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Abstract

In this paper, we propose a procedure combining Lattice-Boltzmann and finite ele-
ment simulations to model the effects of capillary pressure in porous microstructures.
Starting from an explicit geometry of the microstructure, the Lattice-Boltzmann
method is used to simulate the condensation from vapor phase to liquid and predict
the geometry of capillary liquid films and liquid phases for arbitrary geometry of
the solid skeleton. Then, a procedure is provided to prescribe surface tension and
pressure due to the capillary liquid films and liquid phases. The solid skeleton can
deform elastically under the action of the liquid and its deformation can be cap-
tured using the finite element method. Finally, a procedure to extract the shrinkage
strain and the effective macroscopic behavior of the material, taking into account
the explicit geometry of the microstructure and of the liquid capillary phases for a
given saturation is described. Several numerical examples are provided to validate
the methodology and show its potential.
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1 Introduction

Shrinkage can be defined as the change of volume in porous materials (geoma-
terials, cementitious materials, wood, etc.), which are subjected to a drying
environment. For example, in the context of nuclear power plant installations,
the last barrier against accidental release of radioactive fission products into
the environment is a pre-stressed concrete containment building. Such struc-
ture cannot be replaced and the issue of aging management must be treated
with particular care for long-term operations [1]. During the life of the con-
crete containment vessel, it is subjected to a drying environment. Then, the
concrete loaded by the pre-stressed tendons and subjected to drying exhibits
shrinkage and creep deformations. Due to these deformations, the pre-stress in
the concrete containment vessel which is designed to withstand various acci-
dental situations decreases over time. Therefore, evaluating the lifetime of such
structures requires a fine understanding of the mechanisms of shrinkage and
creep. It is now recognized that creep and shrinkage are related phenomena
and depend both on adsorption and desorption of water [2]. Understanding
shrinkage is prerequisite to understanding creep. The origin of shrinkage has
been primarily attributed to the three most prominent mechanisms: surface
free energy [3,4], capillary tension [3], and disjoining pressure [5,4].

The principle of defining an effective stress in saturated soil has been initi-
ated by [6]. Then in [7,8], Biot proposed a framework for isotropic saturated
poroelasticity. These works have been extended to unsaturated porous media
in [9,10]. A generalized thermodynamic approach for the saturated and unsat-
urated porous media can be found in [11,12,13]. In the unsaturated context,
a thermo-hydro-mechanical coupling associated with surface tension, or the
energy related to each fluid–fluid or fluid–solid interface is required. It induces
macroscopic effects such as drying shrinkage. Only recently, attempts to take
into account the effects of the microstructure on the unsaturated behavior
have been proposed in [14,15].

To improve understanding of shrinkage mechanisms, the present paper pro-
poses a numerical homogenization method to identify the macroscopic con-
stitutive law of an unsaturated poroelastic medium to extend the classical
analytical approach [15] to arbitrary microstructures. A hybrid method com-
bining Lattice-Boltzmann method (LBM) and Finite Element Method (FEM)
is proposed here for the first time to achieve the purpose.

The Lattice Boltzmann Method (LBM) (see e.g. [16,17]) has been introduced
as an efficient numerical tool for simulating fluid problems. Owing to its ease of
implementation, its kinetic theory basis and its constitutive versatility, LBM
plays an essential role as a simulation tool for understanding micro and macro
fluid flows. In addition, LBM can be efficiently solved on parallel comput-
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ers. LBM has been used for macroscopic transport properties [18,19], relative
permeability [20], liquid/vapor transitions [21], ionic diffusivity, nano- and
micro-scale simulations in the presence of complex porous material, hetero-
geneous catalysis [22,23,24,25], or for permittivity calculations [26,27]. For
unsaturated porous media, LBM was used to determine the capillary curve of
porous microstructures in [28,29] .

The LBM is here used to describe the distribution of the capillary liquid
water within porous microstructure, while the FEM is employed to compute
the elastic deformation of the solid skeleton under the action of the fluid
phase. Previous studies combining the Lattice Boltzmann method and the
finite element method can be found e.g. in [30,31]. The present procedure
aims at modeling the effects of capillary pressure in porous media at the
microscale. The LBM is used to simulate the condensation from vapor to
liquid and predict the geometry of capillary liquid films and liquid phases for
arbitrary geometry of the microstructure. Then, a procedure is provided to
prescribe surface tension and pressure due to the capillary liquid films and
liquid phases. The FEM is used to determine the resulting elastic deformation
of the solid skeleton. We elaborate a procedure to numerically extract the
shrinkage strain and the effective macroscopic behavior of the material.

In section 2, the overall LBM-FEM methodology is presented. In section 3,
the Lattice Boltzmann Method (LBM) is reviewed and the relevant algorithm
implemented in this paper is described. In section 4, we present the continuum
model used at the microscale, which is constructed from explicit morpholo-
gies and explicit description of liquid phases forming capillary films, obtained
from the LBM simulations. The homogenized model is detailed in section 5,
together with the different computational methodologies, to extract the ef-
fective quantities of the resulting poroelastic medium from the RVE model.
Finally, applications are presented in section 6 to validate the present model
and to apply it to 3D porous microstructures to show the potential of this
approach.

2 Overall methodology

The objective of this work is to determine the effective behavior of an un-
saturated porous medium, while explicitly taking into account the formation
and pressure of capillary water on the solid skeleton, which is assumed to be
a linearly elastic phase. The different steps of the methodology are described
in Fig. 1. First, given an arbitrary geometry of the dry porous skeleton (Fig.
1 (a)), a Lattice-Boltzmann simulation is conducted to obtain for a given liq-
uid saturation ratio the current local distribution of liquid phases. Given this
liquid distribution (Fig. 1 (b)), a simplified model is constructed by replacing
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Figure 1. Overall methodology: (a): geometry of the solid skeleton; (b) description
of capillary water distribution after condensation simulated by Lattice Boltzmann
Method; (c) simplified model containing solid, liquid phases and capillary films
modeled as imperfect interfaces with surface tension.

the fluid distribution by liquid, vapor phases and thin liquid films by imper-
fect interfaces modeling the surface tension at solid-vapor and liquid/vapor
interfaces (Fig. 1 (c)). Given this model, the pressure distribution on the solid
skeleton is extracted and a homogenized poroelastic model as well as shrinkage
strains can be defined and computed with finite elements. The different steps
of the procedure are described in the following.

3 Lattice-Boltzmann Method (LBM) for prediction of capillary liq-
uid distribution from condensation of vapor

3.1 A brief review of LBM for flows with phase change

In this section we briefly review the basics of LBM and its extension to flows
with phase change. In the present work, we propose to describe explicitly the
porous microstructure geometry to estimate the macroscopic isothermal and
unsaturated poroelastic properties of a porous material for a given saturation
ratio. It is then essential to accurately determine the distribution of the cap-
illary liquid water within the porous network, and to obtain a realistic repar-
tition of liquid and vapor in the RVE. This can be performed by multiphase
fluid flow simulations. On one hand, macroscopic descriptions (Computational
Fluid Dynamics, CFD) of multiphase flows require specific treatments to track
the interfaces [32] and imply tedious computational implementation. On the
other hand, microscopic modeling based on Molecular Dynamics [33] is lim-
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ited by small volumes of description. In this work, we adopt a mesoscopic
approach to the multiphase flow using LBM [34]. LBM is a discretized form of
the Boltzmann equation [35], which models the evolution of probability to find
a fluid molecule at a given position with a given velocity. LBM has advantages
as compared to the macro and micro approaches mentioned above. First, due
to its kinetic theory basis, it has a more physical foundation than CFD in the
case of multiphase flows. Second, it does not require tracking the interfaces
between liquid and vapor phases. Liquid and vapor phases emerge from the
physical nature of the interactions between fluid molecules at the microscopic
level, which are governed by a mean-field interaction potential [36]. Finally,
LBM allows efficient parallel computations.

There are several popular multiphase LBM models, including: the color-gradient
(RK) model [37], based on the immiscible lattice gas of [38], the Shan-Chen
(SC) model [39,40] which is based on incorporating an attractive or repul-
sive force leading to phase separation, the free-energy (FE) model proposed
by Swift-Osborn-Yeomans [41] and the He-Chen-Zhang (HCZ) model [42]. In
this paper, we have implemented a modified version of the SC model. The SC
model is a good compromise between ease of implementation, computing re-
source and model accuracy and has been widely used during the past decades
to model multiphase flow in porous media [19,28,29].

To describe the two-phase SC LBM, the BBGKY hierarchy [43] formalism is
adopted here and the mechanisms at the origin of the phase transitions and
wettability phenomena are introduced following [44]. The phase transitions
and wettability in this model are induced by the interaction forces between
the fluid and/or the solid molecules. The interested reader can find more
details about theoretical foundations of LBM e.g. in [45].

3.2 Numerical implementation

The Lattice Boltzmann equations are derived by discretizing the Boltzmann-
BGK equation in space and time through a projection of probability distri-
bution function on a Hermite polynomial basis [46,47,48,34] according to a
Taylor series technique, i.e:

fk(x + ξξξk∆t, t+ ∆t)︸ ︷︷ ︸
streaming

= fk(x, t)−
∆t

τc

{
fk(x, t)− f eqk

[
ρ(x, t),v′(x, t)

]}
︸ ︷︷ ︸

collision

,(1)

where the quadrature formula in the velocity space discretization is used here
in 3D, containing 19 quadrature nodes with an algebraic prediction of 5 order
(D3Q19 discretization scheme, see Fig. 2).
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Figure 2. D3Q19 molecule velocity space discretization scheme.

Above x represents a lattice node, ∆t is the time step and ξξξk(k = 0, · · · , 18)
the discrete molecule velocity vectors. The functions fk are the discrete distri-
bution functions related to the discrete molecule velocities directions k, and
cs = ∆x√

3∆t
with ∆x the lattice spacing. The discrete molecule velocity vectors

in this popular D3Q19 discretization scheme are given by

ξξξk =
∆x

∆t


0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1

0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1

 .(2)

The discrete equilibrium distribution function is given by

f eqk (ρ,v′) = ωkρ

(
1 +

ξξξk · v′
c2
s

+
(ξξξk · v′)2

2c4
s

− v′2

2c2
s

)
, (3)

where ωk is the weight factor associated with the kth−direction given as ωk =
1/3(k = 0), ωk = 1/18(k = 1, · · · , 6) and ωk = 1/36(k = 7, · · · , 18). The local
fluid density and momentum of each lattice node are related to the discrete
distribution function by

ρ =
18∑
k=0

fk , v =
1

ρ

18∑
k=0

fkξξξk , and v′ = v +
τcf

tot

ρ
. (4)

It can be shown that these quantities evolve according to the Navier-Stokes
equations of fluid-dynamics in the incompressible and low Mach number limits,
using the Chapmann-Enskog procedure [49]:

∂ρ

∂t
+∇x · (ρv) = 0, (5)

6



∂(ρv)

∂t
+∇x · (ρv ⊗ v) = −∇x ·P0 + f tot +∇x ·

[
ρη(∇xv +∇T

xv)
]
, (6)

where the relaxation time τc is related to the kinematic viscosity by η =
c2
s(τ − 0.5)∆t, τ = ∆t

τc
. Above, P0 is the ideal part of the second order fluid

pressure tensor given by the perfect gas equation of state, P0 = c2
sρ1. We have

also introduced, f tot = f coh + fads + f g, the total body force term including
the self-consistent one, which takes into account the non-ideal effects. More
precisely, f coh is responsible of phases separation, fads for wettability phenom-
ena and f g = ρg for the other possible external forces such as gravitational,
electrical forces etc. The discrete forms of the fluid-fluid f coh and fluid-solid
fads interaction forces are given by [39,40,19]:

f coh(x, t) = −Gψ(x, t)
18∑
k=1

ωkψ(x + ξξξk∆t, t)χ
f (x + ξξξk∆t)ξξξk, (7)

fads(x, t) = −Gψ(x, t)
18∑
k=1

ωkψ(ρs)χs(x + ξξξk∆t)ξξξk, (8)

where ρs represents a fictitious density of the solid-fluid interface and χα is
a characteristic function associated to the domain Ωα, α = s, f , such that
χα(x) = 1 if x ∈ Ωα and χα(x) = 0 otherwise. Above, ψ(x, t) is the lattice
version of the mean-field potential. We define the pseudo-potential ψ using
the method proposed in [50] by incorporating the non-ideal gas equation of
state (EOS) [51]:

ψ(ρ) =

√√√√ 2

Gc2
s∆t

[
p(ρ)− ρc2

s

]
, (9)

p(ρ) = ρRT
1 + bρ/4 + (bρ/4)2 − (bρ/4)3

(1− bρ/4)3
, (10)

where a and b are the constants of the Carnahan-Starling equation of state.
The previous EOS incorporation procedure to take into account the physical
non-ideal gas EOS reduces some drawbacks of the original SC LBM, such as
spurious currents, low liquid-vapor density ratio and introduces explicitly the
temperature in our SC LBM. In this approach the phase transition takes place
as soon as the temperature T becomes smaller than the critical temperature
Tcrit, where the fluid starts to exhibit two coexisting liquid and vapor phases.
At the critical fluid state where there is no distinction between the liquid and
vapor phases (ρl = ρv = ρcrit), we can show that a = 0.4963R2T 2

crit/pcrit and
b = 0.18727RTcrit/pcrit, with pcrit the critical pressure.

The non-slip boundary condition at the solid-fluid Γsf interface is taken into
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Figure 3. Interior and exterior boundary conditions. (a) Half-way bounce-back
scheme on Γsf and (b) periodic boundary condition on ∂Ωf .

account by the half-way bounce-back scheme (Fig.3-a),

fk(xf , t+ ∆t) = fk(xf , t)−
∆t

τc

[
fk(xf , t)− f eqk (xf , t)

]
, (11)

where ξξξk = −ξξξk. The periodicity condition on ∂Ωf is ensured (Fig.3-b) by

f ink (x−, t+ ∆t) = f outk (x+, t)−
∆t

τc

[
f outk (x+, t)− f eq,outk (x+, t)

]
(12)

with x− and x+ some nodes on the opposite parts of ∂Ωf . The overall al-
gorithm, involving the previously mentioned SC LBM model, is summarized
below. The subscript∞ indicates converged quantities at the thermodynamic
equilibrium state .
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Algorithm 1: Shan-Chen Lattice Boltzmann algorithm.

Input. ρ0(x), v0(x), τc, ∆t, ∆x, g, T/Tcrit, G
INITIALIZATION. ERR = ERR0

WHILE. ERR ≤ TOL, given ρi(x) and vi(x)

(1) Compute body and interaction forces f toti (x) and shift ve-
locity v′i(x).
(2) Collision step:

f ik(x) = f ik(x)− ∆t
τc

[
f ik(x)− f i,eqk (ρi(x),v′i(x))

]
.

(3) Streaming step: f i+1
k (x + ξξξk∆t) = f ik(x).

(4) Prescribe boundary conditions.
(5) Update fluid variables ρi+1(x) and vi+1(x), pi+1(x),
σσσi+1(x).
(6) Compute ERR
(7) GO to (1).

Output. ρ∞(x), v∞(x), p∞(x), σσσ∞(x).

In the above, the error is defined as:

ERR =

√√√√∑i [vi(x, t)− vi(x, t− tf )]2∑
i v

2
i (x, t)

(13)

where in practice we have used tf = 50.

4 Unsaturated porous medium RVE model with imperfect inter-
faces

4.1 Equations of the model with imperfect interfaces

Let us consider a porous microstructure in unsaturated conditions in a do-
main denoted by Ω ⊂ R3, associated with a Representative Volume Element,
as depicted schematically in Fig. 4 (a). For one saturation level, the vapor
condensates into liquid phases which distribute within the porous space due
to capillary effects (we assume that gravity effects can be safely neglected
due to the small scales considered). Along surfaces of the solid skeleton, the
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Figure 4. (a) distribution of phases after condensation simulation; (b) simplified
model with different surfaces and imperfect interfaces.

liquid phase can form thin capillary liquid films or liquid phases. A simpli-
fied model is associated with this configuration, as described in Fig. 4 (b). To
avoid meshing the thin films, they are replaced by imperfect interfaces taking
into account surface tension due to capillary effects. We then define the solid
domain Ωs associated with the solid phase, and denote by Γs`, Γsv and Γ`v the
interfaces between liquid and solid phases, solid and vapor phases, and liquid
and vapor phases, respectively. The full interface between the solid phase and
the pore is denoted by Γs = Γs` ∪ Γsv.

For simplicity we adopt ∇ = ∇x in the sequel. We assume that the solid
matrix is linear elastic and consider small perturbations in the solid phase.
The equilibrium equations in the solid phase are classically given by

∇ · σσσs = 0 in Ωs, (14)

where ∇ · (.) denotes divergence operator and σs denotes the Cauchy stress.
The subscript s refers to the solid phase. The constitutive relation is given by
the Hooke law,

σσσs = Cs : εεεs in Ωs, (15)

where Cs denotes the solid phase elastic tensor and εs the linearized strain
tensor. The equilibrium of the solid/vapor interphase is given by:

∇T · τττ = −JtK = (σσσs − σσσv) · nv on Γsv, (16)

where τττ is the membrane stress tensor, J.K denotes the jump of a quantity
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across Γsv, t denotes the traction vector and nv denotes the unit normal vec-
tor to Γsv pointing into the vapor domain Ωv. Above, ∇T · (.) is the surface
divergence operator, which for any differentiable second order tensor A is given
by:

∇T · (A) = ∇ · (A) : 1T (17)

with 1T , the second order identity tensor of the plane T tangent to the interface
defined by

1T = 1− nv ⊗ nv. (18)

According to the coherent imperfect interface model, the displacement vector
is continuous, JuK = 0 across the interface whereas the stress vector suffers a
jump across the same interface JtK 6= 0 according to (16). In particular the
surface divergence operator applied to the tangent unity tensor ∇T · 1T =
−(1T : ∇n)n = cn gives rise to the signed local interface curvature c. We
assume that γsv is uniform on Γsv, then:

(σσσs − σσσv) · nv = −γsvcnv on Γsv. (19)

Above, we have introduced the membrane stress

τ = γsv1T (20)

due to the presence of surface tensions. It is worth noting that the surface
tensions γsv and γs` are related by the Young’s equation which defines the
equilibrium of the contact line between solid-liquid-vapor domains,

γsv − γ`s = γ`vcos(θ), (21)

where θ is the contact angle between three interfaces. The above equations are
completed by the action of pressure in the liquid and vapor phases on solid
skeleton interface Γs, which correspond finally to boundary conditions as:

σs · n` = −p`n` on Γs`, (22)

σs · nv = −(pv + γsvc)nv on Γsv, (23)

where p` is the pressure exerted by the fluid on the solid, and pv is the pressure
exerted by the vapor on the solid. Here, we have neglected the linear force
effect on the triple line due to the surface tension γ`v effects on the liquid-
vapor interface Γ`v. We also consider a liquid phase completely wetting on the
solid phase (θ = 0o, γsv = γlv and γs` = 0) and the description was made by
omitting the reference completely saturated state at atmospheric pressure to
simplify the writing of the equations. For interested readers, a more detailed
description can be found in [15].
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4.2 Definition of pressure and surface tension from LBM simulations

In this section we define the values of p`, pv, γ`v and γsv from the liquid density
provided by the LBM solution.

From the SC LBM model described above, we can deduce in absence of body
force, i.e. fg = 0, and at thermodynamical equilibrium state the local fluid
stress tensor σσσf (x) (subscript f refers to fluid), by using:

∇ · σσσf (x) = −∇ ·P0(x) + f tot(x) (24)

where f tot(x) = −Gψ(x)
∑18
k=1 ωkψ(x +ξξξk∆t)ξξξk because f coh and fads have the

same form, with ψ(x + ξξξk∆t) = ψ(ρα(x + ξξξk∆t)) if x + ξξξk∆t ∈ Ωα, α = s, f .
We recall that P0(x) = ρ(x)c2

s1 . By expanding in Taylor series the pseudo-
potential force f tot up to order 2 and integrating (24), we get:

σfij(x) = −
[
c2
sρ(x) +

∆t

2
c2
sGψ2(x︸ ︷︷ ︸

bulk pressure

)+

∆t3

2
c4
sGψ(x)∆ψ(x) +

∆t3

4
c4
sG|∇ψ(x)|2

]
δij +

∆t3

2
c4
sG
∂ψ(x)

∂xi

∂ψ(x)

∂xj︸ ︷︷ ︸
interfaces effect

. (25)

At the thermodynamic equilibrium the density field is homogeneous in each
bulk phase and evolves smoothly along a thick interface (δ 6= 0) between the
phases. Therefore, the above fluid stress tensor which depends only on the
local density field, contains two main contributions namely, the bulk pressure
part in each bulk liquid, vapor phases

p(ρ) = c2
sρ+

∆t

2
c2
sGψ2(ρ) (26)

and the interfaces effects due to the presence of surface tensions γαβ , αβ =
s`, sv, `v between solid, liquid and vapor phases. In fact, without the bulk
pressure part, all the other terms in the local fluid stress definition given in
(25), describe the development of an interface profile with its own surface ten-
sion where the isotropy of the fluid stress tensor is violated. Indeed, along the
interface thickness the fluid stress tensor becomes anisotropic with a mismatch
between the transverse components and normal component (see Fig. 5).

According to [36,44], the solid, liquid and vapor surface tensions γαβ , αβ =
s`, sv, `v are defined as the integrals along the normal coordinate to the in-
terface of the mismatch between normal σfnn and transverse σftt components
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Figure 5. Fluid stress tensor anisotropy (or mismatch) through the thick interface
(δ 6= 0). Here δ is the interface thickness , dδ refers to the normal abscissa along the

interface thickness, σfnn and σftt are respectively the normal and transverse compo-
nents of σσσf .

of the above fluid stress tensor. Therefore, the surface tension at the interface
Γαv with α = s, ` is,

γαv = −
∫

Γαv
(σfnn − σftt)dδ. (27)

From the previous surface tensions definitions, we can recast the fluid pressure
and surface tension into:

p` = c2
sρ
` +

∆t

2
c2
sGψ2(ρ`), (28)

pv = c2
sρ
v +

∆t

2
c2
sGψ2(ρv), (29)

γαv = −1

2
c2
sG
∫

Γαv
|∂ψ
∂δ
|2dδ, α = s or `, (30)

where ∂
∂δ

denotes derivative relative to the coordinate normal to the interface
Γ`v and dδ refers to differential along the normal coordinate of the interface.

4.3 Numerical definition of surfaces for prescribing pressure and surface ten-
sion

First, the geometry of the microstructure, including the solid phase and the
voids, are meshed with tetrahedral elements (see Fig. 6 (a)). Then, a regular
grid of voxels is defined on the domain Ω to solve the water phase equilibrium
by LBM. The voxels of solid or void phases are set according to their belonging
to corresponding elements. Then, the LBM simulations are conducted in voxels
belonging to the void domain. At equilibrium, gas and liquid voxels are set
according to their final density.
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Solid domain Void domain

xg
d (x )min g

Figure 6. (a) Finite Element mesh of the microstructure; (b) voxel grid: grey-solid
phase, blue-fluid phase; white-gas phase; (c) Computation of distances for fluid
voxels to center of interface elements; (d) Definition of Γs` interface elements and
Γsv interface elements.

Then, a map of distance function is constructed: for each fluid voxel, the min-
imal distance to any vapor voxel is computed. This distance function defined
in each voxel is then interpolated at the middle point xg of each interface fi-
nite element between the solid and the porous phase (see Fig. 6 (c)). For each
interface element, the minimal distance to the vapor phase dmin(xg) is then
given. If dmin(xg) is lower than a threshold δlim, then the interface element is
set to belong to the imperfect interface associated to the thin film between
the solid and the gas phase Γsv; otherwise the interface element belongs to
Γs`. The algorithm is summarized in Algorithm 2 box below.
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Algorithm 2: Construction of the liquid-solid interface Γs`

and of the solid-vapor interface Γsv.
Input. Film thickness threshold δlim, density field ρ(x) in Ωf ,
Γs` mesh

(1) Detection of voxels in Ω` and those in Ωv using the thresh-

old ρm = ρl+ρv

2
.

(2) For each fluid voxel, compute minimal distance dmin(x) to
any vapor voxel.
(3) Interpolate the obtained distance field at the center xg
of interface finite elements between the solid and the porous
domains.
(5) Set each Γs` element with dmin(xg) ≤ δlim as belonging to
Γsv and the others to Γs`;

Output. Interface elements belonging to Γsv and Γs`.

The film thickness threshold δlim is chosen to be equal to half of the liquid-
vapor interface thickness given by the SC LBM. In the SC model the interfaces
are diffuse. From the model force balances it is delicate to adjust the inter-
face thickness explicitly and independently of other parameters. The interface
thickness depends not only on the temperature and τ = ∆t

τc
, but also on the

state equation used to construct the interaction potential. For example, pa-
rameters a, R and b in the Carnahan and Starling’s equation of state [51] may
affect the interface thickness and numerical stability. In the present paper, the
chosen parameters give us approximatively 5∆x (∆x denotes the SC LBM
lattice spacing in the voxel grid) for the interface thickness for the most T and
τ . Therefore, we have chosen δlim = 2.5∆x.

In the coherent imperfect interface model, the mechanical impact of the pres-
ence of the surface tension γsv = γ`v at the solid-vapor interface is summed up
by an overpressure whose intensity depends on the local signed mean curva-
ture. Then, we propose to model the mechanical loading on the solid skeleton
induced by the surface tension by applying this overpressure. The main dif-
ficulty to quantify this overpressure lies in the evaluation of the local signed
mean curvature at each Gauss point of the solid-vapor interface mesh defined
previously. For that purpose, we propose to compute the local signed mean
curvature following the algorithm given as follows.
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Algorithm 3: Solid-vapor interface Γsv elements curvature
algorithm.

Input. Interface solid-vapor Γsv elements normal ne vectors

(1) compute the elements area Se using the nodes coordinates.
(2) Compute mean Gauss coordinate xg of the element.
(3) Compute the elements tangent identity tensor 1T = 1 −
ne ⊗ ne;
(4) For each solid-vapor interface node, detect the set of all
the elements sharing this node E = {e1, e2, · · · , en}.
(5) Compute smoothed elements normals at the node i using
this average ni = 1∑

e∈E Se
∑
e∈E neSe.

(6) Compute derivatives of shape function at each element
mean Gauss point B(xg).
(7) Compute element normal gradient ∇ne = B(xg) ·
(n1 · · ·nj)T , for element with j nodes.
(8) Compute elements signed mean curvature ce = −(1T :
∇ne).

Output. Interface Γsv element signed mean curvatures ce.

The presence of two different grids, at the SC LBM grid and FEM mesh
interface introduces a parameter `FEM−LBM = `FEM

∆x
which is defined as the

ratio of average solid-fluid interface FEM mesh edge length `FEM to the SC
LBM grid spacing ∆x. In this work, in order to manage between precision
of the interface Γs` segmentation and local signed mean curvature calculation
and computing time, we have chosen `FEM−LBM = 1.

5 Construction of the homogenized model

5.1 Localization problem

We recall here the main equations at the microscale and define the so-called
localization problem to be solved by FEM, given the microstructure mesh and
the interfaces Γsv and Γs`. The localization problem is given as follows.
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Given a macroscopic strain tensor ε, a vapor pressure pv, a
liquid pressure p` and a surface tension γsv, find the local strain
field ε(x) in Ω such that:

∇ · σs = 0 in Ω, (31)
〈εs(x)〉 = ε (32)

with
σs = Cs : εs in Ωs, (33)

and
σs · nv = −(pv + γsvc)nv on Γsv, (34)
σs · nl = −p`nl on Γs`. (35)
p` = pv + γsvc (γsv = γ`v) on Γ`v. (36)

Condition (32) can be classically satisfied by the boundary condition (see
e.g. [52])

u(x) = ε · x + ũ(x) on ∂Ω, (37)

where ũ(x) is a periodic displacement fluctuation function over Ω. Problem
(31)-(36) can be solved by classical finite elements.

5.2 Macroscopic model: effective quantities

Using the superposition principle, we can express the strain field solution ε(x)
in Ωs as:

ε(x) = A(x) : ε+ εv(x)pv + ε`(x)p` + εsv(x)γsv (38)

where A is the classical localization tensor relating local strain solution to
macroscopic strains such that Aijkl = ε

(kl)
ij , where ε

(kl)
ij is the solution of (31)-

(36) for pl = pv = γsv = 0 with εkl = 1
2

(ek ⊗ el), and where ei, i = 1, 2, 3 are
basis vectors. From the averaging theorem (see e.g. [52]), we have:

σ =
1

V

∫
Ω
σ(x)dΩ− 1

V

∫
Γ
Jσ(x)nK⊗ xdΓ

=
1

V

∫
Ωs

Cs :
[
A(x) : ε+ εv(x)pv + ε`(x)p` + εsv(x)γsv

]

− 1

V

∫
Ωv
pv1dΩ− 1

V

∫
Ω`
p`1dΩ− 1

V

∫
Γsv∪Γlv

cnv ⊗ xγsvdΓ,

which can be re-written as:

σ = C : ε−Bvpv −B
`
p` −B

sv
γsv, (39)
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with

C = (1− φ)Cs :
1

V s

∫
Ωs

A(x)dΩ, (40)

Bv = (φ− 1)Cs :
1

V s

∫
Ωs
εv(x)dΩ + φ(1− Sr)1 (41)

B
`

= (φ− 1)Cs :
1

V s

∫
Ωs
ε`(x)dΩ + φSr1 (42)

B
sv

= (φ− 1)Cs :
1

V s

∫
Ωs
εsv(x)dΩ− 1

V

∫
Γsv∪Γlv

cnv ⊗ xdΓ, (43)

where φ = V pore/V is the porosity with V pore being the volume of the pore
and Sr = V l/V pore is the saturation ratio. The Biot’s moduli can be derived
as [15]:

1

N v
= (Bv − φ1) : (Cs)−1 : 1, (44)

1

N `
=
(
B` − φ1

)
: (Cs)−1 : 1, (45)

1

N sv
= (Bsv − φ1) : (Cs)−1 : 1. (46)

In the particular macroscopic quantities B
sv

due to surface tension γsv = γ`v

for θ = 0o, averaging operation in Eq. (43) includes the contribution of the
liquid-vapor interface. So, a similar algorithm like the solid-fluid interface seg-
mentation Algorithm 2 have been proposed and implemented to capture the
liquid-vapor Γ`v interface effects. The singularity of the algorithm proposed
here, is that we have first to reconstruct the mesh of the interface given by the
fluid density threshold ρm (see Algorithm 4). This reconstruction is done by
smoothing the fluid density field obtained by the SC LBM and then applying
the Marching-Cube algorithm [53].
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Algorithm 4: liquid-vapor interface Γlv mesh construction al-
gorithm
Input. Film thickness threshold δ`im, density field ρ(x) in Ωf

(1) Smoothing the density ρ(x) field using a Gaussian filter;
(2) Detection of voxels in Ω` and those Ωv using the threshold

ρm = ρ`+ρv

2
;

(3) Extract the interface Γ`v∪Γsv′ mesh given by the ρm thresh-
old using a marching-cube algorithm [53]. Γsv′ is the part of
the interface which is near of the solid interface;
(4) Compute mean Gauss coordinate xg for each interface el-
ement;
(5) Compute minimal distance dmin(x) to solid domain for each
interface voxel in Ω` and Ωv;
(6) Project the minimal distance to interface Γ`v ∪ Γsv′ mesh
dmin(xg);
(7) Each Γ`v ∪ Γsv′ element with dmin(x) ≤ δmin is in Γsv′ and
the other in Γ`v;

Output. Interface Γ`v mesh.

5.3 Prediction of shrinkage

The shrinkage strain εsh can be obtained by using (39), neglecting the effect
of vapor pressure pv and expressing ε for zero macroscopic stress. It results
in:

εsh = C−1
:
(
B
`
p` + B

sv
γsv
)
. (47)

In the case where B
`

= b`1 and B
sv

= bsv1 due to the symmetries of the
microstructure, then it is interesting to express the hydrostatic shrinkage strain
which reduces in that case to:

εsh =
Tr

(
C−1

: 1
)

3

(
b`p` + bsvγsv

)
. (48)
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6 Numerical examples

As a classical usage in SC LBM simulations, the units in this paper are in lat-
tice units, i.e., the velocity is given in lu/ts, the density in mu/lu3, the pressure
in mu/(lu ts2), temperature in tu and the surface tension in mu/ts2, etc. Here
lu is the length unit, mu the mass unit and ts the time unit. Obtaining the
unsaturated poroelastic properties in classical physical units can be performed
by: xLBM lu → x (length), ρLBMmu/lu

3 → ρ (mass) and γlvLBMmu/ts
2 → γlv

(surface tension). The conversion mapping is completely defined by fixing the
lattice length unit equal to the lattice physical spacing lu = ∆x (m), prescrib-
ing the physical liquid density and liquid-vapor surface tension, for example
at a temperature of 20o C we have ρ`p = 1000 kg/m3 and γ`vp = 72.8 · 10−3

N/m. Then, the SC LBM simulations are carried out with ∆t = 1 ts, ∆x = 1
lu. To maintain the stability of the simulations we have chosen τc = ∆t in the
sequel.

6.1 Validation of the LBM simulation model

6.1.1 Liquid and vapor phase separation

In this first example, we illustrate the capability of the SC LBM to model
phase transition, e.g. from vapor to liquid. We recall that the critical state
(dp
dρ

= 0 and d2p
dρ2

= 0) of the fluid is given by Tcrit = 0.0943 tu, ρcrit = 0.1136

mu/lu3 and pcrit = 0.0044 mu/(lu ts2).

Below this critical temperature there is a density range for which dp
dρ

is negative,
which yields the initiation of the presence of a transition in the liquid and vapor
phases. The simulations are performed on a 128× 128× 4 lu3 voxel grid with
periodic boundary conditions. The initial density distribution is random but
with an initial volume fraction Sr = 4.32% of liquid density ρl > ρcrit. Fig.
7 shows the time evolution of liquid and vapor phases separation from our
SC LBM model implementation. We can appreciate the phase transition from
vapor (white phase) into liquid (red phase). Thermodynamic equilibrium of
the system has been reached for about t = 30000 ts.

6.1.2 Droplet test

In this test, we validate our LBM implementation and the evaluation of pres-
sure by verifying the Laplace equation during the condensation of a liquid
droplet. For that purpose, several circular droplets with different radii have
been simulated. The computations have been carried out on a 128 × 128 × 4
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ρ

t = 0 ts t = 30 ts

t = 300 ts t = 3000 ts

t = 30000 ts t = 300000 ts

Figure 7. Simulation of condensation from vapor to liquid using SC LBM. White
and red phases indicate vapor and liquid phases, respectively.

lu3 voxels grid at various reduced temperatures with an initial density field
given by:

ρ(x, y, z) =
ρl + ρv

2
−ρ

l − ρv
2

[tanh(
2(
√

(x− x0)2 + (y − y0)2 −R0)

w
)],(49)

with (x0, y0, z0), R0 and w being the droplet center coordinates, the droplet
initial radius and the initial liquid vapor interface thickness, respectively (see
Fig. 8). Periodic boundary condition have been prescribed.
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(a) R0 = 20 lu (b) R0 = 35 lu (c) R0 = 50 lu

Figure 8. Different final density fields in mu/lu3 obtained at T/Tc = 0.585 with
w = 5lu and initial radius R0.
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Figure 9. Comparison between LBM simulations and integral equation solution for
the Laplace law.

Fig. 9-a shows that the Laplace law can be reproduced by our LBM imple-
mentation. In Fig. 9-b the surface tension has been computed from Laplace
law linear fit and by the integral formula given in (27). We can note a general
good agreement between both surface tension definitions even though there
are discrepancies at the low reduced temperatures.

6.1.3 Contact angle test

(a) ρs

ρl
= 0.05 θ = 140.67◦ (b) ρs

ρl
= 0.3 θ = 86.19◦ (c) ρs

ρl
= 0.6 θ = 52.26◦

Figure 10. Different contact angles obtained through adjusting the fictitious solid
density ρs at T

Tc
= 0.585.
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Figure 11. Various contact angles, liquid-vapor, solid-vapor and solid-liquid surface
tensions with fictitious solid density ρs at T

Tc
= 0.585.

As a last test to validate the SC LBM implementation, classical simulations
for obtaining different contact angles (Fig. 10) have been carried out on a
128 × 64 × 4 lu3 voxels grid at reduced temperature T/Tc = 0.585. In these
calculations, we have defined an initially semicircular static droplet with 15
lu of radius on a flat homogeneous solid surface. The simulations are per-
formed with the top and bottom boundaries as solid wall and the left and
right boundaries as periodic boundaries. Different contact angles have been
obtained by changing the fictitious solid-fluid interface density ρs as shown
by figure 11-a. In fact, setting ρs = ρ` leads to θ = 0o and setting ρs = ρv

results in θ = 180o. Changing ρs in the range of (ρv, ρ`) the contact angle can
span the range (0o, 180o). To retrieve the Young’s equation, we proposed to
compare the contact angles obtained by (19) with the one provided by the
geometric relationship:

r =
(4h2 + b2)

8h
, (50)

with

θ =


arctan[ b

2(r−h)
] θ ≤ 90o

π + arctan[ b
2(r−h)

] θ > 90o,
(51)

where b and h are the measured base and height of the droplet, after the
simulation has converged. Fig. 11-a shows a good agreement between our SC
LBM results and the analytical solution. In Fig. 11-b, we depict the surface
tensions γs`, γsv and γ`v by changing ρs. Only γs` and γsv depend on ρs and
we satisfy γs` = 0 for ρs = ρ` which corresponds to the perfectly wetting liquid
situation and γsv = 0 for ρs = ρv which is the opposite situation. According
to the Young’s equation, we retrieve the fact that in perfectly wetting liquid

23



assumption the liquid-vapor surface tension is equal to solid-vapor surface
tension γ`v = γsv and the solid-liquid surface tension is then γs` = 0.

6.2 Validation of surface tension model and interface detection

1 1 1

(a) h = 1.0 (b) h = 2.0 (c) h = 4.0

Figure 12. Mesh of a 1/8 sphere subjected to a surface tension.

In this section we propose a validation of the procedure described in Algorithm
3 box, which allows us to prescribe the force induced by the surface tension
(34). We consider the case of a 3D spherical interface with its center located
in the solid phase. For an elastic sphere blocked at its center, and prescribing
overpressure (34) (for pv = 0) on its whole surface, the analytical expression
for the radial displacement is given by [15]:

uref (r) =
2γsv

3λ+ 2µ

r

R
, (52)

where λ and µ denote the Lamé’s coefficients, and r and R the distance to
the sphere origin and the radius of the sphere, respectively. The FEM com-
putations have been carried out under Code Aster [54] for γsv = 1. A mesh of
tetrahedral elements has been constructed for several mesh densities, as shown
in Fig. 12, where h denotes the element average size. A symmetry boundary
condition on the internal faces of the mesh is prescribed and the center of the
sphere is fixed.

Fig. 13 shows the radial displacement as a function of the distance to the
origin of the sphere. We can note that our FEM calculations for different
mesh densities are in good agreement with the reference solution as shown in
Fig. 13 -a). In Fig. 13-b, the difference between the reference solution and the
FEM calculations with respect to the distance to the center of curvature is
depicted.

24



0 10 20 30 40 50 60
0

0.5

1

1.5

2

·10−2

Distance to origin r [-]

R
a
d
ia
l
d
is
p
la
ce
m
en
t
u
r
[-
]

reference
h = 0.25
h = 0.5
h = 1.
h = 2.

10 20 30 40 50 60

10−6

10−5

10−4

Distance to origin r [-]

|u
r
−
u
r
e
f

r
|[
-]

h = 0.25
h = 0.5
h = 1.

h = 2.
h = 4.

(a) (b)

Figure 13. Elastic sphere subjected to surface tension: comparison between nu-
merical and analytical solutions: (a) radial displacement; (b) difference between
analytical and FEM solutions.
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Figure 14. Error on the equivalent pressure evaluation in function of the solid-pore
interface mesh refinement.

Convergence of the solution with respect to the mesh density is shown in Fig.
14.

6.3 Validation of the complete model: capillary pressure in prolate pore

6.3.1 Capillary pressure

In this example, we validate the whole finite element procedure coupled with
LBM by comparing the solution of capillary pressure in a prolate pore under
non-saturated condition provided by our model and an approximate analytical
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solution [15]. Usually, the so-called capillary pressure curve pc = pc(Sr) is
a macroscopic material property. Here, the liquid phase is assumed to be
perfectly wet. The contact angle is θ = 0 and γsv = γ`v. The prolate pore has
an aspect ratio α = 0.5 with radius Rx = Ry = 32 lu and Rz = 64 lu. The
LBM calculations have been carried out on a 66× 66× 132 lu3 voxels grid at
reduced temperature T/Tc = 0.585 with ρs = ρ` (in order to achieve θ = 0o,
see Fig. 11), obtained in the case of flat interface for this temperature. Fig. 16
shows the fluid density field obtained for Sr = 0.054 and Sr = 0.40.

For this problem, the analytical solution under the spherical liquid meniscus
assumption (Fig. 15-b) has been provided in [15] as:

pc =
2γ/Rx√

1 + (α2 − 1)u2
?

(53)

with α = Rx
Rz

and u? = z?
Rz

, where z? is defined in Fig. 15 (b). The analytical
liquid saturation ratio is given by:

Sr

=
1

2
(1− u?)2(2 + u?)−α(

√
1 + (α2 − 1)u2

?)
3 +α2u?(

3

2
+ u2

?(α
2− 3

2
)).(54)

A comparison between both solutions is shown in Fig. 17. We observe the
same order of magnitude but a shift in terms of saturation. The shift in the
saturation may be due to the fact that the thickness of the fluid film is taken
into account in the calculation of SC LBM liquid saturation ratio.

6.3.2 Homogenization calculations

In this section, homogenized quantities for a prolate microstructure are com-
puted using the procedure described in section 5.2 and compared with available
estimates. The porous medium is assumed to contain periodic prolate pores
as depicted in Fig. 15. The solid phase of the microstructure has a linear and
isotropic elastic behavior with a Young’s modulus Es = 50 GPa and Poisson’s
ratio νs = 0.25.

Liquid and vapor phases thermodynamics equilibrium calculations have al-
ready been presented in section 3.1. Firstly, for this microstructure, we pro-
pose to analyze the effective stiffness tensor Ceff , the saturated Biot tensor
B and the liquid-vapor Biot’s tensor in the case of empty pores in presence
of surface tension Bsv as a function of the porosity φ. This analysis is per-
formed by comparing the results of the numerical approach with the classical
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analytical solutions 1 [15].

Fig. 18 shows the normalized components of the effective stiffness tensor
Ceff
ijkl/C

s
ijkl as function of porosity φ. The tensor Ceff is orthotropic due to the

morphology of the microstructure, but the available analytical solutions we
use are only provided for transversally isotropic media. For porosity φ ≤ 10%,
there is a good agreement between the different solutions. However, for poros-
ity φ > 10%, the dilute scheme diverges, while Mori-Tanaka scheme and FEM
remain close. The divergence between the dilute scheme and Mori-Tanaka so-
lutions as the porosity increases reflects the fact that the diluted scheme does
not take into account the interactions between the pores, unlike the Mori-
Tanaka scheme (see e.g. [55]). In the FEM simulations, interactions between
pores for arbitrary volume fractions is taken into account through the use of
periodic boundary conditions.

Fig. 19 shows the saturated Biot tensor components Bij as function of porosity
φ. The computed saturated Biot’s tensor exhibits transverse isotropic behavior
and the FEM calculations remain in good agreement with the Mori-Tanaka
solution.

Fig. 20 shows the solid-vapor Biot tensor components Bsv
ij as function of the

porosity φ, in the case of empty pore with the presence of surface tension
at the interface solid-pore. We note a good agreement between the different
solutions for low porosity, while FEM and Mori-Tanaka solutions remain in
good agreement for higher porosities.

Surface tension effects are more important when the surface-to-volume ratio
of the microstructure is large (Fig. 20). These examples validate the imple-
mentations of the periodic boundary conditions on the solid phase, of the local
signed curvature and membrane stress averaging algorithms.

Secondly, analysis is focused on the unsaturated materials properties namely,
liquid Biot’s tensor B` and solid-vapor Biot’s tensor Bsv as function of the
liquid saturation ratio Sr, for a given porosity. Here porosity is fixed at φ =
0.1. The analytical methods cannot take into account a realistic morphology
of the liquid and vapor phases in the calculation of the localization tensor
under the action of theses phases. Then, the analytical approaches make the
common assumption of isomorphology of these phases in the pore domain.
This approximation can be expressed by:

B` ' SrB. (55)

Fig. 21 shows the comparison between the components of the liquid phase-
associated Biot’s tensor, calculated by the FEM-LBM methodology, and the

1 Dilute and Mori-Tanaka schemes
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Dilute and Mori-Tanaka schemes. According to the morphology of the porous
network, we can note that the numerical tensor B` exhibits the expected trans-
verse isotropy. Nevertheless, the assumption made by the analytical estima-
tors shows its limits since it is a roughly linear relationship between the liquid
Biot’s tensor and the degree of saturation unlike the LBM-FEM method. In
addition, we find that analytical estimators underestimate the contribution of
the liquid phase to the macroscopic behavior.

Moreover, in regard to the contribution of the surface tension effects to the
macroscopic behavior, the isomorphology assumption (56) and the completely
wetting liquid phase hypothesis, can be summarized by:

Bsv ' φD : 〈A〉f (56)

with

D =
1

V v

∫
Γsv∪Γlv

1Tds (57)

where D takes into account the effects on both, solid-vapor and liquid-vapor
interfaces on the macroscopic behavior. The terms 〈A〉f and V v denote the
localization tensor average on the fluid domain and the pore volume, respec-
tively.

It is interesting to compare the contributions of the volume effects pcTrB
` with

the surface effects γsvBsv to the macroscopic behavior of such a microstructure.

Given the capillary curve (Fig. 17) and all poroelastic properties in unsat-
urated condition of the periodic microsturcture containing prolate pores we
can deduce the volume changes induced by drying for this microstructure and
discuss the mechanisms involved (see Fig. 22). The variation in volume in-
duced during drying in the absence of macroscopic stress has been given in
Eq. 5.3. In this equation, shrinkage starts from an initial saturated state while
here, the LBM-FEM or analytical calculations begin at the moment when the
largest bubble is formed in the prolate pore.

In Fig. 22, shrinkage can be observed for this microstructure due to the nega-
tive sign of its absolute volume variation compared to the saturated reference
configuration. In kinetic terms of this shrinkage (Fig. 22-a), we have an initial
shrinkage at the beginning of the drying from the saturated reference state fol-
lowed by a swelling up to 14% of liquid saturation ratio. Between 14% and 6%
of liquid saturation ratio we again observe a shrinkage and then the material
swells again between 6% and 0% of liquid saturation ratio. This shrinkage ki-
netics can be explained by analyzing the contribution of capillary and surface
tension on the strain evolution (Fig. 22-b). From saturated reference config-
uration up to 14% of liquid saturation ratio, capillary pressure is the main
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loading compared to surface tension. However, between 0% and 14% of liquid
saturation ratio, surface tension becomes the main loading. Now we can ob-
serve that the microstructure volume change induced by each loading, namely
”volume effects” and ”surface effects” on Fig. 22-a respectively, for capillary
pressure and surface tension. For this microstructure morphology, capillary
and surface tension loading respectively induce only shrinkage and swelling
kinetics during drying. Finally, the initial shrinkage is due to capillary effects,
the swelling kinetic up to 14% of liquid saturation ratio is due to the fact
that the slope of surface tension swelling is greater than the one of the capil-
lary pressure shrinkage. The opposite situation occurs between 14% and 6%
of liquid saturation ratio. This results in apparent shrinkage kinetic and we
retrieve the initial situation leading to the swelling kinetic between 6 % and
0% of liquid saturation ratio. For the contribution of the capillary bulk effects,
we can mention that as the product Srpc controls the volumetric part of the
shrinkage strain, we have zero shrinkage at 100% and 0%, so we necessarily go
through (at least) one maximum between 100% and 40% of liquid saturation
ratio.

6.4 Model microstructure: cubic centered lattice of spheres

We consider a model porous structure made of interpenetrable solid spheres
arranged on a cubic centered periodic lattice, as depicted in Fig. 23. The side
length of the RVE is 100 nm and the radius of the sphere is 23.57 nm. The
microstructure is subjected to a drying/wetting cycle.

The drying/wetting cycle is performed through the capillary pressure paths
shown in Fig. 24 and is obtained by LBM calculations on a lattice grid with
100× 100× 100 voxels. The porous microstructure has a porosity φ = 16.3%.

These isotherms are obtained by several calculations of LBM for a given liquid
saturation ratio. For each saturation ratio, it is assumed that the maximum
and minimum values of capillary pressure are on the desorption and adsorp-
tion paths, respectively. The simulations are performed at T/Tcrit = 0.585
reduced temperature, with completely wetting liquid phase assumption, i.e.
the fictitious density of the solid phase is equal to the density of the liquid
phase ρs = ρ`, with γ`v = γsv = 10.737× 10−3 mu/ts2. The elastic properties
of the solid phase are, Es = 50 GPa for the Young modulus and νs = 0.25 for
the Poisson ratio.

For this nanometric porous system, Fig. 24 shows that we can reach at lower
liquid saturation ratios some capillary pressures around 150 MPa. Fig. 24
shows also the drying/wetting paths defined from results of the present LBM
calculations. We can observe a hysteresis of the curve of the capillary pressure
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as function of the liquid saturation ratio. Fig. 25 shows the liquid phase distri-
bution at the same liquid saturation ratio (Sr ' 48.9 %) for both, drying (Fig.
25-a) and wetting (Fig. 25-b) paths. We can observe a different distribution
according to the saturation evolution and get insight into the hysteresis of the
capillary curve by some ink bottle effects as proposed by [12]. Indeed, for a
given liquid saturation ratio we can see that the liquid phase is in the large
pores with anchorage (solid-liquid-vapor system triple line) in the small pores
on the drying path and the opposite situation occurs on the wetting path.
Thus, here the capillary pressure is higher on the drying path as compared
to the wetting one using Laplace law, because the curvature radius located in
the small pores are smaller.

The poroelastic properties in unsaturated condition of this microstructure
are obtained by the LBM-FEM methodology described in section 5.2. An
illustration of the mesh used to compute them is provided in Fig. 23 (b).
Due to the symmetry of this microstructure, the Biot tensors are isotropic.
The stiffness tensor Ceff has cubic symmetry and is entirely determined by
Ceff

1111 = Ceff
2222 = Ceff

3333 = 34 GPa, Ceff
1212 = Ceff

1313 = Ceff
2323 = 24 GPa and

Ceff
1122 = Ceff

1133 = Ceff
2233 = 9 GPa. From now on, we denote by b, b` and bsv

the Biot’s coefficients of an effective isotropic medium associated with the
pressure in the pore, the pressure of the liquid on Γs` and the surface tension
on Γsv. We obtain the saturated Biot’s coefficient as b = 0.461. Fig. 26 shows
the contributions of the bulk liquid phase and the interfaces to macroscopic
behavior, respectively. The local distribution of menisci of both, drying and
wetting paths have been considered in the calculations of these liquid and
liquid-vapor Biot’s coefficients. Moreover, we adopt for this cubic centered
microstructure the assumption of isomorphology in the fluid phases presented
previously. Indeed, we observe a quasi-linear relationship between the liquid
Biot bl and liquid-vapor Biot bsv coefficients respectively, with Sr and (1−Sr).

Finally, Fig. 27 shows the strain or volume change induced by drying or wetting
as well as a comparison between bulk capillary pressure and surface tension
effects. Nevertheless, in terms of kinetics we have at the beginning of the
drying from the saturated reference state shrinkage kinetic and then up to 0
% of liquid saturation ratio there is a swelling kinetic for this microstructure
(see Fig. 27-a). These observations can be explained by analyzing the bulk
capillary and surface tension effects. Fig. 27-b shows that the surface tension
effects dominate as compared to bulk capillary pressure effects at lower liquid
saturation ratio. The opposite situation is observed at higher liquid saturation
ratio. This can be explained by the fact that even if the capillary pressure
increases at low saturation, the application surface thereof is considerably
reduced, which leads to low macroscopic effects at low saturations.
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7 Conclusion

In this work, we have proposed a procedure combining Lattice-Boltzmann and
finite element methods to model the effects of capillary pressure in porous mi-
cro structures. Combining FEM and LBM is introduced here for unsaturated
porous media for the first time to our best knowledge. Starting from an ex-
plicit geometry of the microstructure, the Lattice-Boltzmann method (LBM)
has been used to model the condensation from vapor phase to liquid and
predict the geometry of capillary liquid films and liquid phases for arbitrary
geometry of the solid skeleton. Then, a procedure has been elaborated to pre-
scribe surface tension and pressure due to the capillary liquid films and liquid
phases. The solid skeleton can deform linearly and elastically under the ac-
tion of the liquid and its deformation can be captured using finite elements.
Finally, a procedure to extract the shrinkage strain and the effective macro-
scopic behavior of the material, taking into account the explicit geometry of
the microstructure and of the liquid capillary phases for a given saturation,
has been provided.

The LBM solver has been validated on classical phase change and droplets wet-
ting tests. Then, the solutions obtained by the present approach have been
compared with available analytical solutions for simple case. These compar-
isons show a good agreement between them. Finally, the method has been
applied to a more complex microstructures. Future works may include more
realistic descriptions of the microstructure and more complex behaviors of the
solid skeleton, as well as non-zero wetting angles. From a completely practical
point of view, the proposed methodology in this paper could be used to discuss
the phenomenological shrinkage models commonly used in civil engineering.
Also, this work can be seen as a step towards a more global methodology
allowing to discuss the potential interactions between creep of a solid poro-
viscoelastic matrix and its shrinkage induced by the capillary water loading.
This last point corresponds to the configuration of the C-S-H gel in cementi-
tious materials.
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Figure 15. Prolate pore in unsaturated conditions; (a) 3D geometry; (b) geometrical
definition of meniscus with assumption of partially spherical meniscus; (c) β angle.

36



(a) Sr = 0.054 pc = 1.01e−3mu/(lu.ts2) (b) Sr = 0.40 pc = 6.49e−4mu/(lu.ts2)

Figure 16. Prolate pore in unsaturated condition: cut plane of the density field at
two saturation states Sr.
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Figure 17. Capillary curve for prolate pore with aspect ratio α = 0.5.
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Figure 18. Normalized effective rigidity tensor components of a periodic microstruc-
ture with prolate pores.
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Figure 21. Liquid Biot tensor components as function of liquid saturation ratio of
a periodic microstructure with prolate pores (prolate aspect ratio α = 0.5).
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Figure 22. Shrinkage/swelling of a periodic microstructure containing a prolate pores
and its mechanisms (φ0 = 10% and α = 0.5); (a) Volume change; (b) Mechanisms
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(a) (b)

Figure 23. Cubic centered periodic microstructure: (a) Geometry; (b) Finite Element
mesh.
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Figure 24. Hysteresis of a drying/wetting cycle of a centered cubic microstructure
whose REV has dimensions of 100× 100× 100 nm3.

42



ρ[kg/m3] ρ[kg/m3]

Sr = 48.99% Sr = 48.84%

pc = 56.4MPapc = 75.3MPa

(a) drying (b) wetting

Figure 25. Local distribution of liquid menisci in the porous space: (a) during drying
and (b) during wetting.
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Figure 26. Unsaturated Biot coefficient as function of liquid saturation ratio for a
periodic cubic centred microstructure.
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Figure 27. Volume change induced by drying of a periodic cubic centred porous
microstructure.
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