numerical techniques that has been used widely is the combi-
nation of complex variable method and Conformal Mapping (CM) method
(Chen, 1967; Hasebe and Inohara, 1980; Hasebe et al., 1988; Hasebe and
Chen, 1996; Chao and Shen, 1998; Qin, 2000; Vinh et al., 2005; Jafari and
Mohammad , 2019).

Regarding the inhomogeneity problems, one of the major concerns is the
interface/surface e�ects. For materials with vacancies, the void boundary
conductivity can be modi�ed due to the environment, for example the pres-
ence of water-vapour and moisture (Ben-Da Yan et al., 1987; Awakuni and
Calderwood, 1972; Boyle and Jones, 1977) or oxydation processes (Cox et al.,
1988). The conductivity can also be enhanced intentionally by surface engi-
neering techniques (Williams and Jackman, 2003). Within the scope of this
paper, we aim to study the thermal properties of 2D material, which consist
voids with arbitrary shapes and with the e�ects of surface conductivity taken
into account. Following Hashin (2001); Benveniste (2006), the imperfect in-
terface model will be used by considering the surface e�ect as a very thin
layer of material of zero thickness (Huy and S�anchez-Palencia, 1974). To our
best knowledge, there has been no study using this approach. The method
provided by the present work can be adopted to other physically transport
problems, such as electric conduction, magnetism, etc.

The paper will be organized as follows. First, we describe the general thermal
problem statement for the homogenization for 2D porous materials, without
and with surface e�ects (Sec. 2). Next, we briey explain the complex vari-
able method and Numerical Conformal Mapping techniques and using them
to solve the thermal problem of plate with a single arbitrary void with sur-
face e�ects under uniaxial heat ux at in�nity (Sec. 3). In Sec. 4, we check
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the accuracy of the proposed method using analytical solution as well as �nal
element model. Then, the results from Sec. 3 are used to predict the thermal
properties using standard homogenization schemes including dilute and MT
estimation schemes. Finally, some concluding remarks are given in the last
section.

As for notations, we use normal characters for scalars, bold characters for
vectors or tensors. Regarding tensor operators, � stands for inner product, :
for double inner product.

2. Homogenization framework for 2D materials

2.1. General problem description

In the present work, we consider a 2D heterogeneous material consisting
of n inclusion phases 1; 2; :::; n which are assumed to be randomly embedded
in a matrix phase (see Fig. 1). The matrix, denoted as phase 0, and the
i-th inclusion, which is supposed to be individually homogeneous, is referred
to as phase i with i = 1; 2; :::; n. We denote by 
 the 2D domain occupied
by a Representative Elementary Area (REA) of the heterogeneous material
considered. The external boundary and the area of 
 are designated by @

and j
j, respectively. Similarly, the subdomain occupied by i-th phase and
its area are symbolized by 
i and j
ij. The interface between the matrix 
0

and the i-th inclusion 
i is a closed curve denoted by �i. On each interface
�i, the arc coordinate s runs in the counterclockwise direction with the in-
clusion always lying on the left and the matrix on the right. Consequently,
the normal unit vector n is directed inwards and the heat ux jump across
the interface �i becomes JqK = q(0) � q(i). For later use, the opposite vector
of n is called m (m = �n), directed in outward directions. We note that for
ideal interface the normal components of the heat ux jump is expected to be
vanished JqK:n = 0. This is not the case for the conducting interface whose
ux contribution is not negligible. The detailed behavior of the interface will
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be presented in the later section.

At micro-scale, in each phase i, the heat ux vector q is related to the
in�nitesimal intensity �eld e by the following equation:

q(x) = K(i) � e(x); e(x) = �rT (x) (1)

where x is the position vector belong to phase i (= 0; 1; 2; :::; n) and K(i) de-
notes the second-order conductivity tensor of phase i and T the temperature.
In case the i-th heterogeneity is a pore inclusion, the thermal conductivity
tensors K(i) will vanish, i.e. K(i) = 0.

q�
� i , fi

q�

� 0 , f0

Figure 1: A 2D material containing inclusions of arbitrary shape.

At macroscopic scale, since the inclusions are supposed to be distributed
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randomly in the matrix, the heterogeneous material under investigation is
assumed to be statistically homogeneous. Due to the linear property of the
local constitutive laws of each phase and the interface/surface conditions,
the corresponding e�ective thermal behavior law remains linear and can be
written as follows:

Q = Ke � E; (2)

where Q and E are respectively the overall heat ux and intensity �eld
vector and Ke is the second-order thermal conductivity tensor which will be
estimated in the present work.

2.2. Thermal conductive interface model

For later use, we de�ne the tangential unit vector along s as l and the
normal unit vector obtained by rotating the latter in the counter clockwise
direction as n (Fig. 2). On the non ideal conducting interface, there is the
heat ux � ows along the tangential direction l and � = � l. The energy
conservation equation for a line of dimension ds presents in the form:

qn = JqK � n =
d�
ds
: (3)

In above equation, JqK �n denotes the jump of the heat ux vector across the
surface �; � is the heat ow within the wire, and qn represents the normal
heat ux. The notation d(�)=ds measures the variation of quantity � along
the interface/surface with respect to the variable s. Within the wire, we
assume that the conduction is of Fourier type

� = �ks
dT
ds
; (4)

with ks being the conductivity. Combined with the Eq (3) we obtain

qn = �ks
d2T
ds2 : (5)
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Figure 2: Analysis of line thermal

2.3. Thermal homogenization for 2D materials with surface e�ects

Since the temperature T is continuous across the interface/surface �i, the
macroscopic intensity �eld de�ned by Eq. (2) is exactly equal to the area
average intensity �eld over 
, i.e.

E =
nX

i=0

fiheii; (6)

where h�ii denotes hereafter the area average of � over 
i and fi = j
ij=j
j
designates as the area fraction of i-th phase. On the other hand, due to
the discontinuity of the heat ux tensor across the interface/surface �i, the
macroscopic heat ux tensor provided by Eq.(2) is not simply the area av-
erage of the local counterpart q(x). More precisely, starting from the diver-
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gence theorem, the macroscopic heat ux Q reads

Q =
nX

i=0

fihqii �
nX

i=1

fi
1
j
ij

Z

�i

(JqK:n)xds: (7)

Based on (3) and using the facts that the integral on the closed curve vanish
R

�i
d(�x) = 0 and dx

ds = l, the integrals on �i can be further simpli�ed by

Z

�i

(qn � x)ds = �
Z

�i

� lds: (8)

As a result, the overall heat ux can be recast in the form

Q =
nX

i=0

fihqii +
nX

i=1

fi
1
j
ij

Z

�i

� lds: (9)

Next, the thermal conductivity tensor Ksi of the interface/surface �i and
the localization tensor of the i-th inclusion Li, can be de�ned as follows:

heii = Li � E; hqi�i = Ksi � heii; (10)

where hqi�i represents the line average of ux over the interface/surface �i
and takes the form

hqi�i =
1
j
ij

Z

�i

(� l)ds: (11)

In case the phase i is a pore, the area average of intensity �eld heii is deter-
mined by

heii = �
1
j
ij

Z

�i

(Tm)ds: (12)
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From Eqs. (9) and (10) we obtain

Q =

(

K0 +
nX

1

fi(Ki +Ksi �K0) �Li
)

� E: (13)

From Eqs. (2) and (13), the e�ective conductivity tensor can be determined
by

Ke = K0 +
nX

1

fi(Ki +Ksi �K0) �Li: (14)

In general, for 2D problem consisting of more than one inclusion, it is impos-
sible to �nd the exact solution for Ksi and Li analytically. In this situation,
either numerical methods are applied to calculate exactly these tensors or
some approximate approaches based on micromechanical schemes must be
used to estimate the values. Both approaches need to solve separately the
Eshelby or heterogeneity problems, in which an in�nite plate containing sin-
gle inclusion subject to constant uniform heat ux at in�nity. The results
of these problems can be used to estimate the localization tensor Li and the
conductivity tensor Ksi.

Next, our subject are the estimations of the e�ective conductivity tensor,
by dilute and MT schemes:

Ke
Dilute = K0 +

nX

1

fi(Ki +Ksi �K0) �Li;

Ke
MT = ff0K0 +

nX

1

fi(Ki +Ksi) �Lig � ff0I +
nX

1

fiLig�1: (15)
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In special case where there is only one species of nanovoid with the area
fraction f , the two foregoing estimates read

Ke
Dilute = K0 + f(Ks1 �K0) �L1;

Ke
MT =

�
(1� f)K0 + fKs1 �L1	 �

�
(1� f)I + fL1	�1 : (16)

In following sections, we will step by step explain solution to the heterogeneity
problem of a 2D plate with a single void, subjected to constant uniform heat
ux at in�nity. We also assume the the matrix is made of isotropic material
of conductivity km and the pore boundary of conductivity ks as before.

3. Solution for problem with single void under uniform heat ux
at in�nity

3.1. Complex variable and conformal mapping methods

The proposed solution is based on the popular complex variable and con-
formal mapping methods (Muskhelishvili, 2008). The method for thermal
problem will be presented briey and more details can be found in the Ap-
pendix A.

Instead of working in the usual complex plane, i.e variable z = x + iy,
i =

p
�1 and in the domain exterior to the hole of arbitrary shape with

boundary conditions (5), we solve the problem in a transformed plane, vari-
able � and inside a unit circle disk j�j < 1. In this case, � = !(z) is the
mapping function depending on the shape of the hole. It is su�cient to �nd
the complex function ’1(�) which generates the complex ux q = qx � iqy
and temperature �eld T as follows

2T = ’1(�) + ’1(�); (17)

q = �km
’01(�)
!0(�)

(18)
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In addition, the expressions of the temperature T and the q must satisfy the
boundary conditions (5) written using � coordinate. Posing n = nx + iny,
the normal heat ux qn on the boundary � can be computed by

qn = <(qn); (19)

Next, we need to �nd the expressions for the vector n and d
ds de�ned on

the boundary �. From the identities derived in Appendix A, we obtain the
results

d
ds
f(�) = �

i�f 0(�)
j!0(�)j

;
d
ds
f(�) =

i��f 0(�)
j!0(�)j

8f(�); (20)

and

n =
!0�
j!0j

: (21)

Consequently, the boundary conditions (5) can be expressed explicitly in
terms of � only and on the unit circle

2km<
�
!0�
j!0j

’01(�)
!0(�)

�
= ks

d2

ds2 (’1(�) + ’1(�)); j�j = 1 (22)

and can be used to solve the unknown potential function ’1(�).

3.2. Schwarz-Christo�el mapping functions

The mapping method we use is based on Schwarz-Christo�el (SC) trans-
formation, which is a useful mapping tool can map a unit circle onto the
interior of a simple polygon or vice versa by the following mapping function

!(�) = C
Z �

w1

NY

k=1

�
1�

w
wk

�1��k 1
w2dw + A; (23)
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where N is the number of the sides of the polygon, �k� are the interior angles

of the polygon verifying
NX

k=1

�k = N � 2, wk is the prevertices of the image

of the polygon in the canonical plane, C is multiplicative constant, relate to
the rotation and dilation of the mapping, and A is a constant relating to the
location of the image around the complex plane.

In general, for regular polygons, this integral can be solved analytically (Neu-
ber, 1962). However, for general cases, the integral must be evaluated numer-
ically by using Taylor series expansion. At � = 0, to the order of expansion
OM , the integrand can be expanded as

NY

k=1

�
1�

w
wk

�1��k 1
w2
�=

OMX

j=�2

ajwj: (24)

The term a�1 is set to zero to satisfy the single valuedness of the transforma-
tion. We also remark that due to the smooth approximation, the void shape
will be rounded at the corners of the polygons.

This integrand is calculated by the Matlab SC toolbox developed by Driscoll
(1996). Being given coordinates of all vertices of a void (polygon), this tool-
box helps to �nd all necessary CM transformation factors, including the
values of �k, wk and the multiplicative constant C. By combining Eqs. (23)
and (24), the estimation of !(�) can be found as an explicit polynomial func-
tion of �. Further details of how the numerical factors a�ect the accuracy of
the mapping tool will be studied in Section 4.

3.3. Solution for single void in an in�nite plate

In this section, we consider the case where a plate with a void is subject
to remote uniaxial heat ux q1 making an angle � with axis x. To solve the
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problem, we decompose the potential function of the plate in the form

’1(�) = ’2(�) + ’3(�); (25)

where ’2(�) is the potential function of a plate without the void under uni-
form heat ux, of which the solution is already available

’2(�) = �
q1
k
e�i�!(�); (26)

and ’3(�) is the additional potential function account for the temperature
�eld caused by the void. The latter can be expanded by using Taylor series:

’3(�) =
OsX

n=0

�n�n (27)

with OS being the order of expansion of the potential function.

To �nd ’3(�), which are now the constraints on the unit circle j�j = 1,
the collocation method with discrete points on the unit circle is employed to
compute the coe�cients �n. The governing equations are solved for both real
and imaginary parts leading to a system of linear equations with the real and
imaginary parts of �n as unknowns. After solving the potential function in
form of Taylor series, the temperature and heat ux are calculated for a set
of points on the surface boundary. The average intensity �eld and heat ux
tensors of the thermal void are then numerically integrated based on Eqs.
(11)-(12).

For comparison purpose, we present the analytical solution for the case of
circular void, as a base to compare with the CM method. Assuming that
the circle void has the radius R located at the origin of the polar coordinate
system (r; �). The plate, subject to heat ux q1 at in�nity along horizontal
direction, has the edge conductivity and matrix conductivity are ks and km
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correspondingly. Based on the symmetry/anti-symmetry of this case, we are
looking for solution in the form

T = �f(r) cos �: (28)

in the polar coordinate system (r; �). To satisfy the Laplace equation, T
must admit the form

f = Ar +B=r; (29)

where A, B are unknown constants to be determined by using boundary
conditions. The heat ux components in the polar coordinate system takes
the forms

qr = kmf 0(r) cos � = km(A�B=r2) cos �; (30)

q� = km
f(r)
r

sin � = km(A+B=r2) sin �: (31)

By solving the boundary conditions at in�nity and at the hole boundary, we
have

A = q1=km; B =
q1
km

(Rkm � ks)
(Rkm + ks)

R2: (32)
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Then, we obtain the �nal solutions

qr = q1

"

1�
�
Rkm � ks
Rkm + ks

��
R
r

�2
#

cos �; (33)

q� = q1

"

1 +
�
Rkm � ks
Rkm + ks

��
R
r

�2
#

sin �; (34)

T = �r
q1
km

"

1 +
�
Rkm � ks
Rkm + ks

��
R
r

�2
#

cos �; (35)

� = r
q1ks
Rkm

"

1 +
�
Rkm � ks
Rkm + ks

��
R
r

�2
#

sin �: (36)

In case ks = 0, B =
q1
km

R2, we recover the classical solution without the

boundary e�ect

qr = q1

"

1�
�
R
r

�2
#

cos �; (37)

q� = q1

"

1 +
�
R
r

�2
#

sin �; (38)

T = �r
q1
km

"

1 +
�
R
r

�2
#

cos �: (39)

It is noted that at the hole boundary, where r = R, qr vanishes as expected.

4. Numerical examples

4.1. In�nite plate with single void under uniform heat ux at in�nity

In this section, we compute and compare the results obtained by the CM
method and COMSOL Multiphysics R, a standard Finite Element Method
(FEM) code for single void problems. In the FEM model, we use a square
domain with su�ciently large dimensions and model the surface thermal ef-
fect as a thin band of material of thickness h and conductivity ~ks = ks=h.
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Numerical experiences show that when the size ratio of plate-to-void is of
order 30 : 1 and the ratio edge layer thickness to the characteristic size of
the polygonal void is about 1=2000, we obtain satisfactory results.

First, let us look into the CM solution to the circular void problem where
analytical solution is available from previous section. Without loss of gener-
ality, we assume q1 = 1, km = 1, ks = 10, R = 1 and the ux direction angle
� = 0. The analytical solution at the boundary of the circular void (r = R)
gives

qr =
20
11

cos �;

q� =
2
11

sin �;

T = �
2
11

cos �;

hq11ii =
20
11
:

If the surface thermal e�ect is neglected, i.e. ks = 0, the corresponding
results are

q� = 2 sin �;

T = �2 cos �:

Regarding the CM method, the exact transformation function for the cir-
cle is !(�) = 1=�. Using SC transformation, the circle is approximated by
a N -side equilateral polygon. The results of numerical mapping function
for di�erent values of N show that accuracy can be achieved with N = 80,
!(�) = 0:999=� + 0:001.

The accuracy of the CM method is accessed by the temperature at two
key points on the void boundary (see Fig. 3 for illustration), as well as the

15



inclusion average heat ux and intensity �eld under horizontal heat ux con-
dition. First, the results for circular void alone are reported in Table 1. It can
be seen that there is virtually no di�erence between the analytical solution
and FEM. The relative di�erence between the CM method and the others is
negligible (0.2%). This excellent agreement also con�rms the accuracy of the
CM method as well as the FEM model, allowing us to continue with non-
circular voids including ellipse, rectangle and arbitrary shape (Fig. 4). The
detailed dimension of all the holes using in this paper can be found in Ap-
pendix B. The temperature values at some key locations are given in Table 2.

Finally, we investigate the inclusion averages of heat ux and intensity �eld,
the two important quantities that a�ect directly on the e�ective properties
when using homogenization schemes. Table 3 shows that the inclusion aver-
age heat ux hq11ii and average intensity �eld he11ii are in excellent agree-
ment. The relative di�erences between the two methods for all shapes are
less than 5%.

T2

T1

Figure 3: A sketch of double symmetric void of arbitrary shape. Void boundary temper-
ature at the intersections with symmetry axes are chosen for comparisons
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ks = 0 ks = 10
Method T1 T2 T1 T2 hq11ii

Analytic 0.000 2.000 0.000 0.1818 1.818
FEM 0.000 2.000 0.000 0.1817 1.818
CM 0.000 1.997 0.000 0.1815 1.867

Table 1: Temperature and inclusion average heat ux of the circular void at the boundary,
with and without surface thermal e�ect

Figure 4: Temperature contour of void with arbitrary shape under horizontal heat ux.

4.2. E�ective conductivity for the case of randomly distributed pores

Solutions from previous subsections are used to estimate thermal proper-
ties of materials based on the Dilute and MT schemes (Eq. 15). The latter
will be compared with results issued from the FEM method. Within the
framework of this work, we only consider FEM models containing identical
voids whose location and orientation are distributed randomly (Fig. 5). To
ensure the statistical convergence, we carry out computations on 30 inde-
pendent samples each of which contains 20 voids. Meanwhile, in the NCM
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NCM FEM
Shape T1 T2 T1 T2

Ellipse 0.000 0.435 0.000 0.447
Square 0.000 0.249 0.000 0.259
Octagon 0.000 0.172 0.000 0.172

Table 2: Comparison of boundary temperature values for di�erent void shape with ks = 10.

NCM FEM
Shape hq11ii he11ii hq11ii he11ii

Circle 1.867 0.185 1.818 0.182
Ellipse 2.598 0.232 2.526 0.232
Square 1.849 0.229 1.933 0.238
Octagon 1.913 0.184 1.839 0.179
arbitrary 2.174 0.335 2.120 0.330

Table 3: Comparison of inclusion average heat ux and intensity �eld tensor elements for
various nanovoid shape with ks = 10.

methods, the average sti�ness tensor Ksi and the localization tensor Li of
each inclusion with di�erent orientation �i are calculated by taking rotation
transformations of an angle �i from the original solution Ks1 and L1 with
original direction �1(=0).

The results for circular and other shapes are shown in Fig. 6 and Fig. 7.
From the results of circular void, it can be seen that our MT model result
match well with that of Le-Quang et al. (2010). However, in comparison with
FEM model, the MT results only �t well at a small range of area fraction.
At higher fractions, say f > 0:1, Self-Consistent predictions seem to be a
better choice, based on circular void results.

5. Conclusions

In this work, we study the problem of determining the thermal conductiv-
ity of 2D materials containing voids of arbitrary shape with surface e�ects.
By �rst solving the problem involving a single void we then were able to esti-
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Figure 5: FEM meshing layout for elliptical and arbitrary voids

mate properties of random materials by applying the Dilute and MT schemes.

The single void solution produced by the approach is in excellent agreement
with both available analytical solutions and the FEM method for di�erent
kinds of shapes, including the arbitrary one. Our investigation shows that
MT and dilute estimations, on the other hand, are only accurate within a
certain range of area fraction (f < 0:1 in the case of our input data).

The results issued from this work are expected to have signi�cant appli-
cation in science materials, in particular 2D nano materials, e.g. graphene,
silicene, etc. A similar procedure can also be easily transformed to electrical
conduction, magnetism, di�usion or any other physically analogous trans-
port problems of 2D materials with surface e�ects. These perspectives will
be investigated in future work.
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Figure 6: Comparison among Dilute, MT, Self-consistent estimates and FEM methods for
circular voids (* Results from Le-Quang et al. (2010)).

Appendix A. Expressions in transformed coordinates

For heat transfer problem, the temperature T must satisfy the Laplace
equation

r2T = 0; (A.1)

In the conventional complex plane where z = x+ iy, the Laplace operator is
equivalent to

r2 = 4
@2

@z@�z
(A.2)
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Figure 7: Comparison among Dilute, MT estimates and FEM methods for di�erent shapes
of voids (a. Ellipse, b. Square, c. Octagon, d. Arbitrary).

After integrating, we must have the relation

T = <f’(z)g =
1
2

(’(z) + ’(z)) (A.3)

where ’(z) is an analytical function of z. The heat ux q with conductivity
km can be expressed by

qx = �
km
2

[’0(z) + ’0(z)]; qy = �i
km
2

[’0(z)� ’0(z)]: (A.4)
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Next, by introducing the new variable � and by using the transformation
z = !(�), the function ’(z) becomes

’(z) = ’(!(�)) = ’1(�): (A.5)

In general, the mapping function z = !(�) is chosen to map a void plate with
boundary � in z plane into the unit disk in � plane (j�j � 1) and solve the
problem with � as variable.

On the unit circle mapped from �, we pose � = e�i� with � running from 0
to 2�. This parameterization also guarantees the arc coordinate s on � goes
in the positive (counter-clockwise) direction. Di�erential calculus yields the
following result

d� = �ie�i�d� = �i�d�; d�� = iei�d� = i��d�

dz = !0(�)d� = �i!0(�)�d�; ds = jdzj = j!0(�)jd� (A.6)

We can immediately obtain

d�
ds

= �
i�
j!0j

;
d��
ds

=
i��
j!0j

;
dz
ds

=
i!0

j!0j
(A.7)

and hence the three identities of (20,21).

Appendix B. Detailed dimensions of voids

The details dimensions of all the voids are summarized in Fig. B.8 where
L is the basic dimension and for arbitrary shape, L1=4.6L and L2=2.5L. All
the results are to the value of L.
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Figure B.8: Void dimensions (a-Circle, b-Square, c-Ellipse, d-Octagon, f-arbitrary)
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