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Abstract

We prove a su�cient condition for the non-existence of a nontrivial Cantor equicontinu-

ous factor in dynamical systems. We study the Coven cellular automaton of three neighbours

to show that it does not have a nontrivial Cantor equicontinuous factor. Through this study,

we show that the blocking words in this cellular automaton are all of the same form.

Keywords : Dynamical systems, equicontinuous factor, cellular automata.

1 Introduction

Cellular automata (CA) are particular (topological) dynamical systems (DS)[10], their (topolog-
ical) weak mixing is equivalent to their transitivity[12]. Every DS admits a maximal equicontin-
uous factor[7] and every equicontinuous factor (EF) of a weakly mixing DS is trivial[4]. Although
the study of EF is classic, the main focus is on minimal DS for which their weak mixing is equiv-
alent to the triviality of their EF[1]. A natural question is whether there are DS that are neither
minimal nor weakly mixing, but do not have a nontrivial EF. If we consider that a nilpotent
DS is trivial, a CA that has a �nite generic limit set does not have a non-nilpotent factor, even
if it is almost equicontinuous[5],[6]. The following question therefore concerns surjective DS.
Since they have full generic limit set, this theory is useless for this case. In this paper, we are
interested in the Coven CA of three neighbours which is a particular case of the Coven CA that
was introduced in[3]. This CA is chain transitive, but do not have the shadowing property[2],
while any Cantor equicontinuous DS has the shadowing property[11]. We establish a condition
for a DS to admit no nontrivial Cantor EF and we prove that this CA satis�es this condition.

2 Preliminaries

Dynamical systems. A (topological) dynamical system (DS) is a pair (X,F), where X
is a compact metric space and F : X → X is a continuous map. If X is the Cantor space, (X,F)
is called a Cantor system. A morphism Φ : (X,F) → (Y,G) between two DS is a continuous
map Φ : X → Y satisfying Φ ◦ F = G ◦ Φ. If Φ is surjective, we say that Φ is a factor map and
(Y,G) is a factor of (X,F). If Z ⊆ X is a closed invariant subset, then (Z,F) is a subsystem of
(X,F). We say that some subset U ⊆ X is strongly F-invariant if F−1(U) = U . For ε > 0, a
point x ∈ X is ε-stable if there exists δ > 0 such that ∀y ∈ Bδ(x), ∀t ∈ N, d(F t(x),F t(y)) < ε.
The set EF ⊆ X of equicontinuous points for F is the set of points that are ε-stable for
every ε > 0. If EF is comeager, then we say that F is almost equicontinuous (a subset is
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comeager if it includes a countable intersection of dense open sets). If EF = X, then we say
that F is equicontinuous. A DS (X,F) is weakly mixing, if for any nonempty open sets
U, V, U ′, V ′ ⊆ X, ∃t ∈ N,F t(U) ∩ U ′ 6= ∅ and F t(V ) ∩ V ′ 6= ∅. The limit set of U ⊆ X is the
set ΩF (U) =

⋂
T∈N

⋃
t≥T F t(U). The asymptotic set of U ⊆ X is ωF (U) =

⋃
x∈U ΩF ({x}).

Symbolic dynamics. Let A be a �nite set called the alphabet. A word is any �nite sequence
of elements of A. Denote A∗ =

⋃
n∈NA

n the set of all �nite words u = uJ0,n−1K; |u| = n is the
length of u. We say that v is a subword of u and write v v u, if there are k, l < |u| with
k ≤ l such that v = uJk,lJ = ukuk+1 . . . ul−1. A

Z is the space of con�gurations, equipped

with the metric: d(x, y) := 2−n, where n = min { i ∈ N|xi 6= yi or x−i 6= y−i} . AZ is a Cantor
space. The cylinder of u ∈ A∗ in position i is [u]i =

{
x ∈ AZ

∣∣xJi,i+|u|J = u
}
. Cylinders are

clopen (closed and open). The shift is the DS σ over AZ de�ned by σ(x)i = xi+1 for i ∈ Z
and x ∈ AZ. A subshift is any subsystem of the full shift AZ. Let Σ be a subshift. Then
L(Σ) = {u ∈ A∗| ∃x ∈ Σ, u v x} is the language of Σ.

Trace. [8] If P is a partition of some space X and x ∈ X a point, then we denote P(x) ∈ P
the unique subset such that x ∈ P(x). The trace of some Cantor system (X,F) with respect to

some clopen partition P is
TPF : X → PN

x 7→ (P(F j(x)))j∈N
. It is a factor map of the system

(X,F) into the trace subshift (τPF = TPF (X), σ). Every factor subshift of a Cantor system is
a factor of some of its trace subshifts. A Cantor system is essentially the inverse limit of its
sequence of (wider and wider) trace subshifts.

Theorem 1. [9] A Cantor system is equicontinuous i� all of its trace subshifts are �nite.

Cellular automata. F : AZ → AZ is a cellular automaton (CA) if there exist integers
r− ≤ r+ and a local rule f : Ar+−r−+1 → A such that for any x ∈ AZ and any i ∈ Z, F (x)i =
f(xJi+r−,i+r+K). F : AZ → AZ is a CA if and only if it is continuous and commutes with the shift.

Thus, a CA is a DS over AZ. Let s > 0. A word u ∈ A+ with |u| ≥ s is s-blocking for (AZ, F ),
if there exists an o�set p ∈ [0, |u| − s] such that ∀x, y ∈ [u]0,∀t ≥ 0, F t(x)Jp,p+sJ = F t(y)Jp,p+sJ.

3 A criterion for absence of Cantor equicontinuous factors

The following result shows the relation between Cantor equicontinuous factors and �nite factors.

Proposition 1. A DS F admits a nontrivial Cantor equicontinuous factor if and only if F
admits a nontrivial �nite factor.
The latter has nontrivial period if the former was not the identity.

Note that a nontrivial �nite factor may correspond to the identity over a nontrivial (that is,
not a singleton) space.

Proof. • Let G be a nontrivial Cantor equicontinuous factor of F . Then, all trace subshifts
of G are �nite by Theorem 1 and G admits a nontrivial trace subshift (if every traces were
trivial, then this means that the system itself was trivial) that is a �nite factor of G (see
the de�nition of trace), therefore of F .

• Conversely, every �nite space is a subspace of the Cantor space AZ, so F admits a nontrivial
Cantor factor. Moreover, every �nite system is equicontinuous.

The following result gives a su�cient condition for the non-existence of �nite factors.
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Proposition 2. Let F be a surjective DS. If there exists a weakly mixing subsystem that in-
tersects every nonempty strongly F-invariant clopen set, then F admits no nontrivial Cantor
equicontinuous factor.

The word "Cantor" is necessary in this statement: think about a rotation of a disk: it
is equicontinuous, the only nonempty clopen set is the whole disk (by connectedness), and it
contains a weakly mixing subsystem: the (invariant) center.

Proof of Proposition 2. Let F|W be a weakly mixing subsystem. Suppose that F|W intersects
every nonempty strongly F-invariant clopen set. If Φ is a factor map from F onto a �nite system
G, then G|Φ(W ) is an equicontinuous factor of F|W , so it is a singleton. Φ−1(

⋃
n∈Z GnΦ(W )C)

is a strongly F-invariant clopen set (since Φ has �nite image, all preimage sets are clopen). By
de�nition, it does not intersect W . So by hypothesis, this clopen set is empty. This means that
every orbit of G gets into Φ(W ). Since F is surjective, then so is G, so that G is actually the
identity over a singleton. By Proposition 1, every equicontinuous Cantor factor is trivial.

4 Case of the Coven CA of three neighbours

Let 2 = {0, 1}. The Coven CA of three neighbours is F : 2Z → 2
Z de�ned by f : 23 → 2 such

that f(xJi,i+2K) = xi + xi+1(xi+2 + 1) mod 2 =

{
xi + 1 mod 2 if xJi+1,i+2K = 10

xi otherwise
.

It is surjective and almost equicontinuous (see [2] and [11]). It is not hard to show that
({∞1∞}, F ) is a (trivial) weakly mixing subsystem. We will prove that ({∞1∞}, F ) intersects
every invariant clopen set and we will need the following remark and de�nition.

Remark 1. Let Σk =
{
x ∈ 2Z

∣∣∀i ∈ 2Z+ k, xi = 1
}
.

∀x ∈ 2Z, x /∈ Σ0 ∪ Σ1 ⇐⇒ ∃k ∈ N, 012k0 v x.

Proof. x /∈ Σ0 ∪Σ1 ⇐⇒ x /∈
{
x ∈ 2Z

∣∣ ∀i ∈ 2Z, xi = 1
}
and x /∈

{
x ∈ 2Z

∣∣∀i ∈ 2Z+ 1, xi = 1
}

⇐⇒ ∃i ∈ 2Z, xi = 0 and ∃i ∈ 2Z+ 1, xi = 0 ⇐⇒ ∃k ∈ N, 012k0 v x.

De�nition 1. Let w be a word. We de�ne the following two generalized cylinders by
[(21)n]i = {x ∈ 2Z/xJi,i+2nJ = w ∈ L(Σ0) such that w ends in 1 and |w| = 2n}.
[(12)n]i = {x ∈ 2Z/xJi,i+2nJ = w ∈ L(Σ0) such that w begins with 1 and |w| = 2n}.

4.1 Minimal blocking words of the Coven CA of three neighbours

We will use the following lemma to show Proposition 3 and Lemma 2.

Lemma 1. Let n, k ≥ 1 and a, b ∈ 2. Then,

1. F k([a12k−1b]) ⊆
{

[1] if a = b
[0] if a 6= b

. Hence,

{
F k([14k]) ⊆ [12k]
F k([014k]) ⊆ [012k]

.

2. F 2n−1
([(21)2n ]) ⊆ [(21)2n−1

] and F 2n−1
([(12)2n ]) ⊆ [(12)2n−1

].

3. F 2n−1
([a1(21)2n−1−1b]) ⊆

{
[1] if a = b
[0] if a 6= b

and F 2n−1
([(12)2n−1

1]) ⊆ [1].

Proof. 1. When k = 1: F ([a1b]) ⊆
{

[1] if a = b
[0] if a 6= b

. Assume that, for some k ≥ 1,

F k([a12k−1b]) ⊆
{

[1] if a = b
[0] if a 6= b

. We show that F k+1([a12k+1b]) ⊆
{

[1] if a = b
[0] if a 6= b

.
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By Induction hypothesis, F k([a12k+1b]) ⊆ [a1b] (we apply the hypothesis in position −1,

0 and 1). Hence, F k+1([a12k+1b]) ⊆ F ([a1b]) ⊆
{

[1] if a = b
[0] if a 6= b

.

2. • When n = 1 : F ([2121]) ⊆ [21]. Assume that F 2n−1
([(21)2n ]) ⊆ [(21)2n−1

] for some
n ≥ 1. We show that F 2n([(21)2n+1

]) ⊆ [(21)2n ].
By Induction hypothesis, F 2n−1

([(12)2n+1
]) ⊆ [(21)2n−1

(21)2n−1
(21)2n−1

].
Hence, F 2n([(21)2n+1

]) ⊆ F 2n−1
([(21)2n−1

(21)2n−1
(21)2n−1

]) ⊆ [(21)2n ].

• When n = 1 : F ([1212]) ⊆ [12]. Assume that F 2n−1
([(12)2n ]) ⊆ [(12)2n−1

] for some
n ≥ 1. We show that F 2n([(12)2n+1

]) ⊆ [(12)2n ].
By Induction hypothesis, F 2n−1

([(12)2n+1
]) ⊆ [(12)2n−1

(12)2n−1
(12)2n−1

].
Hence, F 2n([(12)2n+1

]) ⊆ F 2n−1
([(12)2n−1

(12)2n−1
(12)2n−1

]) ⊆ [(12)2n ].

3. • a1(21)2n−1−1b is of the form (21)2n−1
b such that the �rst 2, on the left, is a.

When n = 1 : F ([a1b]) ⊆
{

[1] if a = b
[0] if a 6= b

. Assume that

F 2n−1
([(21)2n−1

b]) ⊆
{

[1] if a = b
[0] if a 6= b

for some n ≥ 1. We show that

F 2n([(21)2nb]) ⊆
{

[1] if a = b
[0] if a 6= b

. By Induction hypothesis and by Point 2,

F 2n−1
([a1(21)2n−1−1a1(21)2n−1−1b]) ⊆

{
[11(21)2n−1−11] if a = b

[11(21)2n−1−10] if a 6= b
.

Hence, F 2n([a1(21)2n−1−1a1(21)2n−1−1b]) ⊆

{
F 2n−1

([11(21)2n−1−11]) ⊆ [1] if a = b

F 2n−1
([11(21)2n−1−10]) ⊆ [0] if a 6= b

.

• When n = 1 : F ([121]) ⊆ [1]. Assume that F 2n−1
([(12)2n−1

1]) ⊆ [1] for some
n ≥ 1. We show that F 2n([(12)2n1]) ⊆ [1]. By Induction hypothesis and Point 2,
F 2n−1

([(12)2n1]) ⊆ [(12)2n−1
1]. Hence, F 2n([(12)2n1]) ⊆ F 2n−1

([(12)2n−1
1]) ⊆ [1].

Figure 1: Two superimposed diagrams whose two initial con�gurations share the blocking word
01140 and the left part. 0s are represented by white squares and 1s are represented by dark red
squares when the two diagrams agree; gray squares and light red squares correspond to where
they do not. Time evolves upwards.
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In the following proposition, we show that the minimal blocking words are all of the same
form (a minimal blocking word means that any strict subword is not blocking).

Proposition 3. Let k ∈ N. Then,

1. 012k0 is a 1-blocking word with o�set 0. Moreover, ∀t ∈ N, F t([012k0]) ⊆ [0].

2. ∀t ∈ N, ∃k′ ≥ 0, F t([012k0]) ⊆ [012k′0] (see Figure 1).

3. The minimal blocking words, with o�set 0, are all of the form 012k0.

Proof of Proposition 3. 1. By Point 1 of Lemma 1, F k([012k0]) ⊆ [00]. Moreover, 00 is a
1-blocking word with o�set 0 and ∀t ≥ k, F t([012k0]) ⊆ [0] (see [11]). Hence, 012k0 is
1-blocking word with o�set 0 and ∀t ∈ N, F t([012k0]) ⊆ [0].

2. Assume that ∃k ≥ 0, t ∈ N, ∀k′ ≥ 0, F t([012k0]) ⊆ [012k′−10]. By Point 1 of Lemma 1,
F t+k

′
([012k0]) ⊆ F k

′
([012k′−10]) ⊆ [1]. But ∀t ∈ N, F t([012k0]) ⊆ [0], by Point 1. Then

∀k ≥ 0, t ∈ N, ∃k′ ≥ 0, F t([012k0]) ⊆ [012k′0].

3. By Point 1, 012k0 is a 1-blocking word with o�set 0 and by Remark 1, w ∈ L(Σ0) if and
only if ∀k ≥ 0, 012k0 6v w. Moreover, if we take |w| = 2n− 1 such that w ends in 1 so that

awb ∈ L(Σ0), a, b ∈ 2, then F 2n−1
([awb]) ⊆

{
[1] if a = b
[0] if a 6= b

, by Point 3 of Lemma 1. In

other words, the dynamics to the right and to the left of w are not independant. Hence, w
cannot have a blocking word. Then, the minimal blocking words are all of the form 012k0.

According to Remark 1 and Proposition 3, every point without blocking word is in Σ0 ∪Σ1,
and, every point of Σ0 ∪ Σ1 is without blocking word.

4.2 Cantor equicontinuous factor of the Coven CA of three neighbours

Figure 2: F 2n−1
([w0110w012n−1]) ⊆ [12nw]

for n = 5 and w = 101010101010101010101,
0s are represented by white squares and 1s
are represented by black squares.

Figure 3: F 2n−1
([012n−101100]) ⊆ [12n0]

for n = 6, they are two superimposed dia-
grams whose two initial con�gurations share
the blocking word 01100 and the left part.

We will use the following lemma to show Lemma 3, Lemma 4, and Proposition 4.

Lemma 2. Let n ≥ 1 and k ≥ 0. Then,
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1. Let w′ ∈ 1(21)2n−1−1 and w v w′ such that w ends in 1 and k + |w| = 2n − 1. Then,

• F 2n−1
([w012n−1]) ⊆ [w].

• F 2n−1
([w01kw01k]) ⊆ [12n ]. Hence, F 2n−1

([w01kw012n−1]) ⊆ [12nw].

• F 2n−1
([12nw0]) ⊆ [w0].

2. F 2n−1
([a12n−1012n−1b]) ⊆

{
[12n0] if a = 0, b = 1
[012n ] if a = 1, b = 0

. Hence, F 2n−1
([12n−1012n ]) ⊆ [12n−10].

3. F 2n−1
([12n012k0]) ⊆ [012n−10] and F 2n−1

([(21)2n−1
012k0]) ⊆ [(21)2n−1

0] (see Figure 3).

Proof. 1. w v w′ ∈ 1(21)2n−1−1, w ends in 1 and k + |w| = 2n − 1. By Point 3 of Lemma 1,

• Since if we take any w′′ v w012n−1 of size 2n−1, the letter that is just to the left of w′′

is a letter of w and the letter that is to the right of w′′ is 1, F 2n−1
([w012n−1]) ⊆ [w].

• Since if we take any w′′ v w01kw01k of size 2n−1, the letter that is just to the left of
w′′ is the same as the letter that is just to the right of w′′, F 2n−1

([w01kw01k]) ⊆ [12n ].

• Since if we take any w′′ v 12nw0 of size 2n−1, the letter that is just to the left of w′′ is
1 and the letter that is just to the right of w′′ is a letter of w0, F 2n−1

([12nw0]) ⊆ [w0].

2. By Point 1, where w = 12n−1 and Point 1 of Lemma 1, where k = 2n−1.

3. • When n = 1: F ([11012k0]) ⊆ [010]. Assume that F 2n−1
([12n012k0]) ⊆ [012n−10] for

some n ≥ 1. We show that F 2n([12n+1
012k0]) ⊆ [012n+1−10]. By Point 1 of Lemma1,

where k = 2n−1, Induction hypothesis and Point 2 of Proposition 3, there exists
k′ ≥ 0 such that F 2n−1

([12n+1
012k0]) ⊆ [12n012n−1012k′0]. By Point 2 and Induction

hypothesis, F 2n([12n+1
012k0]) ⊆ F 2n−1

([12n012n−1012k′0]) ⊆ [012n+1−10].

• When n = 1: F ([21012k0]) ⊆ [210]. Assume that F 2n−1
([(21)2n−1

012k0]) ⊆ [(21)2n−1
0]

for some n ≥ 1. We show that F 2n([(21)2n012k0]) ⊆ [(21)2n0]. By Point 2 of Lemma1,
Induction hypothesis, and Point 2 of Proposition 3, there exists k′ ≥ 0 such that
F 2n−1

([(21)2n012k0]) ⊆ [(21)2n012k′0]. By Point 2 of Lemma 1 and Induction hy-
pothesis, F 2n([(21)2n012k0])) ⊆ F 2n−1

([(21)2n012k′0]) ⊆ [(21)2n0].

We will show that every invariant clopen set intersects Σ0 ∪ Σ1 contains ∞1∞.

Lemma 3. Let U be a strongly invariant clopen set. If U intersects Σ0∪Σ1, then it contains∞1∞.

Proof. Let j ∈ Z. If U contains a cylinder [u0]j such that u0 ∈ L(Σ0) and u0 contains a
single zero. Then u0 is of the form 1k101k2 , where k1, k2 ≥ 0. Let n > 1 and x ∈ [u0]j ⊆ U
such that x = 1∞12n1k01k101k21k3012n12n1∞, where

∣∣1k01k1
∣∣ = 2n and

∣∣1k21k3
∣∣ = 2n− 1. Then,

F 2n−1
(x) = F 2n−1

(1∞ 12n︸︷︷︸
A

12n︸︷︷︸
B

0︸︷︷︸
C

12n−10︸ ︷︷ ︸
D

12n︸︷︷︸
E

12n︸︷︷︸
F

1∞) = 1∞ 12n︸︷︷︸
A′

012n︸︷︷︸
B′

12n−10︸ ︷︷ ︸
C′

12n︸︷︷︸
D′

1∞.

• A and B give A′, and, E and F give D′, by Point 1 of Lemma 1, where k = 2n−1.

• B, C and D give B′, and, D and E give C ′, by Point 2 of Lemma 2.

Then, F 2n−1
(x) = 1∞012n+1−101∞. When n→∞, F 2n−1

(x)→ ∞1∞. So, we can �nd a con�gu-
ration in [u0]j whose orbit has a subsequence which converges to the con�guration ∞1∞. Since
U is a strongly F -invariant clopen set, and, [u0]j ⊆ U , ω([u0]j) ⊆ U , hence U contains ∞1∞.
Induction hypothesis : Assume that for some N ≥ 1, if U contains a cylinder [u1]j such that
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u1 ∈ L(Σ0) and contains at most N zeros, then U contains ∞1∞. We show that, if U contains
a cylinder [u]j such that u ∈ L(Σ0) and contains N + 1 zeros, then U contains ∞1∞.
If U contains a cylinder [u]j such that u ∈ L(Σ0) and contains N + 1 zeros. Then u is of the
form v01k1 , where k1 ≥ 0 and v contains N zeros. Let n > 1 and x ∈ [u]j such that
x = 1∞12n12n1k0v01k11k2012n12n1∞, where

∣∣1k0v∣∣ = 2n − 1 and
∣∣1k11k2

∣∣ = 2n − 1.

Then, F 2n−1
(x) = F 2n−1

(1∞ 12n︸︷︷︸
A

12n︸︷︷︸
B

12n−1−|v|v︸ ︷︷ ︸
C

0︸︷︷︸
D

12n−1︸ ︷︷ ︸
E

0︸︷︷︸
F

12n︸︷︷︸
G

12n︸︷︷︸
H

1∞)

= 1∞ 12n︸︷︷︸
A′

12n−1−|v|v0︸ ︷︷ ︸
B′

12n−1−|v|v︸ ︷︷ ︸
C′

12n0︸︷︷︸
D′

12n︸︷︷︸
E′

1∞.

• A and B give A′, and, G and H give E′, by Point 1 of Lemma 1, where k = 2n−1.

• Since (B, C, and D) is of the form 12nw0 such that w = 12n−1−|v|v ∈ 1(21)2n−1−1 and v
ends in 1, B, C, and D give B′ that is of the form w0, and, since (C, D, and E) is of the
form w012n−1 such that w = 12n−1−|v|v ∈ 1(21)2n−1−1 and v ends in 1, C, D, and E give
C ′ that is of the form w, by Point 1 of Lemma 2.

• D, E, F , and G give D′, by Point 2 of Lemma 2.

Then, F 2n−1
(x) = 1∞12n−1−|v|v012n−1−|v|v12n01∞. When n → ∞, F 2n−1

(x) → 1∞v1∞. So, we
can �nd a con�guration in [u]j whose orbit has a subsequence which converges to a con�guration
in Σ0 ∪Σ1 and contains N zeros, because v contains N zeros. Since U is a strongly F -invariant
clopen set and [u]j ⊆ U , ω([u]j) ⊆ U , hence U contains a cylinder [u1]j such that u1 ∈ L(Σ0)
and contains at most N zeros. By Induction hypothesis, U contains ∞1∞.

The following lemma shows that the asymptotic set of every cylinder containing a single
blocking word intersects Σ0 ∪ Σ1.

Lemma 4. Let j ∈ Z and [u]j be a cylinder such that u contains a single minimal 1-blocking
word. Then ω([u]j) intersects Σ0 ∪ Σ1.

Proof. Since u contains a single minimal 1-blocking word, there exists v ∈ 01(21)k
′
1012k101(21)k

′′
1 0,

where k1, k
′
1, k
′′
1 ≥ 0 (which also contains a single minimal 1-blocking word), say [v]m ⊆ [u]j ,

m ∈ Z. Let n > 1 such that |v| < 2n. Let x ∈ [v]m such that
x ∈ 1∞1k01(21)k

′
1012k101(21)k

′′
1 01k

′
12k101(21)k

′′
1 01∞ ,

where the length of words in 1k01(21)k
′
1 is 2n and in 1k

′
12k101(21)k

′′
1 is 2n − 1. Then,

F 2n−1
(x) ∈ F 2n−1

(1∞ 12n︸︷︷︸
A

12n︸︷︷︸
B

1k01(21)k
′
1︸ ︷︷ ︸

C

0︸︷︷︸
D

12k10︸ ︷︷ ︸
E

1(21)k
′′
1 01k

′︸ ︷︷ ︸
F

12k101(21)k
′′
1︸ ︷︷ ︸

G

012n−1︸ ︷︷ ︸
H

12n+1︸ ︷︷ ︸
I

1∞).

Hence, F 2n−1
(x) ∈ 1∞ 12n︸︷︷︸

A′

(21)2n−1︸ ︷︷ ︸
B′

(21)2n−1
0︸ ︷︷ ︸

C′

12n12k101(21)k
′′
1︸ ︷︷ ︸

D′

0 12n︸ ︷︷ ︸
E′

1∞ .

• A and B give A′, and, H and I give E′, by Point 1 of Lemma 1, where k = 2n−1.

• 12n and 1k01(21)k
′
1 are of the form (21)2n−1

, B and C give B′, by Point 2 of Lemma 1.

• Since 1k01(21)k
′
1 is of the form (21)2n−1

, C, D, and E give C ′, by Point 3 of Lemma 2.

• Since (E, F , G, and H) is of the form w01k
′
w012n−1 such that w ∈ 12k101(21)k

′′
1 and

1k
′
w ∈ 1(21)2n−1−1, E, F , G and H give D′, by Point 1 of Lemma 2.

Then, F 2n−1
(x) ∈ 1∞(21)2n012n12k101(21)k

′′
1 01∞. Hence, F 2n−1

(x) contains a single minimal 1-
blocking word 012n12k10. When n→∞, F 2n−1

(x) ∈ (21)∞01∞. So, we can �nd a con�guration
in [v]m whose orbit has a subsequence which converges to a con�guration without minimal 1-
blocking word. Hence, ω([v]m) intersects Σ0∪Σ1. Since [v]m ⊆ [u]j , ω([u]j)∩ (Σ0∪Σ1) 6= ∅.
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The following proposition shows that ∞1∞ is contained in every invariant clopen set.

Proposition 4. Let U be a strongly F -invariant clopen set. Then, U contains ∞1∞.

Proof. Let j,m ∈ Z. If U contains a cylinder [u0]j such that u0 contains a single minimal
1-blocking word, ω([u0]j) intersects Σ0 ∪ Σ1, by Lemma 4. Since U is a strongly F -invariant
clopen set and [u0]j ⊆ U , ω([u0]j) ⊆ U . Hence, U intersects Σ0 ∪ Σ1.
Induction hypothesis: Assume that for some N ≥ 1, if U contains a cylinder [u1]j such that u1

contains N minimal 1-blocking words, then U ∩ (Σ0 ∪ Σ1) 6= ∅. We show that, if U contains a
cylinder [u]j such that u contains N + 1 minimal 1-blocking words, then U ∩ (Σ0 ∪ Σ1) 6= ∅.
Since u contains N + 1 minimal 1-blocking words, there exists v = 0v10v20 . . . 0vN0vN+10 such
that [v]m ⊆ [u]j , v1 ∈ 1(21)k

′
1012k1 , vN+1 ∈ 12kN+101(21)k

′′
N+1 , vi = 12ki or vi ∈ 1(21)k

′
i012ki

and vN ∈


12kN or

12kN 01(21)k
′′
N or

1(21)k
′
N 012kN or

1(21)k
′
N 012kN 01(21)k

′′
N

, where ki, k
′
i, k
′′
i ≥ 0, i = 2, N − 1.

Let n ≥ 1 such that |v| ≤ 2n. Let x ∈ [v]m such that

x ∈ 1∞1k01(21)k
′
1012k10v20 . . . 0vN012kN+101(21)k

′′
N+101k

′
12kN+101(21)k

′′
N+1012n−11∞ ,

where the length of words in 1k01(21)k
′
1 is 2n and in 1k

′
12kN+101(21)k

′′
N+1 is 2n − 1. Then,

F 2n−1
(1∞ 12n︸︷︷︸

A

12n︸︷︷︸
B

1k01(21)k
′
1︸ ︷︷ ︸

C

0︸︷︷︸
D

12k10︸ ︷︷ ︸
E

v20 . . . 0vN0︸ ︷︷ ︸
F

12kN+10︸ ︷︷ ︸
G

1(21)k
′′
N+101k

′︸ ︷︷ ︸
H

vN+1︸ ︷︷ ︸
I

012n−1︸ ︷︷ ︸
J

12n+1︸ ︷︷ ︸
K

1∞).

Hence, F 2n−1
(x) ∈ 1∞ 12n︸︷︷︸

A′

(21)2n−1︸ ︷︷ ︸
B′

(21)2n−1
0︸ ︷︷ ︸

C′

(21)α10 . . . 0(21)αN 0︸ ︷︷ ︸
D′

12nvN+1︸ ︷︷ ︸
E′

012n︸︷︷︸
F ′

1∞ ,

where αi ≥ 1, i = 1, N and vN+1 ∈ 12kN+101(21)k
′′
N+1 .

• A and B give A′, and, J and K give F ′, by Point 1 of Lemma 1, where k = 2n−1.

• 12n and 1k01(21)k
′
1 are of the form (21)2n−1

, B and C give B′, by Point 2 of Lemma 1.

• Since 1k01(21)k1 ⊆ (21)2n−1
, C, D, and E give C ′, by Point 3 of Lemma 2.

• Let i = 1, N − 1. By Point 3 of Lemma 2,
We have 12ki0vi+10 = 12ki012ki+10 or 12ki0vi+10 ∈ 12ki01(21)k

′
i+1012ki+10. Since

∣∣12ki
∣∣ and

the length of word in 12ki01(21)k
′
i+1 are< 2n, F 2n−1

([12ki0vi+10]) ⊆ [(21)αi0]. Since
∣∣12kN

∣∣
and the length of word in 12kN 01(21)k

′′
N are < 2n, F 2n−1

([12kN 0vN+10]) ⊆ [(21)αN 0],
with αi = ki or ki + 1 + k′i+1 and αN = kN or kN + 1 + k′′N . Hence, E, F , and G give D′.

• Since (G, H, I, and J) is of the form w01k
′
w012n−1 such that k′ + |w| = 2n − 1 and

1k
′
w = 1k

′
vN+1 ∈ 1(21)2n−1−1, G, H, I, and J give E′, by Point 1 of Lemma 2.

Then, F 2n−1
(x) ∈ 1∞(21)2n0v′10 . . . 0v′N012nvN+101∞,

where vN+1 ∈ 12kN+101(21)k
′′
N+1 and v′i ∈ (21)αi such that αi ≥ 1 and i = 1, N . Hence, F 2n−1

(x)

contains N+1 minimal 1-blocking words. When n→∞, F 2n−1
(x) ∈ (21)∞0v′10 . . . 0v′N01∞. So,

the orbit of x has a subsequence which converges to a con�guration with N minimal 1-blocking
words. In other words, ω(x) contains a con�guration with N minimal 1-blocking words. Since,
U is a strongly F -invariant clopen set and x ∈ [v]m ⊆ [u]j ⊆ U , ω(x) ⊆ U . Hence, U contains
a cylinder [u1]j such that u1 contains at most N minimal 1-blocking words. By Induction
hypothesis, U ∩ (Σ0 ∪ Σ1) 6= ∅. In particular, U contains ∞1∞, by Lemma 3.

Thus, the Coven CA of three neighbours has no nontrivial Cantor equicontinuous factor, by
Proposition 2.
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