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Abstract

We introduce a novel gradient descent algorithm extending the well-known Gradient Sampling
methodology to the class of stratifiably smooth objective functions, which are defined as locally Lipschitz
functions that are smooth on some regular pieces—called the strata—of the ambient Euclidean space. For
this class of functions, our algorithm achieves a sub-linear convergence rate. We then apply our method
to objective functions based on the (extended) persistent homology map computed over lower-star
filters, which is a central tool of Topological Data Analysis. For this, we propose an efficient exploration
of the corresponding stratification by using the Cayley graph of the permutation group. Finally, we
provide benchmark and novel topological optimization problems, in order to demonstrate the utility
and applicability of our framework.
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1 Introduction

1.1 Motivation and related work

In its most general instance nonsmooth, non convex, optimization seek to minimize a locally Lipschitz
objective or loss function f : Rn Ñ R. Without further regularity assumptions on f , most algorithms—
such as the usual Gradient Descent with learning rate decay, or the Gradient Sampling method—are
only guaranteed to produce iterates whose subsequences are asymptotically stationary, without explicit
convergence rates. Meanwhile, when restricted to the class of min-max functions (like the maximum of
finitely many smooth maps), stronger guarantees such as convergence rates can be obtained [43]. This
illustrates the common paradigm in nonsmooth optimization: the richer the structure in the irregularities of
f , the better the guarantees we can expect from an optimization algorithm. Note that there are algorithms
specifically tailored to deal with min-max functions, e.g. [8].

Another example are bundle methods [37, 38, 42]. They consist, roughly, in constructing successive
linear approximations of f as a proxy for minimization. Their convergence guarantees are strong, especially
when an additional semi-smoothness property of f [10, 57] can be made. Other types of methods, like the
variable metric ones, can also benefit from the semi-smoothness hypothesis [73]. In many cases, convergence
properties of the algorithm are not only dependent on the structure on f , but also on the amount of
information about f that can be computed in practice. For instance, the bundle method [55] assumes that
the Hessian matrix, when defined locally, can be computed. For accounts of the theory and practice in
nonsmooth optimization, we refer the interested reader to [5, 51, 66].

The ability to cut Rn in well-behaved pieces where f is regular, is another type of important structure.
Examples, in increasing order of generality, are semi-algebraic, (sub)analytic, definable, tame (w.r.t. an
o-minimal structure), and Whitney stratifiable functions [11]. For such objective functions, the usual
gradient descent (GD) algorithm, or a stochastic version of it, converges to stationary points [31]. In order
to obtain further theoretical guarantees such as convergence rates, it is necessary to design optimization
algorithms specifically tailored for regular maps, since they enjoy stronger properties, e.g., tame maps
are semi-smooth [48], and the generalized gradients of Whitney stratifiable maps are closely related to
the (restricted) gradients of the map along the strata [11]. Besides, strong convergence guarantees can be
obtained under the Kurdyka–Łojasiewicz assumption [4, 61], which includes the class of semi-algebraic
maps. Our method is related to this line of work, in that we exploit the strata of Rn in which f is smooth.

The motivation of this work stems from Topological Data Analysis (TDA), where geometric objects
such as graphs are described by means of computable and topological descriptors. Persistent Homology
(PH) is one such descriptor, and has been successfully applied in various areas such as neuroscience [30, 7],
material sciences [44, 69], signal analysis [63, 72], shape recognition [54], or machine learning [23, 18].

Persistent Homology describes graphs, and more generally simplicial complexes, over n nodes by means
of a signature called the barcode, or persistence diagram PHpxq. Here x is a filter function, that is a function
on the nodes, which we view as a vector in Rn. Loosely speaking, PHpxq is a finite multi-set of points in
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Figure 1: A proof-of-concept comparison between different gradient descent techniques. The objective
function f : pz1, z2q P R2 Ñ 10 logp1` |z1|q ` z

2
2 P R (blue surface) attains its minimum at x˚ “ p0, 0q and

is not smooth along the line tz1 “ 0u. In particular, }∇f} ą 1 around x˚, thus the gradient norm cannot be
used as a stopping criterion. The traditional GD, for which updates are given by xk`1 “ xk ´

λ0
k`1∇fpxkq,

oscillates around tz1 “ 0u due to the non-smoothness of f and asymptotically converges toward x˚ because
of the decaying learning rate λ0

k`1 . In the meantime, non-smooth optimization methods that sample points
around xk in order to produce reliable descent directions converge in finite time. Namely, the classical
Gradient Sampling method randomly samples 3 points and manages to reach an pε, ηq-stationary point of f
in „ 20.6˘ 3.9 iterations (averaged over 100 experiments), while our stratified approach improves on this
by leveraging the fact that we explicitly have access to the two strata tz1 ă 0u and tz1 ą 0u where f is
differentiable. In particular, we only sample additional points when xk is ε-near the line tz1 “ 0u, and reach
an pε, ηq-stationary point in 18 iterations. Right plots showcase the evolution of the objective value fpxkq
and the distance to the minimum }xk ´ x˚} across iterations. Parameters: x0 “ p0.8, 0.8q, λ0 “ 10´1,
ε “ 10´1, η “ 10´2.

the upper half-plane tpb, dq P R2, d ě bu that encodes topological and geometric information about the
underlying simplicial complex and the function x.

Barcodes form a metric space Bar when equipped with the standard metrics of TDA, the so-called
bottleneck and Wasserstein distances, and the persistence map PH : Rn Ñ Bar is locally Lipschitz [27, 28].
However Bar is not Euclidean nor a smooth manifold, thus hindering the use of these topological descriptors
in standard statistical or machine learning pipelines. Still, there exist natural notions of differentiability
for maps in and out of Bar [53]. In particular, the persistence map PH : Rn Ñ Bar restricts to a locally
Lipschitz, smooth map on a stratification of Rn by polyhedra. If we compose the persistence map with a
smooth and Lipschitz map V : Bar Ñ R, the resulting objective (or loss) function

f : Rn PH // Bar
V // R

is itself Lipschitz and smooth on the various strata. From [31], and as recalled in [17], classical (Stochastic)
Gradient Descent on f asymptotically converges to stationary points. Similarly, the Gradient Sampling
(GS) method asymptotically converges. See [68] for an application of GS to topological optimization.

Nonetheless, it is important to design algorithms that take advantage of the structure in the irregularities
of the persistence map PH, in order to get better theoretical guarantees. For instance, one can locally
integrate the gradients of PH—whenever defined—to stabilize the iterates [68], or add a regularization
term to f that acts as a smoothing operator [29]. In this work, we rather exploit the stratification of Rn
induced by PH, as it turns out to be easy to manipulate. We will show in particular that we can efficiently
access points x1 located in neighboring strata of the current iterate x, as well as estimate the distance to
these strata.

For this reason, we believe that persistent homology-based objective functions f form a rich playground
for nonsmooth optimization, with many applications in point cloud inference [40], surface reconstruction [13],
shape matching [64], graph classification [45, 75], topological regularization for generative models [58, 46, 39],
image segmentation [47, 26], or dimensionality reduction [50], to name a few.
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1.2 Contributions and outline of contents

Our new method, called Stratified Gradient Sampling (SGS), is a variation of the established GS algorithm,
whose main steps for updating the current iterate xk P Rn we recall in Algorithm 1 below. Our method is

Algorithm 1 An update step with the Gradient Sampling algorithm

1: Sample m ě n` 1 points x1
k, ¨ ¨ ¨ , x

m
k in a ball Bpxk, εq

2: Compute approximate subgradient Gk :“ t∇fpxkq,∇fpx1
kq, ¨ ¨ ¨ ,∇fpxmk qu

3: Compute descent direction gk :“ argmint}g}2, g in convex hull of Gku
4: Find step size tk ě 0 so that fpxk ´ tkgkq ď fpxkq ´ βtk}gk}

2 (β P p0, 1q hyperparameter)
5: Ensure that f is differentiable at xk`1 :“ xk ´ tkgk by small perturbations

motivated by the closing remarks of a recent overview of the GS methodology [15], in which the authors
suggest that the GS theory and practice could be enhanced by assuming some extra structure on top of
the non differentiability of f .

In this work, we deal with stratifiably smooth maps, for which the non differentiability is organized
around smooth submanifolds that together form a stratification of Rn. In Section 2, we review some
background material in nonsmooth analysis and define stratifiably smooth maps f : Rn Ñ R, a variant
of the Whitney stratifiable functions from [11] for which we do not impose any Whitney regularity on
the gluing between adjacent strata of Rn, but rather enforce that there exist local C2-extensions of the
restrictions of f to top-dimensional strata.

In order to update the current iterate xk when minimizing a stratifiably smooth objective function f ,
we introduce a new descent direction gk. As in GS, gk is obtained in our new SGS algorithm by collecting
the gradients of samples around xk in an approximate subgradient Gk, and then by taking the element
with minimal norm in the convex set generated by Gk. A key difference with GS is that we only need
to sample as many points around xk as there are distinct strata close by, compare with the m ě n ` 1
samples of Algorithm 1. In Proposition 3, we show that we indeed obtain a descent direction, i.e., that
we have the descent criterion fpxk ´ tkgkq ď fpxkq ´ βtk}gk}

2 (as in Line 4 of Algorithm 1) for a suitable
choice of step size tk.

Our SGS algorithm is detailed in Section 3.1 and its analysis in Section 3.2. The convergence of the
original GS methodology crucially relies on the sample size m ě n` 1 in order to apply the Carathéodory
Theorem to subgradients. Differently, our convergence analysis relies on the fact that the gradients of f ,
when restricted to neighboring strata, are locally Lipschitz. Hence, our proof of asymptotic convergence to
stationary points (Theorem 2) is substantially different. In Theorem 3, we determine a convergence rate
of our algorithm that holds for any proper stratifiably smooth map, which is an improvement over the
guarantees of GS for general locally Lipschitz maps. Finally, in Section 3.3, we adapt our method and
results to the case where only estimated distances to nearby strata are available.

In Section 4, we introduce the persistence map PH over a simplicial complex K, which gives rise to a
wide class of stratifiably smooth objectivefunctions with rich applications in TDA. We characterize strata
around the current iterate (i.e., filter function) xk by means of the permutation group over n elements,
where n is the number of vertices in K. Then, the Cayley graph associated to the permutation group
allows us to use Dijkstra’s algorithm to efficiently explore the set of neighboring strata by increasing order
of distances to xk, that are needed to compute descent directions.

Section 5 is devoted to the implementation of the SGS algorithm for the optimization of persistent
homology-based objective functions f . In Section 5.1, we provide empirical evidence that SGS behaves
better than GD and GS with a simple experiment about minimization of total persistence. In Section 5.3
and Section 5.2, we consider two novel topological optimization problems which we believe are of interest
in real-world applications. On the one hand, the Topological Template Registration of a filter function x
defined on a complex K, is the task of finding a filter function x1 over a smaller complex K 1 that preserves
the barcode of x. On the other hand, given a Mapper graph G, which is a standard visualization tool for
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arbitrary data sets [67], we can bootstrap the data set in order to produce multiple bootstrapped graphs Gi.
The Topological Mean is then the task of finding a new graph G˚ whose barcode is as close as possible to
the mean of the barcodes associated to the graphs Gi. As a result we obtain a smoothed version G˚ of the
Mapper graph G in which spurious and non-relevant graph attributes are removed.

2 A direction of descent for stratifiably smooth maps

In this section, we define the class of stratifiably smooth maps whose optimization is at stake in this work.
For such maps, we can define an approximate subgradient and a corresponding descent direction, which is
the key ingredient of our algorithm.

2.1 Nonsmooth Analysis

We first recall some useful background in nonsmooth analysis, essentially from [25]. Throughout, f : Rn Ñ R
is a locally Lipschitz (non necessary smooth, nor convex) and proper (i.e., compact sublevel sets) function,
which we aim to minimize.

First-order information of f at x P Rn in a direction v P Rn is captured by its generalized directional
derivative:

f˝px; vq “ lim sup
yÑx,t�0`

fpy ` tvq ´ fpyq

t
, (1)

Besides, the generalized gradient is the following set of linear subapproximations:

Bfpxq :“
 

ζ P Rn, f˝px; vq ě xζ, vy for all v P Rn
(

. (2)

Given an arbitrary set S Ă Rn of Lebesgue measure 0, we have an alternative description of the generalized
gradient in terms of limits of surrounding gradients, whenever defined:

Bfpxq “ co
 

lim∇fpxiq |xi Ñ x, ∇fpxiq is defined , lim∇fpxiq exists, xi R S
(

, (3)

where co is the operation of taking the closure of the convex hull.1 The duality between generalized
directional derivatives and gradients is captured by the equality:

f˝px; vq “ maxtxζ, vy , ζ P Bfpxqu. (4)

The Goldstein subgradient [41] is an ε-relaxation of the generalized gradient:

Bεfpxq “ co
 

lim∇fpxiq |xi Ñ x1, ∇fpxiq is defined , lim∇fpxiq exists, |x´ x1| ď ε
(

. (5)

Given x P Rn, we say that:

x is a stationary point (for f) if 0 P Bfpxq.

Any local minimum is stationary, and conversely if f is convex. We also have weaker notions. Namely,
given ε, η ą 0,

x is ε-stationary if 0 P Bεfpxq; and
x is pε, ηq-stationary if dp0, Bεfpxqq ď η.

1Here the equality holds as well (by some compactness argument) when taking the convex hull without closure. As we take
closed convex hulls later on, we choose not to introduce this subtlety explicitly.
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2.2 Stratifiably smooth maps

Desirable properties for an optimization algorithm is that it produces iterates pxkqk that either converge to
an pε, ηq-stationary point in finitely many steps, or whose subsequences (or some of them) converge to an
ε-stationary point. For this, we work in the setting of objective functions that are smooth when restricted
to submanifolds, that together partition Rn.

Definition 1. A stratification X “ tXiuiPI of a closed subset X Ď Rn is a locally finite partition of X by
smooth submanifolds Xi—called strata—such that for i ‰ j P I:

Xi XXj ‰ Hñ Xj Ď XizXi.

This makes pX,X q into a stratified space.

Note that we do not impose any (usually needed) gluing conditions between adjacent strata, as we do
not require them in the analysis. In particular, semi-algebraic, subanalytic, or definable subsets of Rn,
together with Whitney stratified sets are stratified in the above weak sense. We next define the class
of maps f with smooth restrictions f|Xi to strata Xi of some stratification X , inspired by the Whitney
stratifiable maps of [11] (there X is required to be Whitney) and the stratifiable functions of [34], however
we further require that the restrictions f|Xi admit local extensions of class C2.

Definition 2. The map f : Rn Ñ R is stratifiably smooth if there exists a stratification X of Rn, such that
for each stratum Xi P X , the restriction f|Xi admits an extension fi of class C2 in a neighborhood of Xi.

Remark 1. The slightly weaker assumption that the extension fi is continuously differentiable with locally
Lipschitz gradient would have also been sufficient for our purpose.

We denote by Xx the stratum containing x, and by Xx Ď X the set of strata containing x in their
closures. More generally, for ε ą 0, we let Xx,ε Ď X be the set of strata Xi such that the closure of the
ball Bpx, εq has non-empty intersection with the closure of Xi. Local finiteness in the definition of a
stratification implies that Xx,ε (and Xx) is finite.

If f is stratifiably smooth and Xi P Xx is a stratum, there is a well-defined limit gradient ∇Xifpxq,
which is the unique limit of the gradients ∇f|Xipxnq where xn P Xi is any sequence converging to x. Indeed,
this limit exists and does not depend on the choice of sequence since f|Xi admits a local C2 extension fi.
The following result states that the generalized gradient at x can be retrieved from these finitely many
limit gradients along the various adjacent top-dimensional strata.

Proposition 1. If f is stratifiably smooth, then for any x P Rn we have:

Bfpxq “ co
 

∇Xifpxq, Xi P Xx is of dimension n
(

.

More generally, for ε ą 0:

Bεfpxq “ co
 

∇Xifpx
1q | |x1 ´ x| ď ε, Xi P Xx1 Ď Xx,ε is of dimension n

(

.

Proof. We show the first equality only, as the second can be proven along the same lines. We use the
description of Bfpxq in terms of limit gradients from Equation (3), which implies the inclusion of the
right-hand side in Bfpxq. Conversely, let S be the union of strata in Xx with positive codimension, which is
of measure 0. Let xi be a sequence avoiding S, converging to x, such that ∇fpxiq converges as well. Since
Xx is finite, up to extracting a subsequence, we can assume that all xi are in the same top-dimensional
stratum Xi P Xx. Consequently, ∇fpxiq converges to ∇Xifpxq.
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2.3 Direction of descent

Thinking of x as a current position, we look for a direction of (steepest) descent, in the sense that a
perturbation of x in this direction produces a (maximal) decrease of f . Given ε ě 0, we let gpx, εq be the
projection of the origin on the convex set Bεfpxq. Equivalently, gpx, εq solves the minimization problem:

gpx, εq “ argmin
 

}g}, g P Bεfpxq
(

. (6)

Introduced in [41], the direction ´gpx, εq is a good candidate of direction for descent, as we explain
now. Since gpx, εq is the projection of the origin on the convex closed set Bεfpxq, we have the classical
inequality xgpx, εq, gpx, εq ´ gy ď 0 that holds for any g in the Goldstein subgradient at x. Equivalently,

@g P Bεfpxq, x´gpx, εq, gy ď ´}gpx, εq}
2. (7)

Informally, if we think of a small perturbation x´ tgpx, εq of x along this direction, for t ą 0 small enough,
then fpx´ tgpx, εqq « fpxq ´ t x∇fpxq, gpx, εqy. Using Equation (7), since ∇fpxq P Bεfpxq, we deduce that
fpx ´ tgpx, εqq ď fpxq ´ t}gpx, εq}2. So f locally decreases at linear rate in the direction ´gpx, εq. This
intuition relies on the fact that ∇fpxq is well-defined so as to provide a first order approximation of f
around x, and that t is chosen small enough. In order to make this reasoning completely rigorous, we need
the following well-known result (see for instance [25]):

Theorem 1 (Lebourg Mean value Theorem). Let x, x1 P Rn. Then there exists some y P rx, x1s and some
w P Bfpyq such that:

fpx1q ´ fpxq “ xw, x1 ´ xy .

Let t ą 0 be lesser than ε
}gpx,εq} , in order to ensure that x1 :“ x´ tgpx, εq is ε-close to x. Then by the

mean value theorem (and Proposition 1), we have that

fpx´ tgpx, εqq ´ fpxq “ ´t xw, gpx, εqy

for some w P Bεfpxq. Equation (7) yields

@t ď
ε

}gpx, εq}
, fpx´ tgpx, εqq ď fpxq ´ t}gpx, εq}2, (8)

as desired.
In practical scenarios however, it is unlikely that the exact descent direction ´gpx, εq could be determined.

Indeed, from Equation (6), it would require the knowledge of the set Bεfpxq, which consists of infinitely
many (limits of) gradients in an ε-neighborhood of x. We now build, provided f is stratifiably smooth, a
faithful approximation B̃εfpxq of Bεfpxq, by collecting gradient information in the strata that are ε-close
to x.

For each top-dimensional stratum Xi P Xx,ε, let xi be an arbitrary point in Xi XBpx, εq. Define

B̃εfpxq :“ co
 

∇Xifpxiq, Xi P Xx,ε
(

. (9)

Of course, B̃εfpxq depends on the choice of each xi P Xi. But this will not matter for the rest of the analysis,
as we will only rely on the following approximation result which holds for arbitrary choices of points xi:

Proposition 2. Let x P Rn and ε ą 0. Assume that f is stratifiably smooth. Let L be a Lipschitz constant
of the gradients ∇fi restricted to Bpx, εq XXi, where fi is some local C2 extension of f|Xi, and Xi P Xx,ε
is top dimensional. Then we have:

B̃εfpxq Ď Bεfpxq Ď B̃εfpxq `Bp0, 2Lεq.

In particular, dHpB̃εfpxq, Bεfpxqq ď 2Lε.

7



Note that, since the fi are of class C2, their gradients are locally Lipschitz, hence by compactness of
Bpx, εq, the existence of the Lipschitz constant L above is always guaranteed.

Proof. From Proposition 1, we have

Bεfpxq “ co
 

∇Xfpx
1q | |x1 ´ x| ď ε, X P Xx1 Ď Xx,ε is of dimension n

(

.

This yields the inclusion B̃εfpxq Ď Bεfpxq. Now, let x1 P Rn, |x1 ´ x| ď ε, and let Xi P Xx1 Ď Xx,ε be a
top-dimensional stratum touching x1. Based on how xi is defined in Equation (9), we have that x1 and xi
both belong to Bpx, εq, and they both belong to the stratum Xi. Therefore, |∇Xifpx

1q ´∇Xifpxiq| ď 2Lε,
and so ∇Xifpx

1q P B̃εfpxq `Bp0, 2Lεq. The result follows from the fact that B̃εfpxq `Bp0, 2Lεq is convex
and closed.

Recall from Equation (8) that the (opposite to the) descent direction ´gpx, εq is built as the projection
of the origin onto Bεfpxq. Similarly, we define our approximate descent direction as ´g̃px, εq, where g̃px, εq
is the projection of the origin onto the convex closed set B̃εfpxq:

g̃px, εq “ argmin
 

}g̃}, g̃ P B̃εfpxq
(

. (10)

We show that this choice yields a direction of decrease of f , in a sense similar to Equation (8).

Proposition 3. Let f be stratifiably smooth, and let x be a non-stationary point. Let 0 ă β ă 1, and
ε0 ą 0. Denote by L a Lipschitz constant for all gradients of the restrictions fi to the ball Bpx, ε0q (as in
Proposition 2). Then:

(i) For 0 ă ε ď ε0 small enough we have ε ď 1´β
2L }g̃px, εq}; and

(ii) For such ε, we have @t ď ε
}g̃px,εq} , fpx´ tg̃px, εqq ď fpxq ´ βt}g̃px, εq}2.

Proof. Saying that x is non-stationary is equivalent to the inequality }gpx, 0q} ą 0. We show that the map
ε P R` ÞÑ }gpx, εq} P R`, which is non-increasing, is continuous at 0`. Let ε be small enough such that
the sets of strata incident to x are the same that meet with the ε-ball around x, i.e., Xx,ε “ Xx. Such
an ε exists since there are finitely many strata, which are closed sets, that meet with a sufficiently small
neighborhood of x. Of course, all smaller values of ε enjoy the same property. By Proposition 1, we then
have the nesting

Bfpxq Ď Bεfpxq Ď Bfpxq `Bp0, 2Lεq,

where L is a Lipschitz constant for the gradients in neighboring strata. In turn, 0 ď }gpx, 0q} ´ }gpx, εq} ď
2Lε. In particular, }gpx, εq} Ñ }gpx, 0q} ą 0 as ε goes to 0, hence ε “ op}gpx, εq}q. Besides, the inclusion
B̃εfpxq Ď Bεfpxq (Proposition 2) implies that }g̃px, εq} ě }gpx, εq} ą 0. This yields ε “ op}g̃px, εq}q and so
item (i) is proved.

We now assume that ε satisfies the inequality of item (i), and let 0 ď t ď ε
}g̃px,εq} . By the Lebourg mean

value theorem, there exists a y P rx, x´ tg̃px, εqs and some w P Bfpyq such that:

fpx´ tg̃px, εqq ´ fpxq “ t xw,´g̃px, εqy .

Since t ď ε
}g̃px,εq} , y is at distance no greater than ε from x. In particular, w belongs to Bεfpxq. From

Proposition 2, there exists some w̃ P B̃εfpxq at distance no greater than 2Lε from w. We then rewrite:

fpx´ tg̃px, εqq ´ fpxq “ t xw ´ w̃,´g̃px, εqy ` t xw̃,´g̃px, εqy . (11)

On the one hand, by the Cauchy-Schwarz inequality:

xw ´ w̃,´g̃px, εqy ď |w ´ w̃| ¨ }g̃px, εq} ď 2Lε}g̃px, εq} ď p1´ βq}g̃px, εq}2, (12)

where the last inequality relies on the assumption that ε ď 1´β
2L }g̃px, εq}. On the other hand, since g̃px, εq

is the projection of the origin onto B̃εfpxq, we obtain xg̃px, εq ´ w̃, g̃px, εqy ď 0, or equivalently:

xw̃,´g̃px, εqy ď ´}g̃px, εq}2. (13)

Plugging the inequalities of Equations (12) and (13) into Equation (11) proves item (ii).
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3 Stratified Gradient Sampling (SGS)

In this section we develop a gradient descent algorithm for the optimization of stratifiably smooth functions,
and then we detail its convergence properties. We require that the objective function f : Rn Ñ R has the
following properties:

• (Proper): f has compact sublevel sets.

• (Stratifiably smooth): f is stratifiably smooth, and for each iterate x and ε ě 0 we have an
oracle SampleOraclepx, εq that samples one ε-close element x1 in each ε-close top-dimensional
stratum X 1.

• (Differentiability check) We have an oracle DiffOraclepxq checking whether an iterate x P Rn
belongs to the set D Ă Rn over which f is differentiable.

That f is a proper map is also needed in the original GS algorithm [16], but is a condition that can be
omitted as in [52] to allow the values fpxkq to decrease to ´8. In our case we stick to this assumption
because we need the gradient of f (whenever defined) to be Lipschitz on sublevel sets.

Similarly, the ability to check that an iterate xk belongs to D is standard in the GS methodology. We use
it to make sure that f is differentiable at each iterate xk. For this, we call a subroutine MakeDifferentiable
which slightly perturbs the iterate xk to achieve differentiability and to maintain a descent condition.
Note that these considerations are mainly theoretical because generically the iterates xk are points of
differentiability, hence MakeDifferentiable is unlikely to change anything.

The last requirement that f is stratifiably smooth replaces the classical weaker assumption used in
the GS algorithm that f is locally Lipschitz and that the set D where f is differentiable is open and
dense. There are many possible ways to design the oracle SampleOraclepx, εq: for instance the sampling
could depend upon arbitrary probability measures on each stratum, or it could be set by deterministic
rules depending on the input px, εq as will be the case for the persistence map in Section 4. However our
algorithm and its convergence properties are oblivious to these degrees of freedom, as by Section 2.3 any
sampling allows us to approximate the Goldstein subgradient Bεfpxkq using finitely many neighbouring
points to compute B̃εfpxkq. In turn we have an approximate descent direction gk which can be used to
produce the subsequent iterate xk`1 :“ xk ´ tkgk as in the classical smooth gradient descent.

3.1 The algorithm

The details of the main algorithm SGS are given in Algorithm 2.
The algorithm SGS calls the method UpdateStep of Algorithm 3 as a subroutine to compute the

right descent direction gk and the right step size tk. Essentially, this method progressively reduces the
exploration radius εk of the ball where we compute the descent direction gk :“ g̃pxk, εkq until the criteria
of Proposition 3 ensuring that the loss sufficiently decreases along gk are met.

Given the iterate xk and the radius εk, the calculation of gk :“ g̃pxk, εkq is done by the subroutine
ApproxGradient in Algorithm 4: points x1 in neighboring strata that intersect the ball Bpxk, εkq are
sampled using SampleOraclepxk, εkq to compute the approximate Goldstein gradient and in turn the
descent direction gk.

Much like the classical GS algorithm, our method behaves like the well-known smooth gradient descent
where the gradient is replaced with a descent direction computed from gradients in neighboring strata.
A key difference however is that, in order to find the right exploration radius εk and step size tk, the
UpdateStep needs to maintain a constant Ck to approximate the ratio 1´β

2L of Proposition 3, as no
Lipschitz constant L may be explicitly available.

To this effect, UpdateStep maintains a relative balance between the exploration radius εk and the
norm of the descent direction gk, controlled by Ck, i.e., εk » Ck}gk}. As we further maintain Ck » 1´β

2L , we
know that the convergence properties of εk and gk are closely related. Thus, the utility of this controlling
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constant is mainly theoretical, to ensure convergence of the iterates xk towards stationary points in
Theorem 2. In practice, we start with a large initial constant C0, and decrease it on line 11 of Algorithm 3
whenever it violates a property of the target constant 1´β

2L given by Proposition 3.

Algorithm 2 SGSpf, x0, ε, η, C0, β, γq

Require: Loss function f , initial iterate x0 P D, exploration radius ε ą 0, initial constant C0 ą 0
controlling exploration radius, critical distance to origin η ě 0, descent rate 0 ă β ă 1, step size decay
rate 0 ă γ ă 1

1: k Ð 0
2: repeat
3: ptk, gk, Ck`1q Ð UpdateSteppf, xk, ε, η, Ck, β, γq via Algorithm 3
4: xk`1 Ð xk ´ tkgk
5: xk`1 Ð MakeDifferentiablepxk`1, xk, tk, gkq
6: k Ð k ` 1
7: until }gk} ď η
8: return xk

Algorithm 3 UpdateSteppf, xk, ε, η, Ck, β, γq

1: εk Ð ε and Ck`1 Ð Ck
2: repeat
3: gk Ð ApproxGradientpxk, εkq via Algorithm 4
4: if }gk} ď η then
5: Break, return tk “ 0, gk and Ck`1 # Set η “ 0 to reach an ε-stationary point
6: end if
7: tk Ð

εk
}gk}

# Candidate of update step

8: while fpxk ´ tkgkq ą fpxkq ´ βtk}gk}
2 and εk ď Ck`1}gk} do

9: Ck`1 Ð γCk`1 # Once Ck`1 ď
1´β
2L , this loop never occurs by (ii) of Proposition 3

10: end while
11: if fpxk ´ tkgkq ą fpxkq ´ βtk}gk}

2 or εk ą Ck`1}gk} then
12: εk Ð γεk # Reduce εk to satisfy criterion (i) of Proposition 3
13: end if
14: until fpxk ´ tkgkq ă fpxkq ´ βtk}gk}

2 and εk ă Ck`1}gk}
15: return tk, gk and Ck`1

Remark 2. Assume that we dispose of a common Lipschitz constant L for all gradients ∇fi in the ε-
neighborhood of the current iterate xk, recall that fi is any C2 extension of the restriction f|Xi to the
neighboring top-dimensional stratum Xi P Xx,ε. Then we can simplify Algorithm 3 by decreasing the
exploration radius εk progressively until εk ď

p1´βq
2L }g̃pxk, εkq} as done in Algorithm 6: This ensures

by Proposition 3 that the resulting update step satisfies the descent criterion fpxk ´ tkg̃pxk, εkqq ă
fpxkq ´ βtk}g̃pxk, εkq}

2. In particular the parameter Ck is no longer needed, and the theoretical guarantees
of the simplified algorithm are unchanged. Note that for objective functions from TDA (see Section 4),
the stability theorems (e.g. from [27]) often provide global Lipschitz constants, enabling the use of the
simplified update step described in Algorithm 6.

Remark 3. In the situation of Remark 2, let us further assume that ε P R` ÞÑ }g̃px, εq} P R` is non-
increasing. This monotonicity property mimics the fact that ε P R` ÞÑ }gpx, εq} P R` is non-increasing, since
increasing ε grows the Goldstein generalized gradient Bεfpxq, of which gpx, εq is the element with minimal
norm. If the initial exploration radius ε does not satisfy the termination criterion (Line 8), ε ď 1´β

2L }g̃pxk, εq},
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Algorithm 4 ApproxGradientpxk, εkq

1: Gk Ð t∇fpxkqu # Eventually Gk will be some approximate Goldstein subgradient B̃fεkpxkq
2: tx1

k, ¨ ¨ ¨ , x
m
k u Ð SampleOraclepxk, εkq # ε-close samples from ε-close top dim strata

3: for 1 ď l ď m do
4: Gk Ð Gk Y t∇fpxlkqu # Add gradients from remote strata
5: end for
6: Solve the quadratic minimization problem gk “ argmint}g}2, g P copGkqu
7: return gk # gk “ g̃pxk, εkq is the approximate steepest descent direction

Algorithm 5 MakeDifferentiablepxk`1, xk, tk, gkq

1: r Ð tk}gk}
2: while xk`1 R D or fpxk`1q ą fpxkq ´ βtk}gk}

2 do
3: Replace xk`1 with a sample in Bpxk ´ tkgk, rq
4: r Ð r

2
5: end while
6: return xk`1

Algorithm 6 SimpleUpdateSteppf, xk, ε, η, β, γq

1: εk Ð ε and gk Ð ApproxGradientpxk, εkq via Algorithm 4
2: repeat
3: if }gk} ď η then
4: Break, return tk “ 0 and gk # Set η “ 0 to reach an ε-stationary point
5: end if
6: εk Ð γεk and gk Ð ApproxGradientpxk, εkq via Algorithm 4
7: until εk ď 1´β

2L }gk}
8: return tk :“ εk

}gk}
and gk
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then one can set εk :“ 1´β
2L }g̃pxk, εq} ď ε, yielding εk ď 1´β

2L }g̃pxk, εkq}. This way Algorithm 6 is further
simplified: in constant time we find a εk that yields the descent criterion fpxk ´ tkg̃pxk, εkqq ă fpxkq ´
βtk}g̃pxk, εkq}

2, and the parameter γ is no longer needed. A careful reading of the proofs provided in the
following section yields that the convergence rate (Theorem 3) of the resulting algorithm is unchanged,
however the asymptotic convergence (Theorem 2), case pbq, needs to be weakened: converging subsequences
converge to ε-stationary points instead of stationary points. We omit details for the sake of concision.

3.2 Convergence

We show convergence of Algorithm 2 towards stationary points in Theorem 2. Finally, Theorem 3 provides
a non-asymptotic sub linear convergence rate, which is by no mean tight yet gives a first estimate of the
number of iterations required in order to reach an approximate stationary point.

Theorem 2. If η “ 0, then almost surely the algorithm either paq converges in finitely many iterations to
an ε-stationary point, or pbq produces a bounded sequence of iterates pxkqk whose converging subsequences
all converge to stationary points.

As an intermediate result, we first show that the update step computed in Algorithm 3 is obtained
after finitely many iterations and estimate its magnitude relatively to the norm of the descent direction.

Lemma 1. UpdateSteppf, xk, ε, η, Ck, β, γq terminates in finitely many iterations. In addition, let L
be a Lipschitz constant for the restricted gradients ∇fi (as in Proposition 2) in the ε-neighborhood of xk.
Assume that 1´β

2L ď Ck. If xk is not an pε, ηq-stationary point, then the returned exploration radius εk
satisfies:

min

ˆ

γ2p1´ βq

2L
}g̃pxk,

1

γ
εkq}, ε

˙

ď εk ď minpCk}g̃pxk, εkq}, εq.

Moreover the returned controlling constant Ck`1 satisfies:

Ck`1 ě
γp1´ βq

2L
.

Proof. If xk is a stationary point, then ApproxGradient returns a trivial descent direction gk “ 0 because
the approximate gradient Gk contains ∇fpxkq (Line 1). In turn, UpdateStep terminates at Line 4.

Henceforth we assume that xk is not a stationary point and that the breaking condition of Line 4 in
Algorithm 3 is never reached (otherwise the algorithm terminates). Therefore, at each iteration of the main
loop, either Ck`1 is replaced by γCk`1 (line 9), or εk is replaced by γεk (line 12), until both the following
inequalities hold (line 14):

(A) εk ă Ck`1}g̃pxk, εkq| and

(B) fpxk ´ tkg̃pxk, εkqq ă fpxkq ´ βtk}g̃pxk, εkq}
2.

Once Ck`1 becomes lower than 1´β
2L , inequality (A) implies inequality (B) by Proposition 3 piiq. It then

takes finitely many replacements εk Ð γεk to reach inequality (A), by Proposition 3 (i). At that point
(or sooner), Algorithm 3 terminates. This concludes the first part of the statement, namely UpdateStep
terminates in finitely many iterations.

Next we assume that xk is not an pε, ηq-stationary point, which ensures that the main loop of
UpdateStep cannot break at Line 5. We have the invariant Ck`1 ě γ 1´β

2L : this is true at initial-
ization (Ck`1 “ Ck) by assumption, and in later iterations Ck`1 is only replaced by γCk`1 whenever (A)
holds but not (B), which forces Ck`1 ě

1´β
2L by Proposition 3 (ii).

At the end of the algorithm, εk ď Ck`1}g̃pxk, εkq} by inequality (A), and so we deduce the right
inequality εk ď minpCk}g̃pxk, εkq}, εq.

Besides, if both (A) and (B) hold when entering the main loop (line 11) for the first time, then εk “ ε.
Otherwise, let us consider the penultimate iteration of the main loop for which the update step is 1

γ εk. Then,
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either condition (A) does not hold, namely 1
γ εk ą Ck`1}g̃pxk,

1
γ εkq} ě γ 1´β

2L }g̃pxk,
1
γ εkq}, or condition (B)

does not hold, which by the assertion (ii) of Proposition 3 implies 1
γ εk ě

1´β
2L }g̃pxk,

1
γ εkq}. In any case, we

deduce that

εk ě min

ˆ

γ2p1´ βq

2L

›

›

›

›

g̃

ˆ

xk,
1

γ
εk

˙
›

›

›

›

, ε

˙

.

Proof of Theorem 2. We assume that alternative paq does not happen. By Lemma 1, Algorithm 3 terminates
in finitely many iteration and by Line 14 we have the guarantee:

@k ě 0, fpxk ´ tkg̃pxk, εkqq ă fpxkq ´ βtk}g̃pxk, εkq}
2. (14)

The subsequent iterate xk`1 is initialized at xk´ tkg̃pxk, εkq by MakeDifferentiable (see Algorithm 5)
and replaced by a sample in a progressively shrinking ball Bpxk ´ tkg̃pxk, εkq, rq until two conditions are
reached. The first condition is that f is differentiable at xk`1, and since D has full measure by Rademacher’s
Theorem, this requirement is almost surely satisfied in finitely many iterations. The second condition is
that

@k ě 0, fpxk`1q ă fpxkq ´ βtk}g̃pxk, εkq}
2, (15)

which by Equation (14) and continuity of f is satisfied in finitely many iterations as well. Therefore
MakeDifferentiable terminates in finitely many iterations almost surely. In particular, the sequence of
iterates pxkqk is infinite.

By Equation (15) the sequence of iterates’ values pfpxkqqk is decreasing and it must converge by
compactness of the sublevel sets below f . Using Equation (15), we obtain:

εk}g̃pxk, εkq} “ tk}g̃pxk, εkq}
2 ď

1

β
pfpxkq ´ fpxk`1qq ÝÑ 0`, (16)

so that in particular, either εk Ñ 0 or }g̃pxk, εkq} Ñ 0. Let also L be Lipschitz constant for the restricted
gradients ∇fi (as in Proposition 2) in the ε-offset of the sublevel set tx, fpxq ď fpx0qu. Up to taking L
large enough, there is another Lipschitz constant L1 ă L ensuring that

1

γ

1´ β

2L
ď

1´ β

2L1
ď C0.

By Lemma 1, upon termination of Algorithm 3, C1 ě γ 1´β
2L1 ě

1´β
2L . If C1 ď

1´β
2L1 , the (ii) of Proposition 3

prevents Line 9 in Algorithm 3 from ever occurring again, i.e., Ck “ C1 is constant in later iterations.
Otherwise, C1 satisfies C1 ě

1´β
2L1 just like C0. A quick induction then yields:

@k ě 0, Ck ě
1´ β

2L
.

Therefore, by Lemma 1:

@k ě 0, min

ˆ

γ2p1´ βq

2L

›

›

›

›

g̃

ˆ

xk,
1

γ
εk

˙›

›

›

›

, ε

˙

ď εk ď minpC0}g̃pxk, εkq}, εq. (17)

In particular, using the rightmost inequality and Equation (16), we get εk Ñ 0`. In turn, using the leftmost
inequality, we get that

›

›

›

›

g̃

ˆ

xk,
1

γ
εk

˙›

›

›

›

Ñ 0`. (18)

The sequence of iterates pxkqk is bounded; up to extracting a converging subsequence, we assume that it
converges to some x˚. Let ε1 ą 0. We claim that 0 P Bε1fpx˚q, that is x˚ is ε1-stationary. As xk Ñ x˚ and
εk Ñ 0, we have that for k large enough Bpxk, 1

γ εkq Ď Bpx˚, ε
1q, which implies that:

B 1
γ
εk
fpxkq Ď Bε1fpx˚q.
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Besides, from Proposition 2, we have B̃ 1
γ
εk
fpxkq Ď B 1

γ
εk
fpxkq, so that g̃pxk, 1

γ εkq P B 1
γ
εk
fpxkq. Hence

g̃pxk,
1
γ εkq P Bε1fpx˚q. In the limit, Equation (18) implies 0 P Bε1fpx˚q, as desired.

Following [16], the intersection of the Goldstein subgradients Bε1fpx˚q, over ε1 ą 0, yields Bfpx˚q. Hence,
0 P Bfpx˚q and x˚ is a stationary point.

Theorem 3. If η ą 0, then Algorithm 2 produces an pε, ηq-stationary point using at most O
´

1
ηminpη,εq

¯

iterations.

Proof. Assume that Algorithm 2 has run over k iterations without producing an pε, ηq-stationary point.
From Algorithm 3 (line 14), Algorithm 5 (Line 2) and the choice tj “

εj
}g̃pxj ,εjq}

of update step for j ď k, it
holds that βεj}g̃pxj , εjq} ď fpxjq ´ fpxj`1q, and in turn

k´1
ÿ

j“0

εj}g̃pxj , εjq} ď
f0 ´ f

˚

β
,

where f0 :“ fpx0q and f˚ is a minimal value of f . Besides, using Lemma 1, εj is either bigger
than γ2p1´βq

2L

›

›

›
g̃
´

xj ,
1
γ εj

¯›

›

›
or than ε, hence

k´1
ÿ

j“0

εj}g̃pxj , εjq} ě kmin
jăk

}g̃pxj , εjq} ˆmin
jăk

εj ą k ˆ η ˆmin

ˆ

ε,
γ2p1´ βq

2L
η

˙

.

The two equations cannot simultaneously hold whenever

k ě
f0 ´ f

˚

β
ˆ

1

ηmin
´

ε, γ
2p1´βq

2L η
¯ ,

which allows us to conclude.

3.3 Approximate distance to strata

The algorithm and its convergence assume that strata X that are ε-close to an iterate x can be detected by
the oracle SampleOraclepx, εq. However in practice computing distances dpx,Xq to sub manifolds may
be expansive or even impossible. Instead we can hope for approximate distances d̂px,Xq. Typically when
we have an assignment

px,Xq P Rn ˆ X ÞÝÑ x̃X P X Ď Rn, at our disposal, we can define d̂px,Xq :“ dpx, x̃Xq,

and replace the accurate oracle SampleOraclepx, εq with the following approximate oracle:

ApproxSampleOraclepx, εq :“
 

x̃X |X P X , dpx, x̃Xq ď ε
(

“
 

x̃X |X P X , d̂px,Xq ď ε
(

.

Therefore for the purpose of this section we make the following assumption: To every iterate x P Rn and
stratum X we can associate an element x̃X that belongs to X, in particular we have the corresponding
oracle ApproxSampleOracle. Moreover there exists a constant a ě 1 such that the resulting approximate
distance to strata d̂px,Xq :“ dpx, x̃Xq satisfies:

@x P Rn,@X P X , d̂px,Xq ď adpx,Xq.

Note that we always have a reverse inequality d̂px,Xq ě dpx,Xq since x̃X P X. In the case of the
persistence map this will specialize to dpx,Xq ď d̂px,Xq ď 2dpx,Xq, that is a “ 2, see Proposition 7.

We then replace the approximate Goldstein subgradient B̃εfpxq with B̂εfpxq, defined in the exact same
way except that it is computed from strata satisfying d̂px,Xq ď ε, that is, B̂εfpxq contains ∇fpx̃Xq for
each such stratum. The proof of Proposition 2 adapts straightforwardly to the following statement:
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Figure 2: Sublevel sets and superlevel sets filtrations illustrated on graphs. paq Input graph (V,E) along
with the values of a function x : V Ñ R (blue). pb, c, dq Sublevel sets for t = 1,2,3 respectively. pe, f, gq
Superlevel sets for t = 3,2,1 respectively.

Proposition 4. Let x P Rn and ε ą 0. Assume that f is stratifiably smooth. Let L be a Lipschitz constant
of the gradients ∇fi restricted to Bpx, aεq XXi, where fi is some local C2 extension of f|Xi , and Xi P Xx,ε
is top dimensional. Then we have:

B̂εfpxq Ď Bεfpxq and Bεfpxq Ď B̂aεfpxq `Bp0, pa` 1qLεq.

Proof. The inclusion B̂εfpxq Ď Bεfpxq is clear. Conversely, let ∇Xfpx
1q P Bεfpxq, where X is a top-

dimensional stratum incident to x1 and |x1 ´ x| ď ε. We then have d̂px,Xq ď aε and hence x̃X is a point
in B̂aεfpxq which is pa` 1qε-close to x1. Therefore ∇Xfpx

1q P B̂aεfpxq ` Bp0, pa` 1qLεq. The rest of the
proof is then conducted as in Proposition 2.

The vector ĝpx, εq with minimal norm in B̂εfpxq can then serve as the new descent direction in place
of g̃px, εq:

Proposition 5. Let f be stratifiably smooth, and x be a non strationnary point. Let 0 ă β ă 1, and
ε0 ą 0. Denote by L a Lipschitz constant for all gradients of the restriction fi in the ball Bpx, aε0q (as in
Proposition 4).

(i) For 0 ă ε ď ε0 small enough we have ε ď 1´β
2L }ĝpx, εq}; and

(ii) For such ε, we have @t ď ε
a}ĝpx,εq} , fpx´ tĝpx, εqq ď fpxq ´ βt}ĝpx, εq}2.

Proof. The proof of Proposition 3 can be replicated by replacing ε with ε
a and using Proposition 4 instead

of Proposition 2.

In light of this result, we can use gk “ ĝpxk, εkq as a descent direction, which in practice simply
amounts to replace the accurate oracle SampleOraclepxk, εkq in Algorithm 4 with the approximate
oracle ApproxSampleOraclepxk, εkq. The only difference is that the assignment of update step in
Algorithm 3 (Line 7) should take the constant a into account, namely:

(Line 7’) tk Ð
ε

a}gk}
.

The convergence analysis of Section 3.2 holds as well for this algorithm, and the proofs of Theorem 2 and
Theorem 3 are unchanged.

4 Application to Topological Data Analysis

In this section, we define the persistence map PH : Rn Ñ Bar which is a central descriptor in TDA
that gives rise to prototypical stratifiably smooth objective functions f in this work. We refer the reader
to [36, 62, 76] for full treatments of the theory of Persistence. We then introduce the stratification that
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makes PH a stratifiably smooth map, by means of the permutation group. Using the associated Cayley
graph we give a way to implement the oracle SampleOraclepx, εq that samples points in nearby top
dimensional strata, which is the key ingredient of Algorithm 4 for computing descent directions.

4.1 The Persistence Map

Persistent Homology and Barcodes Let n P N, and let tv1, . . . , vnu be a (finite) set of vertices. A
simplicial complex K is a subset of the power set Pptv1, . . . , vnuq whose elements are called simplices, and
which is closed under inclusion: if σ P K is a simplex and σ1 Ď σ, then σ1 P K. The dimension of the
complex is the maximal cardinality of its simplices minus one. In particular a 1-dimensional simplicial
complex is simply an undirected graph.

A filter function is a function on the vertices of K, which we equivalently view as a vector x P Rn.
Given t P R, we have the sub complexes Kďt “ tσ P K, @v P σ, xpvq ď tu. This yields a nested sequence
of sub complexes called the sublevel sets filtration of K by x:

H ¨ ¨ ¨ Kďs Kďt ¨ ¨ ¨ K,
sďt (19)

See Figure 2 for an illustration on graphs. The (Ordinary) Persistent Homology of x in degree p P
t0, ¨ ¨ ¨ ,dimKu records topological changes in Equation (19) by means of points pb, dq P R2, here b ă d,
called intervals. For instance, in degree p “ 0, an interval pb, dq corresponds to a connected component
that appears in Kďb and that is merged with an older component in Kďd. In degree p “ 1 and p “ 2,
intervals track loops and cavities respectively, and more generally an interval pb, dq in degree p tracks a
p-dimensional sphere that appears in Kďb and persists up to Kďd.

Note that there are possibly infinite intervals pb,8q for p-dimensional cycles that persist forever in
the filtration Equation (19). Such intervals are not easy to handle in applications, and it is common to
consider the (Extended) Persistent Homology of x, for which they do not occur, i.e. we append the following
sequence of pairs involving superlevel sets Kět :“ tσ P K| @v P σ, xpvq ě tu to Equation (19):

K – pK,Hq ¨ ¨ ¨ pK,Kěsq pK,Kětq ¨ ¨ ¨ pK,Kq.
sět (20)

Together intervals pb, dq form the (extended) barcode PHppxq of x in degree p, which we simply denote
by PHpxq when the degree is clear from the context.

Definition 3. A barcode is a finite multi-set of pairs pb, dq P R2 called intervals, with b ď d. Two barcodes
differing by intervals of the form pb, bq are identified. We denote by Bar the set of barcodes.

The set Bar of barcodes can be made into a metric space as follows. Given two barcodes D :“ tpb, dqu
and D1 :“ tpb1, d1qu, a partial matching γ : D Ñ D1 is a bijective map from some subset A Ď D to some
B Ď D1. For q ě 1 the q-th diagram distance WqpD,D

1q is the following cost of transferring intervals pb, dq
to intervals pb1, d1q, minimized over partial matchings γ between D and D1:

WqpD,D
1q :“ inf

γ

ˆ

ÿ

pb,dqPA

}γpb, dq ´ pb, dq}q2

`
ÿ

pb,dqPDzA

ˆ

d´ b
?

2

˙q

`
ÿ

pb1,d1qPD1zB

ˆ

d1 ´ b1
?

2

˙q ˙ 1
q

.

(21)

In particular the intervals that are not in the domain A and image B of γ contribute to the total cost
relative to their distances to the diagonal tb “ du Ă R2.

The Stability Theorem [27, 28] implies that the map PH : Rn Ñ Bar, which we refer to as the
persistence map in what follows, is Lipschitz continuous.
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Differentiability of Persistent Homology Next we recall from [53] the notions of differentiability for
maps in and out of Bar and the differentiability properties of PH. Note that the results of [53] focus on
ordinary persistence, yet they easily adapt to extended persistence, see e.g. [75].

Given r P N, we define a local Cr-coordinate system as a collection of Cr real-valued maps coming
in pairs bi, di : U Ñ R defined on some open Euclidean set U Ď Rn, indexed by a finite set I, and
satisfying bipxq ď dipxq for all x P U and i P I. A local Cr-coordinate system is thus equally represented as
a map valued in barcodes

B̃ : x P U ÞÑ
 

bipxq, dipxq
(

iPI
P Bar,

where each interval pbipxq, dipxqq is identified and tracked in a Cr manner.

Definition 4. A map B : Rn Ñ Bar is r-differentiable at x P Rn if B|U “ B̃|U for some local Cr-coordinate
system B̃ defined in a neighborhood U of x.

Similarly,

Definition 5. A map V : Bar Ñ Rm is r-differentiable at D P Bar if V ˝ B̃ : Rn Ñ Rm is of class Cr in a
neighborhood of the origin for all n P N and local Cr-coordinate system B̃ defined around the origin such
that B̃p0q “ D.

These notions compose together via the chain rule, so for instance an objective function f “ V ˝B :
Rn Ñ Rm is differentiable in the usual sense as soon as B and V are so.

We now define the stratification X of Rn such that the persistence map B “ PH is r-differentiable (for
any r) over each stratum. Denote by Σn the group of permutations on t1, ¨ ¨ ¨ , nu. Each permutation π P Σn

gives rise to a closed polyhedron

Sπ :“

"

x P Rn | @1 ď i ă n, xπpiq ď xπpi`1q

*

, (22)

which is a cell in the sense that its (relative) interior is a top-dimensional stratum of our stratification X .
The (relative) interiors of the various faces of the cells Sπ form the lower dimensional strata. In terms
of filter functions, a stratum is simply a maximal subset whose functions induce the same pre-order on
vertices of K. We then have that any persistence based loss is stratifiably smooth w.r.t. this stratification.

Proposition 6. Let V : Bar Ñ R be a 2-differentiable map. Then the objective function f :“ V ˝ PH is
stratifiably smooth for the stratification X induced by the permutation group Σn.

Proof. From Proposition 4.23 and Corollary 4.24 in [53], on each a cell Sπ we can define a local C2

coordinate system that consists of linear maps bi, di : Sπ Ñ R, in particular it admits a C2 extension on a
neighborhood of Sπ. Since V is globally 2-differentiable, by the chain rule, we incidentally obtain a local
C2 extension fi of f|Sπ “ pV ˝ PHq|Sπ .

Remark 4. Note that the condition that f “ V ˝ PH is a proper map, as required for the analysis of
Algorithm 2, sometimes fails because PH may not have compact level-sets. The intuitive reason for this is
that a filter function x can have an arbitrarily large value on two distinct entries—one simplex creates a
homological cycle that the other destroys immediately—that may not be reflected in the barcode PHpxq.
Hence the fiber of PH is not bounded. However, when the simplicial complex K is (homeomorphic to) a
compact oriented manifold, any filter function must reach its maximum at the simplex that generates the
fundamental class of the manifold (or one of its components), hence PH has compact level-sets in this case.
Finally, we note that it is always possible to turn a loss function f based on PH into a proper map by
adding a regularization term that controls the norm of the filter function x.
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4.2 Exploring the space of strata

In the setting of Proposition 6, the objective function f “ V ˝ PH : Rn Ñ R is a stratifiably smooth map,
where the stratification involved is induced by the group Σn of permutations on t1, ¨ ¨ ¨ , nu, with cells Sπ
as in Equation (22). In order to calculate the approximate subgradient Bεfpxq, we need to compute the
set Xx,ε of cells Sπ that are at Euclidean distance no greater than ε from x:

d2
2px,Sπq :“ min

pPSπ
}x´ p}22 ď ε2. (23)

Estimating distances to strata In practice however, solving the quadratic problem of Equation (23)
to compute d2px,Sπq can be done in Opn log nq time using solvers for isotonic regression [9]. Since we want
to approximate many such distances to neighboring cells, we rather propose the following estimate which
boils down to Op1q computations to estimate d2px,Sπq. For any π P Σn, we consider the mirror of x in Sπ,
denoted by xπ P Rn and obtained by permuting the coordinates of x according to π:

@1 ď i ď n, xππpiq :“ xi. (24)

In the rest of this section, we assume that the point x is fixed and has increasing coordinates, xi ď xi`1,
which can always be achieved after a suitable re-ordering of these coordinates. The proxy d2px, x

πq then
yields a good estimate of d2px,Sπq, as expressed by the following result.

Proposition 7. For any permutation π P Σn, we have:

d2px,Sπq ď d2px, x
πq ď 2d2px,Sπq.

Proof. The left inequality is clear from the fact that xπ belongs to the cell Sπ. To derive the right inequality,
let x̂π be the projection of x onto Sπ. It is a well-known fact in the discrete optimal transport literature,
or alternatively a consequence of Lemma 2 below, that

d2px
π, x̂πq “ min

τPΣn
d2px

τ , x̂πq,

so that in particular d2px
π, x̂πq ď d2px, x̂

πq. Consequently,

d2px, x
πq ď d2px, x̂

πq ` d2px
π, x̂πq ď 2d2px, x̂

πq “ 2d2px,Sπq.

Our approximate oracle for estimating the Goldstein subgradient, see Section 3.3, computes the set of
mirrors xπ that are at most ε-away from the current iterate x :“ xk, that is:

ApproxSampleOraclepx, εq :“
 

xπ | d2px, x
πq ď ε, π P Σn

(

.

Remark 5. Recall that the oracle is called several times in Algorithm 3 when updating the current
iterate xk with a decreasing exploration radius εk. However, for the oracle above we have

ApproxSampleOraclepx, ε1q Ď ApproxSampleOraclepx, εq whenever ε1 ď ε,

so that once we have computed ApproxSampleOraclepxk, εkq for an initial value εk and the current
xk, we can retrieve ApproxSampleOraclepxk, ε

1q for any ε1 ă εk in a straightforward way, avoiding
re-sampling neighboring points around xk and computing the corresponding gradient each time εk decreases,
saving an important amount of computational resources.
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Sampling in nearby strata In order to implement the oracle ApproxSampleOraclepx, εq, we consider
the Cayley graph with permutations Σn as vertices and edges between permutations that differ by elementary
transpositions (those that swap consecutive elements). In other words, the Cayley graph is the dual of the
stratification of filter functions: a node corresponds uniquely to a cell Sπ and an edge corresponds to a pair
of adjacent cells.

We explore this graph starting at the identity permutation using an arbitrary exploration procedure,
for instance the Depth-First Search (DFS) algorithm. During the exploration, assume that the current
node, permutation π, has not yet been visited (otherwise we discard it). If d2px, x

πq ď ε, then we record
the mirror point xπ. Else, d2px, x

πq ą ε, and in this case we do not explore the children of π. Note that
given a child π1 of π, we retrieve xπ1 and d2px, x

π1q from xπ and d2px, x
πq in Op1q time. The following

result entails that this procedure indeed computes ApproxSampleOraclepx, εq.

Proposition 8. Let π1 P Σn be a permutation differing from the identity. Then there must be at least one
parent π of π1 in the Cayley graph such that d2px, xπq ď d2px, xπ1q.

Proposition 8 is a straight consequence of the following well-known, elementary lemma.

Lemma 2. Let x, y P Rn be two vectors whose coordinates are sorted in the same order, namely xi ď
xj ô yi ď yj. Given π P Σn a permutation, let invpπq be the set of inversions, i.e. pairs pi, jq satisfying
pj ´ iqpπpjq ´ πpiqq ă 0. Then

invpπq Ď invpπ1q ñ
ÿ

pxi ´ yπpiqq
2 ď

ÿ

pxi ´ yπ1piqq
2.

Remark 6. For an arbitrary filter function x, the computation of the barcode PHpxq has complex-
ity Op#K3q, here #K is the number of vertices and edges in the graph K (or the number of simplices
if K is a simplicial complex). In the SGS algorithm we need to compute PHpxπq for each cell Sπ near the
current iterate xk, which can quickly become too expansive. Below we describe two heuristics that we
implemented in some of our experiments (see Section 5.3) to reduce time complexity.

The first method bounds the number of strata that can be explored with a hyper-parameter N P N,
enabling a precise control of the memory footprint of the algorithm. In this case exploring the Cayley graph
of Σn using Dijkstra’s algorithm is desirable, since it allows to retrieve the N strata that are the closest to
the current iterate xk. Note that in the original Dijkstra’s algorithm for computing shortest-path distances
to a source node, each node is reinserted in the priority queue each time one of its neighbors is visited.
However in our case we dispose of the exact distances dpx, xπq to the source each time we encounter a
new node, permutation π, so we can simplify Dijkstra’s algorithm by treating each node of the graph at
most once. The second approach is memoization: inside a cell Sπ, all the filter functions induce the same
pre-order on the n vertices of K, hence the knowledge of the barcode PHpxπq of one of its filter functions
allows to compute PHpx1πq for any other x1π P Sπ in Op#Kq time. We can take advantage of this fact by
recording the cells Sπ (and the barcode PHpxπq of one filter function xπ therein) that are met by the SGS
(or GS) algorithm during the optimization, thereby avoiding redundant computations whenever the cell Sπ
is met for a second time.

5 Experiments

In this section we apply our approach to the optimisation of objective functions based on the persistence
map PH, and compare it with other methods. There are two natural classes of objective functions that
we can build on top of the barcode PHpxq. One consists in turning PHpxq into a vector using one of
the many existing vectorisation techniques for barcodes [14, 2, 24, 18] and then to apply any standard
objective function defined on Euclidean vector space. In this work we focus on the second type of objective
functions which are based on direct comparisons of barcodes by means of metrics Wq on Bar as introduced
in Section 4.
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Figure 3: Comparison of vanilla Gradient Descent (GD), Gradient Descent with decay (GDwD), Gradient
Sampling (GS) and our Stratified Gradient Sampling (SGS) on a toy example. (a) The evolution of filter
functions pxkqk as the total extended persistence Pers is minimised with the SGS method. Purple arrows
indicate descent direction at k “ 0. As expected, the minimization tends to make pxkqk topologically
as trivial as possible, that is flat in this context (b) The barcodes PHpxkq represented as persistence
diagrams extended with the point pminpxq,maxpxqq. (c) The value Perspxkq of the objective function across
iterations k. (d) The corresponding gradient norms p}gk}qk. Only GS and SGS reach the stopping criterion
}gk} ă η.

We consider three experimental settings in increasing level of complexity. Section 5.1 is dedicated
to the optimization of an elementary objective function in TDA that allows for explicit comparisons of
SGS with other optimization techniques. Section 5.2 and Section 5.3 introduce two novel topological
optimization tasks: that of topological registration for translating filter functions between two distinct
simplicial complexes, and that of topological Fréchet mean for smoothing the Mapper graphs built on top of
a data set.

Implementation Our implementation is done in Python 3 and relies on TensorFlow [1] for automatic-
differentiation, Gudhi [56] for TDA-related computations (barcodes, distances Wq, Mapper graphs), cvxpy
[32] for solving the quadratic minimization problem involved in Algorithm 4. Our implementation handles
both ordinary and extended persistence, complexes of arbitrary dimension, and can easily be tuned to
enable general objective functions (assuming those are provided in an automatic differentiation framework).
Our code is publicly available at https://github.com/tlacombe/topt.

5.1 Proof-of-concept: Minimizing total extended persistence

The goal of this experiment is to provide a simple yet instructive framework where one can clearly compare
different optimization methods. Here we consider the vanilla Gradient Descent (GD), its variant with
learning-rate Decay (GDwD), the Gradient Sampling (GS) methodology and our Stratified Gradient
Sampling (SGS) approach. Recall that GD is very well-suited to smooth optimization problems, while GS
deals with objective functions that are merely locally Lipschitz with a dense subset of differentiability. To
some extent, SGS is specifically tailored to functions with an intermediate degree of regularity since their
restrictions to strata are assumed to be smooth, and this type of functions arise naturally in TDA.

We consider the elementary example of filter functions x on the graph obtained from subdividing the
unit interval with n vertices and the associated (extended) barcodes PHpxq “ PH0pxq in degree 0.2 When
the target diagram is empty, D “ H, the objective x ÞÑW1pPHpxq,Hq to minimize is also known in the
TDA literature as the total extended persistence of PHpxq:

Pers : x P Rn ÞÝÑ
ÿ

pb,dqPPHpxq

|d´ b| P R.

2In this setting the extended barcode can be derived from the ordinary barcode by adding the interval pminpxq,maxpxqq.
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Throughout the minimization, the sublevel sets of x are simplified until they become topologically trivial:
Perspxq is minimal if and only if x is constant. This elementary optimization problem enables a clear
comparison of the GD, GS and SGS methods.

For each mode P tGD,GDwD,GS,SGSu we get a gradient gmode
k and thus build a sequence of iterates

xk`1 :“ xk ´ εkg
mode
k , k ě 0.

For GD, the update step εk “ ε is constant, for GDwD it is set to be εk “ ε{p1`kq, and for mode P tGS, SGSu
it is reduced until Perspxk ´ εkg

mode
k q ă Perspxkq ´ βεk}g

mode
k }2 (and in addition εk ă Ck}g

SGS
k } for SGS).

In each case the condition }gmode
k } ď η is used as a stopping criterion.

For the experiments, the graph consists of n “ 5 vertices, x0 “ p0.4, 0.72, 0, 0.3, 0.14q, ε “ η “ 0.01,
and we also have the hyper-parameters γ “ 0.5 and β “ 0.5 for the GS and SGS algorithm. The results
are illustrated in Figure 3.

Whenever differentiable, the objective Pers has gradient norm greater than 1, so in particular it is
not differentiable at its minima, which consists of constant functions. Therefore GD oscillates around its
optimal value: the stopping criterion }gGD

k } ď η is never met which prevents from detecting convergence.
Setting εk to decay at each iteration in GDwD theoretically ensures the convergence of the sequence pxkqk,
but comes at the expense of a dramatic decrease of the convergence rate.

In contrast, the GS and SGS methods use a fixed step-size εk yet they converge since they compute a
descent direction by minimizing }g} over the convex hull of the surrounding gradients
t∇Perspxkq,∇Perspxp1qq, . . . ,∇Perspxpmqqu, as described in Algorithm 1 and Algorithm 4. Here xp1q, . . . , xpmq

are either sampled randomly around the current iterate xk (with m “ n ` 1) for GS or in the strata
around xk (if any) for SGS. We observe that it takes less iterations for SGS to converge: 137 iterations
versus „ 165 iterations for GS (averaged over 10 runs). This is because in GS the convex hull of the random
sampling txp1q, . . . , xpmqu may be far from the actual generalized gradient Bεf , incidentally producing
sub-optimal descent directions and missing local minima, while in SGS the sampling takes all nearby strata
into account which guarantees a reliable direction (as in Proposition 3), and in fact since the objective Pers
restricts to a linear map on each stratum the approximate gradient B̃εfpxkq equals Bεfpxkq.

Another difference is that GS samples n`1 “ 6 nearby points at each iteration k, while SGS samples as
many points as there are nearby strata, and for early iterations there is just one such stratum. In practice,
this results in a total running time of „ 2.7s for GS vs. 2.4s for SGS to reach convergence.3

5.2 Topological Registration

We now present the more sophisticated optimization task of topological registration. This problem takes
inspiration from registration experiments in shapes and medical images analysis [49, 33, 35], where we
want to translate noisy real-world data (e.g. MRI images of a brain) into a simpler and unified format (e.g.
a given template of the brain).

Problem formulation In a topological analog of this problem the observation consists of a filter
function F defined on a simplicial complex K which may have, for instance, a large number of vertices, and
the template consists of a simplicial complex K 1 simpler than K (e.g. with fewer vertices). The goal is then
to find a filter function x on K 1 such that pK 1, xq faithfully recovers the topology of the observation pK,F q.
Formally we minimise the q-th distance (q P r1,`8s) between their barcodes

x ÞÑWqpPHpx,K 1q,PHpF,Kqq, (25)

where we include the complexes in the notations PHpF,Kq of the barcodes to make a clear distinction
between filter functions defined on K and K 1.

3Experiment run on a Intel(R) Core(TM) i5-8350U @ 1.70GHz CPU
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Figure 4: Illustration of topological registration (a) The target function defined on a (circular) simplicial
complex of which we want to reproduce the topology. (b) The registration obtained when using a template
with n “ 4 vertices. Purple arrows indicate descent direction at k “ 0. (c) The registration obtained when
using a template with n “ 15 vertices. (d) The target persistence diagram (blue triangles) along with the
diagram trajectories through iterations for both cases (green and brown, respectively). (e) The values of
the objective function across iterations. Using a larger template allows to attain lower objective values. (f)
The corresponding gradient norms, both reaching the stopping criterion }gk} ď η.
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Experiment We minimise (25) using our SGS approach. The observed simplicial complexK is taken to be
the subdivision of the unit circle with 120 vertices, see Figure 4. Let F “ F0`ζ where F0 P R120 is a piecewise
linear map satisfying F0r0s “ 0, F0r30s “ 1, F0r45s “ 0.05, F0r60s “ 0.35, F0r75s “ 0.1, F0r90s “ 0.8
and ζ is a uniform random noise in r0, 0.1s120. The (extended) barcode of F0 consists of two long
intervals p0, 1q, p0.05, 0.9q and one smaller interval p0.1, 0.35q that corresponds to the small variation of F0

(Figure 4 (a, left of the plot)). The stability of persistent homology implies that the barcode of F , which
is a noisy version of F0, contains a perturbation of these three intervals along with a collection of small
intervals of the form pb, dq with pd´ bq ă 0.1, since 0.1 is the amplitude of the noise ζ. The persistence
diagram representation of this barcode can be seen on Figure 4 (d, blue triangles): the three intervals are
represented by the points away from the diagonal tx “ yu Ă R2 and the topological noise is accounted by
the points close to the diagonal.

We propose to compute a topological registration x of pK,F q for two simpler circular complexes
with n “ 4 and n “ 15 vertices respectively (Figure 4, (b,c)). We initialize the vertex values x0 randomly
(uniformly in r0, 1sn), and minimize (25) via SGS. We use q “ 2, and the parameters of Algorithm 4 are set
to ε “ 0.01, η “ 0.01, β “ 0.5, γ “ 0.5.

With n “ 4 vertices, the final filter function x returned by Algorithm 4 reproduces the two main
peaks of F that correspond to the long intervals p0, 1q, p0.05, 0.9q, but it fails to reproduce the small bump
corresponding to p0.1, 0.35q as it lacks the degrees of freedom to do so. A fortiori the noise appearing
in F is completely absent in x, as observed in Figure 4 (d) where the two points appearing in the barcode
of x0 are pushed towards the two points of the target barcode of F as it is the best way to reduce the
distance Wq. Using n “ 15 vertices the barcode PHpxq retrieves the third interval p0.1, 0.35q as well and
thus the final filter function x reaches a lower objective value. However x also fits some of the noise, as one
of the interval in the diagram of xk is pushed toward a noisy interval close to the diagonal (see Figure 4
(d)).

5.3 Topological Mean of Mapper graphs

In our last experiment, we provide an application of our SGS algorithm to the Mapper data visualization
technique [67]. Intuitively, given a data set X, Mapper produces a graph MappXq, whose attributes, such
as its connected components and loops, reflect similar structures in X. For instance, the branches of
the Mapper graph in [65] correspond to the differentiation of stem cells into specialized cells. Besides its
potential for applications, Mapper enjoys strong statistical and topological properties [12, 21, 20, 19, 59, 6].

In this last experiment, we propose an optimization problem to overcome one of the main Mapper
limitations, i.e., the fact that Mapper sometimes contains irrelevant features, and solve it with the SGS
algorithm. For a proper introduction to Mapper and its main parameters we refer the reader to the
appendix (Appendix A).

Problem formulation It is a well-known fact that the Mapper graph is not robust to certain changes
of parameters which may introduce artificial graph attributes, see [3] for an approach to curate MappXq
from its irrelevant attributes. In our case we assume that MappXq is a graph embedded in some Euclidean
space Rd (d “ 2 in our experiments), which is typically the case when the data set X is itself in Rd, and
we modify the embedding of the nodes in order to cancel geometric outliers. For notational clarity we
distinguish between the embedded graph MappXq Ď Rd and its underlying abstract graph K. Let n be the
number of vertices of K.

We propose an elementary scheme inspired from [20] in order to produce a simplified version of MappXq.
For this, we consider a family of bootstrapped data sets X̂1, . . . , X̂k obtained by sampling the data
set cardpXq times with replacements, from which we derive new mapper graphs K1, ¨ ¨ ¨ ,Kk, whose
embeddings MappX̂1q, . . . ,MappX̂kq in Rd are fixed during the experiment. In particular, given a fixed
unit vector e in Rd, the projection Fe onto the line parametrized by e induces filter functions for each Ki,
hence barcodes PHpFe,Kiq.
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We minimize the following objective over filter functions F̃e P Rn:

F̃e P Rn ÞÑ
k
ÿ

i“1

W2pPHpF̃e,Kq,PHpFe,Kiqq
2 P R. (26)

By viewing the optimized filter function F̃e as the coordinates of the vertices of K along the e-axis, we
obtain a novel embedding of the mapper graph MappXq in Rd that is the topological barycenter of the
family pFe,MappX̂iqq.

To further improve the embedding MappXq, we jointly optimize Eq. (26) over a family tejuj of directions.
Intuitively, irrelevant graph attributes do not appear in most of the subgraphs MappX̂iq and thus are
removed in the optimized embedding of MappXq.

Remark 7. In some sense, the minimization Equation (26) corresponds to pulling back to filter functions
the well-known minimization problem Bar Q D ÞÑ

řk
i“1W2pD,Diq

2 that defines the barycenter or Fréchet
mean of barcodes D1, . . . , Dk, see [70]. Indeed, a topological mean of a set of filter functions x1, . . . , xk on
simplicial complexes K1, . . . ,Kk can be defined as a minimizer of x P Rn ÞÑ

ř

W2pPHpx,Kq,PHpxi,Kiqq
2.

In our experiment, x is interpreted as a radial projection onto the e-axis, and in fact when considering
several directions tejuj the mean resulting from the optimization is actually that of the so-called Persistent
Homology Transform from [71].

Experiment To illustrate this new method for Mapper, we consider a data set X of single cells
characterized by chromatin folding [60]. Each cell is encoded by the squared distance matrix M of its DNA
fragments. This data set was previously studied in [22], in which it was shown that the Mapper graph could
successfully capture the cell cycle, represented as a big loop in the graph. However, this attribute could
only be observed by carefully tuning the parameters. Here we start with a Mapper graph computed out
of arbitrary parameters, and then curate the graph using bootstrap iterates as explained in the previous
paragraphs.

Specifically, we processed the data set X with the stratum-adjusted correlation coefficient (SCC) [74],
with 500kb and convolution parameter h “ 1 on all chromosomes. Then, we run a kernel PCA on the SCC
matrix to obtain two lenses and computed a Mapper graph from these lenses using resolution 15, gain 0.4
on both lenses, and hierarchical clustering with threshold 2 on Euclidean distance. See Appendix A for a
description of these parameters. The resulting Mapper graph MappXq displayed in Figure 5 (upper left)
contains the expected main loop associated to the cell cycle, but it also contains many spurious branches.
However computing the Mapper graph with same parameters on a bootstrap iterate results in less branches
but also in a coarser version of the graph (Figure 5, upper middle).

After using the SGS algorithm capped at 150 strata (see Remark 6), ε “ 0.01, η “ 0.01, β “ 0.5,
γ “ 0.5, initialized with MappXq, and with loss computed out of 10 bootstrap iterates and 4 directions with
angles t0, π{2, π{4,´π{4u, the resulting Mapper, shown in Figure 5 (upper right), offers a good compromise:
its resolution remains high and it is curated from irrelevant and artifactual attributes.
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Figure 5: Different Mapper graphs colored with the first kernel PCA component. (Top row) Left: original
Mapper graph computed with a set of arbitrary parameters with many spurious branches. Middle: Mapper
graph obtained from bootstrap with very low resolution. Right: curated Mapper graph obtained as the
Fréchet mean of the bootstrap iterates. (Bottom row) Left: visualization of the data set with kernel PCA.
Right: the evolution of the loss (26) during the optimization process.
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A Background on Mapper

The Mapper is a visualization tool that allows to represent any data set X equipped with a metric and a
continuous function f : X Ñ R with a graph. It is based on the Nerve Theorem, which essentially states
that, under certain conditions, the nerve of a cover of a space has the same topology of the original space,
where a cover is a family of subspaces whose union is the space itself, and the (1-skeleton of a) nerve is a
graph whose nodes are the cover elements and whose edges are determined by the intersections of cover
elements. The whole idea of Mapper is that since covering a space is not always simple, an easier way is to
cover the image of a continuous function defined on the space with regular intervals, and then pull back
this cover to obtain a cover of the original space.

More formally, Mapper has three parameters: the resolution r P N˚, the gain g P r0, 1s, and a clustering
method C. Essentially, the Mapper is defined as MappXq “ N pCpf´1pIpr, gqqqq, where Ipr, gq stands for a
cover of impfq with r intervals with g% overlap, and N stands for the nerve operation, which is applied on
the cover Cpf´1pIpr, gqqq of X. This cover is made of the connected components (assessed by C) of the
subspaces f´1pIq, I P Ipr, gq. See Figure 6.

The influence of the parameters r, g, C, f on the Mapper shape is still an active research area. For
instance, the number of Mapper nodes increases with the resolution, and the number of edges increases
with the gain, but these parameters, as well as the function f and the clustering method C, can also have
more subtle effects on the Mapper shape. We refer the interested reader to the references mentioned in this
article for a more detailed introduction to Mapper.
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Figure 6: Example of Mapper computation on a double torus with height function covered by four intervals.
Ech interval is pulled back in the original space through f´1 and then separated into its connected
components with C. In particular, the cover element obtained with the preimage of the green interval is
separated into its two connected components. The nerve of this new cover is then computed to obtain
the Mapper. One can see that with only four intervals, the topology of the double torus is only partially
captured since only one loop is present in the Mapper instead of two.
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