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We demonstrate that large apparent converse flexoelectric properties can be obtained in

piezoelectric composites using theoretical approaches. To do so, we first present a numeri-

cal homogenization method accounting for all electromechanical terms related to strain and

electric field gradient. We then evaluate the coefficients of the model by numerical simula-

tions on periodic piezoelectric composites. After combining the homogenization approach

with topology optimization to enhance the converse properties of the composite, we present

numerical results that reveal that the apparent converse flexoelectric coefficients, as well as

those associated with the higher order coupling terms involving the electric field gradient,

are of the same order as the direct flexoelectric properties of the local constituents. These

results suggest that both converse and higher order electromechanical coupling effects may

contribute strongly to the flexoelectric response and properties of piezoelectric composites.

Finally, we show that it is theoretically possible to obtain optimized designs of composites

with apparent converse flexoelectric properties 1-2 orders of magnitude larger than ones

obtained with naive guess designs.

a)Electronic mail: julien.yvonnet@univ-paris-est.fr
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I. INTRODUCTION

Direct flexoelectricity is a phenomenon whereby an electrical polarization can be induced by

generating a strain gradient, or an inhomogeneous deformation on the sample. This so-called

direct flexoelectric effect has been widely studied in ferroelectric materials1 and complex ox-

ide ceramics2–5 as the effects are much larger in these materials, but more recently in several

polymers6,7 as well as in biological membranes8. Kogan9 formulated the first phenomeno-

logical theory of flexelectricity and estimated the range of values for flexoelectric coefficients.

Tagantsev10 developed a microscopic theory for the bulk contributions, using the rigid-ion ap-

proximation as well as a phenomenological description. Promising applications of direct flexo-

electricity have been studied, like the possibility of building a piezoelectric composite with non-

piezoelectric materials11–16, energy harvesters17,18 or new field-gradient-based sensors19. In20,

it was demonstrated that piezocomposites with designed microstructures could exhibit apparent

enhanced flexoelectric properties of the same order as oxide ceramics or ferroelectrics.

In contrast to direct flexoelectricity, the converse flexoelectric effect describes a mechanical

strain induced by an electric field gradient. Studies on converse flexoelectricity have only emerged

very recently and remain limited2,21–27. As noted in21, understanding and modeling of the con-

verse flexoelectric effect may not only help understanding unexplained enhanced piezoelectricity

in dielectrics and ferroelectrics, but also in designing and developing new electromechanical de-

vices. The inverse and converse flexoelectric effects have been experimentally demonstrated by

applying a voltage to a capacitor and measuring its bending13,28, and by applying a voltage to a

truncated pyramid so as to generate an inhomogeneous electric field, thus allowing the sample to

deform1,2,29. Fu et al.2, reported experimental observations of the converse flexoelectric effect in

a Ba0.67Sr0.33TiO3 (BST) trapezoidal ceramic block under an inhomogeneous electric field. In26,

Shu et al. measured converse flexoelectric coefficients in BST. Wang et al.21 showed the important

role of converse flexoelectricity on asymmetric structures surrounding domain walls in PbTiO3.

Abdollahi et al.23 demonstrated a large effective piezoelectric response in non-piezoelectric ma-

terials such as SrTiO3 and demonstrated that converse flexoelectricity may have non-negligible

effects in thin films. In24, converse flexoelectric effects were generated by the design permit-

tivity gradient with BST powder and a substrate. Shen and Chen25 demonstrated the converse

flexoelectric effect in a lead zirconate titanate micro beam. Tian et al.22 provided explicit solu-

tions for physical fields around a micro hole with simultaneous consideration of the strain gradient
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elasticity, direct flexoelectricity and converse piezoelectricity. Shu et al.27 provided relationships

between converse and direct flexoelectric coefficients. Mawassy et al. 30 developed an extended

flexoelectric framework involving electric field gradient coupling terms and proposed a finite el-

ement framework for their evaluation. Finally, Wang et al.31 conducted an extensive survey on

theoretical and experimental approach to determine the direct and converse flexoelectric values in

several ferroelectric oxides.

Therefore, two key issues related to flexoelectricity we attempt to resolve in the present work

are: first, to enable calculations of the converse flexoelectric effect for general situations, and

second, to determine the importance of higher order electric field gradient effects on the flexo-

electric response. Therefore, in this paper, we employ a homogenization method to predict the

apparent converse flexoelectric properties of piezoelectric composites. Following our previous

work20 where the homogenized direct flexoelectric properties were provided, we propose here an

extended effective model accounting for all coupling terms between strain, electric field, strain

gradient and electric field gradient. We provide expressions for all of the coupling tensors in a

fully anisotropic context, and demonstrate via numerical examples that these coupling terms, as

well as the converse flexoelectric effect, are of the same order as the direct flexoelectric constants

of the constituent materials. Finally, we combine this model with topology optimization to ob-

tain tailored microstructures with converse flexoelectric properties that exceed those obtained with

naive guesses.

II. AN EXTENDED FLEXOELECTRIC MODEL

We define the total energy density W for an electromechanical system where all couplings

between strains ε , stress σ , electric field E, strain gradient ∇ε and electric field gradient ∇E are

taken into account:

W =
1
2

Ci jklε i jεkl−
1
2

α i jE iE j− ei jkE iε jk

+
1
2

Gi jklmn∇ε i jk∇ε lmn +F i jklE i∇ε jkl +Mi jklmε i j∇εklm

−T i jkE i∇E jk−Ki jklε i j∇Ekl−
1
2

Li jkl∇E i j∇Ekl−H i jklm∇E i j∇εklm (1)

In Eq. (1), C, α and e denote the effective forth-order elastic, second-order dielectric and

third-order piezoelectric tensors, respectively. The term F denotes the effective fourth-order flex-
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oelectric tensor, while M and G correspond to higher-order strain gradient elastic tensors (see

e.g.32). The term K is the so-called converse flexoelectric tensor.

We note that there are several new coupling tensors in the above energy density expression,

whose interpretation is as follows: T denotes the relation between an additional polarization (elec-

tric field) and an electric field gradient; L denotes the relation between a polarization gradient (or

electric field gradient) and an electric field gradient and H denotes the relation between a polariza-

tion gradient (or electric field gradient) and a strain gradient. A similar expression has also been

provided in30.

The effective stress tensor σ , effective electric displacement d, effective hyperstress tensor S

and hyper-electric displacement P associated with energy density function (1) are defined as:

σ i j =
∂W
∂ε i j

, di =−
∂W
∂E i

, Si jk =
∂W

∂∇ε i jk
, Pi j =−

∂W
∂∇E i j

(2)

The corresponding expressions for the stress σ , the electric displacement d, the hyperstress S

and hyper electric displacement P are provided by:

σ i j =Ci jklεkl− eki jEk +Mi jklm∇εklm−Ki jkl∇Ekl (3)

di =ei jkε jk +α i jE j−F i jkl∇ε jkl +T i jk∇E jk (4)

Si jk =Mlmi jkε lm +F li jkE l +Gi jklmn∇ε lmn +H lmi jk∇E lm (5)

Pi j =Kkli jεkl +T ki jEk−H i jklm∇εklm +Li jkl∇Ekl (6)

The corresponding equilibrium equations relating these quantities are given by

σ i j, j−Si jk, jk = 0 (7)

di,i−Pi j,i j = 0 (8)

A complete description of boundary conditions for such model can be found in33.
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III. MICROSCALE EQUATIONS
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FIG. 1: (a) Periodic piezoelectric structure; (b) Representative Volume Element (RVE). Both

matrix phases (phase 1) and inclusion (phase 2) are made of the same piezoelectric material, but

rotated by a mismatch angle θ .

We consider a periodic composite (see Fig. 1 (a)) assumed to be characterized by a 2D Rep-

resentative Volume Element (RVE) (see Fig. 1 (b)). The RVE is defined in a domain Ω ∈ R2

whose external boundary is denoted by ∂Ω. The characteristic size of the RVE is `. The RVE

is subjected to a macroscopic strain ε, a macroscopic strain gradient ∇ε , a macroscopic electric

field E and a macroscopic electric strain gradient ∇E. The different phases of the material are

assumed to be linear piezoelectric and characterized by an elastic tensor C(k), a dielectric tensor

α(k) and a piezoelectric tensor E(k), where k = 1, ...,Np, with Np the number of phases. For the

sake of simplification, we only consider bi-phasic composites (k = 2) in the present work. The

local equations are given by:
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σi j, j = 0, in Ω (9)

di,i = 0, in Ω (10)

with:

σi j =Ci jklεkl− eki jEk (11)

di = ei jkε jk +αi jE j (12)

where εi j =
1
2(ui, j + u j,i). Assuming that interfaces between the different material phases are

denoted collectively by Γ, we assume perfectly bonded interfacial conditions, i.e.

[[σi jn j]] = 0, [[ui]] = 0 on Γ (13)

[[dini]] = 0, [[φ ]] = 0 on Γ (14)

where [[.]] denotes the jump accross Γ. We define the macro quantities as (.) ≡ 〈.〉 = 1
V
∫

Ω
(.)dV

with V the volume (area in 2D) of Ω. The effective electric field can be computed by prescribing

the following electric quadratic boundary conditions over the RVE (see20):

φ =−E ixi−
1
2

(
∇E
)

i j
xix j + φ̃ on ∂Ω (15)

where φ is the electric potential such that Ei = −φ,i and φ̃ is either zero or a periodic fluctuation

on ∂Ω. Mechanical quadratic boundary condition are introduced to prescribe an effective strain

and strain gradient34,35:

ui = ε i jx j +
1
2

gi jkx jxk + ũi, on ∂Ω (16)

where ui is a displacement vector related to strain through εi j =
(
ui, j +u j,i

)
and

gi jk = ∇ε i jk +∇ε ik j−∇ε jki (17)

and ũi is either zero or periodic on ∂Ω. Eqs. (9)-(10) are completed with the boundary conditions

(15)-(16). These equations are here solved by the finite element method (see details in20).

It is worth noting that in the case of a homogeneous domain, using (15) and (16) to compute εi j

and Ei and introducing them in Eqs. (9)-(10) does not lead to non-vanishing right-hand terms. This
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is a well-known issue in strain gradient homogenization problem, which can cause a dependence to

the number of unit cells within the RVE and to non-vanishing higher-order properties in the case of

materials which do not have local gradient effects (see a discussion in32). In our previous work36,

we have introduced appropriate body forces to balance these non-equilibrated terms. It has also

been shown in the context of purely mechanical gradient effects that such procedure is consistent

with asymptotic homogenization37. However, it has also been discussed in32 that such body forces

can lead to spurious over predicted effective gradient properties when one of the phase has very

low properties. For this reason, we did not adopt this approach in the present paper, which focuses

on the development of the homogenization model and on the topology optimization problem. One

potential solution to address the above-mentioned issues could be the use of Lagrange multipliers

to enforce homogeneous strain gradient and electric field gradients within a homogeneous RVE,

to extend the method proposed in38.

IV. EFFECTIVE TENSORS

The explicit expressions for tensors C, α , e, G, F and M can be found e.g. in20. Following the

procedure described in the same reference, the expressions of the new coupling terms including

the converse flexoelectric tensor K are provided by:

T i jk =〈B0
ipqCpqrsB1

rs jk−h0
ipepqrB1

qr jk−B0
ipqepqrh1

r jk−h0
ipαpqh1

q jk〉 (18)

Ki jkl =〈−A0
i jpqCpqrsB1

rskl +D0
i jpepqrB1

qrkl +A0
i jpqepqrh1

rkl +D0
i jpαpqh1

qkl〉 (19)

Li jkl =〈B1
i jpqCpqrsB1

rskl−2h1
i jpepqrB1

qrkl−h1
i jpαpqh1

qkl〉 (20)

H i jklm =〈−B1
i jpqCpqrsA1

rsklm +B1
i jpqEpqrD1

rklm +h1
i jpepqrA1

qrklm +h1
i jpαpqD1

qklm〉 (21)

Above, the fields B0, B1, h0, h1, D0, D1, A0 and A1 are local fields which are obtained by solving

the RVE problem (9)-(16) by finite elements. The definition for these tensors can be found in20

and are provided for convenience in supplementary material.
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The strong strain or electric field localizations within the medium due to the heterogeneities

may lead to a violation of the small perturbation assumption in realistic applications. In that

case, extensions to nonlinear formulations of flexoelectricity are available in the literature (see

e.g.39,40). However, in the nonlinear case, the effective properties depend on the local fields and

identifying the related models can be challenging. Even though this task is out of the scope of this

paper, possible strategies for this purpose could rely on data-driven approaches based on artificial

intelligence, such as in41,42.

V. SIMP TOPOLOGY OPTIMIZATION FOR CONVERSE FLEXOELECTRIC

COMPOSITES

In this section, we formulate the topology optimization problem to maximize the absolute val-

ues of the converse flexoelectric tensor components in (19). First, the periodic unit cell is dis-

cretized with a regular mesh of Ne 4-node quadrilateral finite elements. We define the inclusion

material density ρe in each element e, e = 1,2, ...,Ne such that ρe = 1 is associated with the inclu-

sion phase and ρ = 0 is associated with the matrix phase. The topology optimization is formulated

as follows:

Maximize : |Ki jkl(ρ)|

subject : KU = F

: ∑
Ne
e=1 ρeve/(∑

Ne
e=1 ve) = f

0≤ ρe ≤ 1, e = 1,2, ...,Ne

(22)

where KU = F is the discrete system obtained when discretizing Eqs. (9)-(16) by the Finite

Elmeent Method (see details e.g. in20). Above, ve is the volume of an element e and f is the

inclusion volume fraction.

We use the SIMP method43–45 to solve the problem. In this framework, the local material

properties are interpolated with respect to the local density in a continuous manner, using penalty

exponents to enforce local densities to converge to values close to 0 or 1. For composites made of

two phases, we use the following expression:
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[Ci jkl(ρ)] = ρ
pc[C2

i jkl]+ (1−ρ
pc)[C1

i jkl]

[αi j(ρ)] = ρ
pa[α2

i j]+ (1−ρ
pa)[α1

i j]

[eki j(ρ)] = ρ
pe[e2

ki j]+ (1−ρ
pe)[E 2

ki j] (23)

where the superscript 1 and 2 are associated with matrix and inclusion phase, respectively and

pc, pa and pe are penalty exponents. In the numerical examples, these values are chosen as

pc = pa = pe = 3.

The above problem (22) requires evaluating the gradient of the objective function with respect

to the local densities (subsequently referred to as sensitivities). The adjoint method has been

widely used for sensitivity analysis of gradient-based optimization algorithm46,47, and is also em-

ployed here. The corresponding Lagrangian function for the optimization problem (22) is formed

by introducing an adjoint vector λ as:

L =Ki jkl +λ · (KU−F) (24)

where KU−F = 0 holds for arbitrary adjoint vectors λ. Differentiating the Lagrangian function

L with respect to the design variable ρ , we have:

∂L
∂ρ

=
∂Ki jkl

∂ρ
+λ · ∂ (KU−F)

∂ρ
(25)

The detailed expression can be found following the procedure described in our previous work

on the topology optimization of direct flexoelectric properties36. The optimization problem (22) is

solved by the Conservative Convex Separable Approximations (CCSA) optimizer48 based on the

adjoint sensitivity.

VI. NUMERICAL INVESTIGATIONS

A. Composite with piezoelectric phase

In this section, we investigate through numerical simulations the significance of the converse

flexoelectric and other higher order electromechanical coupling terms in a piezoelectric composite.

The geometry of the RVE is depicted in Fig. 1 (b), and the triangular inclusion is chosen so as to
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increase the strain and polarization gradient effects. The characteristic size of the RVE is `= 1 mm.

The position of points A, B and C in Fig. 1 (b) are defined according to A = {−a;a}, B = {a;0},

C = {−a;−a} with a = `
√

0.8`/2 and corresponds to a volume fraction of inclusions equal to

f = 0.4. Each phase is made of PZT (lead zirconium titanate ceramics), but the main orientation

of the crystal in both phase is rotated by a mismatch angle θ ∈ [0,2π] to create a heterogeneity.

The matrix and inclusion phases are denoted by the superscripts 1 and 2, respectively, in Fig. 1 (b)

and in the following. The mechanical, dielectric and piezoelectric properties of the PZT matrix

phase are given in this 2D configuration by49,50

[C1] =


131.39 83.237 0

83.237 154.837 0

0 0 35.8

(GPa) (26)

[α1] =

2.079 0

0 4.065

(C ·m−2) (27)

[e1] =

−2.120582 −2.120582 0

0 0 0

(nC ·m−1 ·V−1) (28)

The properties of the inclusion phase are defined with respect to the angle θ according to

α
2
i j = RipR jqα

1
pq (29)

e2
i jk = RipR jqRkre1

pqr (30)

C2
i jkl = RipR jqRkrRlsC1

pqrs (31)

with

R =

cos(θ) −sin(θ)

sin(θ) cos(θ)

 (32)

In Fig. 2a, we compute the evolution of the components of the converse flexoelectric tensor K

with respect to the mismatch angle θ . The values are normalized with respect to the flexoelectric

component F1221 of PZT to evaluate their significance. We can notice that the components K1111,

K1112, K2211 and K1212 are of the same order (or higher) than the direct flexoelectric coefficients of
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FIG. 2: Evolution of the components of the effective converse flexoelectric tensor: K (a) and of

higher order electromechanical coupling term T (b), L (c) and H (d) with respect to the mismatch

angle in the piezoelectric composite with triangular inclusions

its constituents for almost all mismatch angles. The components K1111, K2211 and K1212 exhibit an

extremum of 0.1860×10−3C ·m−1, 0.1181×10−3C ·m−1 and 0.0504×10−3C ·m−1, respectively

around θ = π , while for K1112 this extremum is 0.111× 10−3C ·m−1 around θ = π

2 ,
3π

2 . These

results clearly demonstrate that the converse flexoelectric coefficients in piezoelectric composites

can make an important contribution to the electromechanical response of the structure and cannot

be ignored.

The evolution of the components of the other higher order electromechanical terms T , L and H

with respect to the mismatch angle θ are computed and shown in Figs. 2b, 2c and 2d, respectively.

Here again, these values are normalized with respect to the flexoelectric properties of PZT to eval-

uate their significance. The extremum of components T 111, T 222, T 112 and T 212 are comparable
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to the direct flexoelectric coefficient of PZT. For H, the extrema of the components H11221 H12112

H22112 and H12221 are close to the half of the direct flexoelectric coefficient of PZT. However, the

effective tensor L has much smaller components values as compared to local flexoelectric prop-

erties and only plays a negligible role here. Therefore, these results demonstrate that the higher

order electromechanical terms H and T can make a significant contribution to the electromechan-

ical response of piezoelectric composites. More specifically, the coefficients T i jk are associated

with additional polarization/electric displacement induced by the electric field gradient, and thus

characterize the importance of these additional effects on the flexoelectric behavior. Taking these

new terms into account in the modeling and simulation of flexoelectric structures may help to de-

sign new flexoelectric-based sensors and actuators based on the mechanical and electrical gradient

effects.

B. Topology optimization of ceramic/ceramic piezoelectric composite

Having established that the converse flexoelectric effect makes a significant contribution to the

overall flexoelectric response of the PZT/PZT composites, we now perform topology optimization

to determine topologies that maximize the converse flexoelectric contributions. We thus consider

the topology optimization of a two-phase composite made of piezoelectric phases. Each phase is

made with PZT (lead zirconium titanate ceramics) as in the previous example. Here, the crystal

lattice is oriented by a mismatch angle of θ = π in the inclusion phase. Then via (31)-(32), the

properties of the inclusion phase can be obtained as [C2] = [C1] given by (26), [α2] = [α1] given

by (27) and

[e2] =

2.120582 2.120582 0

0 0 0

(nC ·m−1 ·V−1). (33)

We perform the topology optimization of the inclusion shape with respect to the converse flex-

oelectric coefficients K1111, K2211 and K1212 and set the inclusion volume fraction to f = 0.4.

As a first guess, the design variables are uniformly set to ρe = 0.4 (e = 1,..., Ne = 6400). The

guess design with triangular shape which is illustrated in Fig. 1(b) has been investigated in sec-

tion VI A, recalling that the reference solutions are taken as the extremum values of K1111, K2211

and K1212 for the triangular microstructure at θ = π in Fig. 2 (a), and will serve as a compar-

ison solution with respect to optimized topological designs, i.e. Kre f
1111 = 0.1860× 10−3 C.m−1
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(a) (b) (c)

FIG. 3: Optimal topology for K for the PZT/PZT composite: (a) K1111; (b) K2211; (c) K1212.

Kre f
2211 = 0.1181×10−3 C.m−1 and Kre f

1212 = 0.0504×10−3 C.m−1. However, for the components

K1112, K2222 and K1222, the reference solution obtained by microstructure with triangular inclusion

are all zero at θ = π , as shown in Fig.2a. Therefore, we do not consider topology optimization for

those components in the present case of PZT/PZT composites.

The final optimized unit cell topologies are shown in Figs. 3, where the copper and black

colors refer to the inclusion and matrix phases, respectively. The iteration histories for K1111,

K2211 and K1212 are shown in Fig. 4. It is noted that the present optimization procedure leads to

stable and convergent optimal solutions. The final values for the optimized microstructures are

K1111 = 0.3525×10−3 C.m−1, K2211 = 0.2241×10−3 C.m−1 and K2112 = 0.0955×10−3 C.m−1,

which represents a significant improvement as compared to the reference triangular solutions by

a factor of 1.89 for the components K1111, K2211 and K1212. From Fig.3, we can see that the

three optimized unit cells obtained by K1111, K2211 and K1212 have similar topologies. Finally, we

note that the optimized microstructures are similar to the ones obtained by optimizing the direct

flexoelectric constants F1221 and F2112 for the PZT/PZT case36.

C. Topology optimization of ceramic/doped piezoelectric polymer composite

In this example, we replace the stiff PZT inclusion with a soft, dielectric, polymer inclusion

(polyvinylidene fluoride, PVDF). The elastic, piezoelectric and dielectric properties for the poly-

mer are given below. In comparison to the PZT properties, all of the polymer properties are 1-2

orders in magnitude lower than for PZT. The material parameters of matrix PZT are expressed in

(26)-(28)49,50, while the material properties of PVDF are described in (34)-(36)51.
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FIG. 4: Topology optimization process with respect to normalized flexoelectric components and

volume fractions for the PZT/PZT composite: (a) K1111; (b) K2211; (c) K1212.
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[C2] =


6.066 3.911 0

3.911 6.066 0

0 0 1.078

(GPa) (34)

[α2] =

0.025 0

0 0.084

(C ·m−2) (35)

[e2] =

0.1272 0.0873 0

0 0 0

(nC ·m−1 ·V−1) (36)

We perform topology optimization of the PVDF inclusion with respect to the converse flexo-

electric coefficients K1111, K2211, K1212, K2222, K2212 and K1211. To ensure that these results can be

compared against the previous PZT/PZT results, we set the volume fraction of the PVDF inclusion

to be f = 0.4 for all cases. Similarly, the initial guess is set by ρe = 0.4, e = 1,2, ...,Ne = 6400.

The final optimal unit cells of the converse flexoelectric coefficients K1111, K2211, K1212, K2222,

K2212 and K1211 are shown in Fig. 5. In these figures, the cyan and black colors refer to the

inclusion PVDF and matrix PZT, respectively. The reference solutions calculated by a triangu-

lar PVDF inclusion as in Fig. 1 (b) are shown for each case. The reference values obtained are

K1111 = 0.0432× 10−3 C.m−1, K2211 = 0.0139× 10−3 C.m−1, K1212 = 0.0073× 10−3 C.m−1,

K2222 = 0.0262×10−3 C.m−1, K2212 = 0.0033×10−3 C.m−1 and K1211 = 0.0004×10−3 C.m−1

for the PZT/Polymer composites with triangular inclusion.

We obtained six different optimized unit cells, and a significant improvement can be found

as compared to the reference triangular solutions. The optimal absolute values are K1111 =

0.3420× 10−3 C.m−1, K2211 = 0.2054× 10−3 C.m−1, K1212 = 0.0923× 10−3 C.m−1, K2222 =

0.1218×10−3 C.m−1, K2212 = 0.3267×10−3 C.m−1 and K1211 = 0.0821×10−3 C.m−1, which

represents increases by factors of 7.92, 14.78, 12.64, 4.65, 99 and 205.25 times, respectively.

Interestingly, despite being comprised of a polymer inclusion whose (elastic, piezoelectric, and

dielectric) properties are all about two orders of magnitude smaller than the PZT matrix, the flex-

oelectric constants are quite similar to those obtained for the optimized PZT/PZT composites

discussed previously, with significantly larger percentage enhancements.

In Figs. 6 and 7, we depict the local electric gradient and strain components of the optimized

microstructures that are associated with the converse flexoelectric coefficients K2222 and K1211,
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(a) (b) (c)

(d) (e) (f)

FIG. 5: Optimal topology for K for the PZT/PVDF composite: (a) K1111; (b) K2211; (c) K1212; (d)

K2222; (e) K2212; (f) K1211.

respectively. In the different cases, we can note that the optimized geometry favors the localization

of these fields near the interfaces, which may be expected due to the problem being one of a soft

inclusion within a stiff matrix.

VII. CONCLUSIONS

We have proposed an extended flexoelectric model which takes into account not only con-

verse flexoelectric effects, but also all other higher order electromechanical coupling terms. A

homogenization procedure has been introduced to evaluate numerically these apparent properties

in piezoelectric composites. Then, we have combined this model with topology optimization to

design microstructures with enhanced converse flexoelectric properties. The numerical investiga-

tions revealed that the apparent converse flexoelectric coefficients in a composite made of periodic

triangular inclusions have the same order of magnitude as the direct flexoelectric properties of the

local constituents. Furthermore, we showed that the other higher order coupling terms, i.e. that

relate the electric field to an applied electric field gradient and the strain gradient (bending) to the

electric field gradient have non-negligible values as compared to the flexoelectric coefficients. Fi-
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(a) Electric gradient ∇E22-component (b) Strain ε22-component

FIG. 6: (a) Electric field gradient component ∇E22 and (b) strain component ε22 within the

PZT-PVDF microstructure corresponding to the optimized coefficient K2222.

(a) Electric gradient ∇E11-component (b) Strain ε12-component

FIG. 7: (a) Electric field gradient component ∇E11 and (b) strain component ε12 within the

PZT-PVDF microstructure corresponding to the optimized coefficient K1211.

nally, we show that optimized designs can lead to effective converse flexoelectric properties which

can be improved by 1-2 orders of magnitude as compared to guess designs for ceramics/ceramics

or polymer/ceramics composites.

VIII. SUPPLEMENTARY MATERIAL

See the supplementary material for further details on Finite Element discretization of the mi-

croscale RVE problem and numerical calculation of effective flexoelectric properties.
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