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INTRODUCTION: The emergence of three lethal
coronaviruses in <20 years and the urgency of
the COVID-19 pandemic have prompted ef-
forts to develop new therapeutic strategies, in-
cluding by repurposing existing agents. After
performing a comparative analysis of the three
pathogenic human coronaviruses severe acute
respiratory syndrome coronavirus 1 (SARS-
CoV-1), SARS-CoV-2, and Middle East respira-
tory syndrome coronavirus (MERS-CoV), we
identified shared biology and host-directed
drug targets to prioritize therapeutics with
potential for rapid deployment against cur-
rent and future coronavirus outbreaks.

RATIONALE: Expanding on our recent SARS-
CoV-2 interactome, we mapped the virus-host
protein-protein interactions for SARS-CoV-1
and MERS-CoV and assessed the cellular lo-
calization of each viral protein across the
three strains. We conducted two genetic
screens of SARS-CoV-2 interactors to priori-
tize functionally-relevant host factors and
structurally characterized one virus-host in-
teraction. We then tested the clinical rele-
vance of three more host factors by assessing
risk in genetic cohorts or observing effective-
ness of host factor–targeting drugs in real-
world evidence.

RESULTS: Quantitative comparison of the 389
interactors of SARS-CoV-2, 366 of SARS-CoV-1,
and 296 of MERS-CoV highlighted interactions
with host processes that are conserved across
all three viruses, including where nonortholo-
gous proteins from different virus strains seem
to fill similar roles. We also localized each
individually-expressed viral protein bymicros-
copy and then raised and validated antisera
against 14 SARS-CoV-2 proteins to determine
their localization during infection.
On the basis of two independent genetic

perturbation screens, we identified 73 host fac-
tors that, when depleted, caused significant
changes in SARS-CoV-2 replication. From this
list of potential drug targets, we validated the
biological and clinical relevance of Tom70,
IL17RA, PGES-2, and SigmaR1.
A 3-Å cryo–electron microscopy structure of

Tom70, a mitochondrial import receptor, in
complex with SARS-CoV-2 ORF9b, provides in-
sight into how ORF9b may modulate the host
immune response. Using curated genome-wide
association study data, we found that individ-
uals with genotypes corresponding to higher
soluble IL17RA levels in plasma are at decreased
risk of COVID-19 hospitalization.
To demonstrate the value of our data for drug

repurposing,we identified SARS-CoV-2 patients
who were prescribed drugs against prioritized
targets andaskedhow they fared comparedwith
carefullymatched patients treatedwith clinically
similar drugs that do not inhibit SARS-CoV-2.
Both indomethacin, an inhibitor of host factor
PGES-2, and typical antipsychotics, selected for
their interactionwith sigma receptors, showed
effectiveness against COVID-19 compared with
celecoxib andatypical antipsychotics, respectively.

CONCLUSION: By employing an integrative and
collaborative approach, we identified conserved
mechanisms across three pathogenic corona-
virus strains and further investigated potential
drug targets. This versatile approach is broadly
applicable to other infectious agents and dis-
ease areas.▪
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Overview of the approaches taken for systemic and functional comparison of pathogenic human
coronaviruses. (Left) Viral-human protein-protein interaction network mapping, viral protein localization studies,
and functional genetic screens provide key insights into the shared and individual characteristics of each virus.
(Right) Structural studies and hypothesis testing in clinical datasets demonstrate the utility of this approach for
prioritizing therapeutic strategies. Nsp, nonstructural protein; ORF, open reading frame; ER, endoplasmic reticulum.
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The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
is a grave threat to public health and the global economy. SARS-CoV-2 is closely related to
the more lethal but less transmissible coronaviruses SARS-CoV-1 and Middle East respiratory
syndrome coronavirus (MERS-CoV). Here, we have carried out comparative viral-human protein-
protein interaction and viral protein localization analyses for all three viruses. Subsequent functional
genetic screening identified host factors that functionally impinge on coronavirus proliferation,
including Tom70, a mitochondrial chaperone protein that interacts with both SARS-CoV-1 and SARS-
CoV-2 ORF9b, an interaction we structurally characterized using cryo–electron microscopy.
Combining genetically validated host factors with both COVID-19 patient genetic data and medical
billing records identified molecular mechanisms and potential drug treatments that merit further
molecular and clinical study.
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I
n the past two decades, three deadly
human respiratory syndromes associated
with coronavirus (CoV) infections have em-
erged: severe acute respiratory syndrome
(SARS) in 2002, Middle East respiratory

syndrome (MERS) in 2012, and COVID-19 in
2019. These three diseases are caused by the
zoonotic coronaviruses severe acute respiratory
syndrome coronavirus 1 (SARS-CoV-1), Middle
East respiratory syndrome coronavirus (MERS-
CoV), and SARS-CoV-2 (1), respectively. Before
their emergence, human coronaviruses were
associated with usually mild respiratory illness.
To date, SARS-CoV-2 has sickenedmillions and
killedmore than 1 million people worldwide.
This unprecedented challenge has prompted
widespread efforts to develop vaccine and anti-
viral strategies, including repurposed therapeu-
tics, which offer the potential for treatments
with known safety profiles and short develop-
ment timelines. The successful repurposing of
the antiviral nucleoside analog Remdesivir (2)
as well as the host-directed anti-inflammatory
steroid dexamethasone (3) provide clear proof
that existing compounds can be crucial tools
in the fight against COVID-19. Despite these
promising examples, there is still no curative
treatment for COVID-19. Additionally, as with
any virus, the search for effective antiviral
strategies could be complicated over time by
the continued evolution of SARS-CoV-2 and
possible resulting drug resistance (4).
Current endeavors are appropriately focused

on SARS-CoV-2 because of the severity and
urgency of the ongoing pandemic. However,
the frequency with which highly virulent
coronavirus strains have emerged highlights
an additional need to identify promising tar-
gets for broad coronavirus inhibitors with
high barriers to resistance mutations and the
potential for rapid deployment against future
emerging strains. Although traditional anti-
virals target viral enzymes that are often sub-
ject to mutation and thus the development of
drug resistance, targeting the host proteins
required for viral replication is a strategy that
can avoid resistance and lead to therapeutics
with the potential for broad-spectrum activity
because families of viruses often exploit com-
mon cellular pathways and processes.
Here, we identified shared biology and po-

tential drug targets among the three highly
pathogenic human coronavirus strains. We
expanded on our recently published map of
virus-host protein interactions for SARS-CoV-2
(5) andmapped the full interactomes of SARS-
CoV-1 and MERS-CoV. We investigated the lo-
calization of viral proteins across strains and
quantitatively compared the virus-human in-
teractions for each virus. Using functional
genetics and structural analysis of selected host-
dependency factors, we identified drug targets
and performed real-world analysis on clinical
data from COVID-19 patients.

A cross-coronavirus study of protein function
A central goal of this study is to understand,
from a systems level, the conservation of tar-
get proteins and cellular processes between
SARS-CoV-2, SARS-CoV-1, and MERS-CoV,
thereby identifying shared vulnerabilities
that can be targeted with antiviral therapeu-
tics. All three strains encode four homologous
structural proteins (E, M, N, and S) and 16
nonstructural proteins (Nsps). The latter are
proteolytically cleaved from a polyprotein
precursor that is expressed from one large
open reading frame (ORF), ORF1ab (Fig. 1A).
Additionally, coronaviruses contain a vari-
able number of accessory factors encoded by
ORFs. Although the genome organization and
sequence of ORF1ab is mainly conserved be-
tween the three viruses under study, it di-
verges markedly in the region encoding the
accessory factors, especially between MERS-
CoV and the two SARS coronaviruses (Fig.
1, A to D, and table S1). These differences in
conservation of genes and genome organiza-
tion are linked to differences in host-targeting
systems that we have studied through large-
scale protein localization and interaction pro-
filing (Fig. 1E). Building on our earlier work
on the interactome of SARS-CoV-2 (5), we id-
entified the host factors physically interacting
with each SARS-CoV-1 and MERS-CoV viral
protein. To this end, structural proteins, ma-
ture Nsps, and predicted ORF proteins were
codon optimized, 2xStrep tagged, and cloned
into a mammalian expression vector (figs. S1
and S2; see below and Materials and meth-
ods section). Each protein construct was
transfected into HEK293T cells and affinity
purified, and high-confidence interactors were
identified by mass spectrometry (MS) and
scored using SAINTexpress (significance anal-
ysis of interactome) and MiST (mass spectro-
metry interaction statistics) scoring algorithms
(6, 7) (table S2 and figs. S3 to S6). Addi-
tionally, we performed MS analysis on SARS-
CoV-2 Nsp16, which was not analyzed in our
earlier work (5) (table S2 and fig. S7). In all,
we now report 389 high-confidence inter-
actors for SARS-CoV-2, 366 interactors for
SARS-CoV-1, and 296 interactors for MERS-
CoV (table S2).

Conserved coronavirus proteins often retain
the same cellular localization

As protein localization can provide important
information regarding function, we assessed
the cellular localization of individually ex-
pressed coronavirus proteins in addition to
mapping their interactions (Fig. 2A andMate-
rials andmethods). Immunofluorescence locali-
zation analysis of all 2xStrep-tagged SARS-CoV-2,
SARS-CoV-1, and MERS-CoV proteins high-
lights similar patterns of localization for most
shared protein homologs in HeLaM cells (Fig.
2B), which supports the hypothesis that con-

served proteins share functional similarities. A
notable exception is Nsp13, which appears to
localize to the cytoplasm for SARS-CoV-2 and
SARS-CoV-1, but to themitochondria forMERS-
CoV (Fig. 2B, figs. S8 to S13, and table S3). To
assess the localization of SARS-CoV-2 proteins
in the context of infected cells, we raised anti-
bodies against 20 SARS-CoV-2 proteins and
validated them with the individually expressed
2xStrep-tagged proteins (fig. S14). Using the
14 antibodies with confirmed specificity, we
observed that localization of viral proteins in
infected Caco-2 cells sometimes differed from
their localization when expressed individually
(Fig. 2B, fig. S15, and table S3). This likely
results from recruitment of viral proteins and
complexes into replication compartments, as
well as from remodeling of the secretory path-
way during viral infection. Such differences
could also result from mislocalization caused
by protein tagging. For example, the localiza-
tion of expressed ORF7B does not match the
known SARS-CoV-1 Golgi localization seen in
the infection state. For proteins such as Nsp1
and ORF3a, which are not known to be in-
volved in viral replication, their localization is
consistent both when expressed individually
and in the context of viral infection (Fig. 2, C
and D). We have compared the localization
of the expressed viral proteins with the local-
ization of their interaction partners using a
cellular compartment gene ontology (GO) en-
richment analysis (fig. S16). Several examples
exist where the localization of the viral protein
is in agreement with the localization of the
interaction partners, including enrichment of
the nuclear pore for Nsp9 interactors and
endoplasmic reticulum (ER) enrichment for
interactions with ORF8.
Our localization studies suggest that most

orthologous proteins have the same localiza-
tion across the viruses (Fig. 2B). Moreover,
small changes in localization, as observed for
some viral proteins across strains, do not co-
incide with strong changes in virus-host pro-
tein interactions (Fig. 2E). Overall, these results
suggest that changes in protein localization,
as measured by expressed, tagged proteins,
are not common and therefore are unlikely
to be a major source of differences in host-
targeting mechanisms.

Comparison of host-targeted processes
identifies conserved mechanisms with
divergent implementations

To study the conservation of targeted host
factors and processes, we first used a cluster-
ing approach (Materials and methods) to com-
pare the overlap in protein interactions for
the three viruses (Fig. 3A). We defined seven
clusters of virus-host interactions correspond-
ing to those that are specific to each virus or are
shared among sets of viruses. The largest pair-
wise overlap was observed between SARS-CoV-1
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and SARS-CoV-2 (Fig. 3A), as is expected from
their closer evolutionary relationship. A func-
tional enrichment analysis (Fig. 3B and table
S4) highlighted host processes that are tar-
geted through interactions conserved across

all three viruses, including ribosome biogene-
sis and regulation of RNA metabolism. Con-
served interactions between SARS-CoV-1 and
SARS-CoV-2—but not MERS-CoV—were en-
riched in endosomal and Golgi vesicle trans-

port (Fig. 3B). Despite the small fraction (7.1%)
of interactions conserved between SARS-CoV-1
and MERS-CoV—but not SARS-CoV-2—these
were strongly enriched in translation initiation
and myosin complex proteins (Fig. 3B).
We next asked whether the conserved in-

teractions were specific for certain viral pro-
teins (Fig. 3C) and found that some proteins
(M, N, Nsp7, Nsp8, and Nsp13) showed a dis-
proportionately high fraction of shared inter-
actions conserved across the three viruses.
This suggests that the processes targeted by
these proteins may be more essential and
more likely to be required for other emerging
coronaviruses. Such differences in conserva-
tion of interactions should be encoded, to some
extent, in the degree of sequence differences.
Comparing pairs of homologous proteins
shared between SARS-CoV-2 and SARS-CoV-1
or MERS-CoV, we observed a significant cor-
relation between sequence conservation and
protein-protein interaction (PPI) similarity
(calculated as Jaccard index) [Fig. 3D; corre-
lation coefficient (r) = 0.58, P = 0.0001]. This
shows that the evolution of protein sequences
strongly determines the divergence in virus-
host interactions.
While studying the function of host pro-

teins interacting with each virus, we noted
that some shared cellular processes were tar-
geted by different interactions across the
viruses. To study this in more detail, we iden-
tified the cellular processes significantly en-
riched in the interactomes of all three viruses
(fig. S17A and table S4) and ranked them by
the degree of overlapping proteins (Fig. 3E).
This identified proteins related to the nuclear
envelope, proteasomal catabolism, cellular re-
sponse to heat, and regulation of intracellular
protein transport as biological functions that
are hijacked by these viruses through differ-
ent human proteins. Additionally, we found
that up to 51% of protein interactions with a
conserved human target occurred via a dif-
ferent (nonorthologous) viral protein (Fig. 3F),
and, in some cases, the overlap of interac-
tions for two nonorthologous virus baits
was greater than that for the orthologous pair
(Fig. 3G and fig. S17, B and C). For example,
several interacting proteins of SARS-CoV-2
Nsp8 are also targeted by MERS-CoV ORF4a,
and interactions of MERS-CoV ORF5 share
interactors with SARS-CoV-2 ORF3a (Fig. 3G).
In the case of Nsp8, we found some degree
of structural homology between its C-terminal
region and a predicted structural model of
ORF4a (Materials and methods and fig. S17D),
which is indicative of a possible common in-
teraction mechanism.
We find that sequence differences determine

the degree of changes in virus-host interactions
and that often the same cellular process can
be targeted by different viral or host proteins.
These results suggest a degree of plasticity in
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Fig. 1. Coronavirus genome annotations and integrative analysis overview. (A) Genome annotation of
SARS-CoV-2, SARS-CoV-1, and MERS-CoV with putative protein coding genes highlighted. Intensity of filled color
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the way that these viruses can control a given
biological process in the host cell.

Quantitative differential interaction
scoring identifies interactions conserved
between coronaviruses

The identification of virus-host interactions con-
served across pathogenic coronaviruses pro-
vides the opportunity to reveal host targets
that may remain essential for these and other
emerging coronaviruses. For a quantitative
comparison of each virus-human interaction
from viral baits shared by all three viruses,
we developed a differential interaction score
(DIS). A DIS is calculated between any pair of
viruses and is defined as the difference be-
tween the interaction scores (K) from each
virus (Fig. 4A, table S5, and Materials and
methods). This kind of comparative analysis is
beneficial as it permits the recovery of con-

served interactions that may fall just below
strict cutoffs. For each comparison, a DIS was
calculated for interactions residing in certain
clusters as defined in the previous analysis
(see Fig. 3A). For example, for the SARS-CoV-2
to MERS-CoV comparison, a DIS was com-
puted for interactions residing in all clusters
except cluster 3, where interactions are either
not found or scores were very low for both
SARS-CoV-2 and MERS-CoV. A DIS of 0 indi-
cates that the interaction is confidently shared
between the two viruses being compared,
whereas a DIS of +1 or −1 indicates that the
host-protein interaction is specific for the virus
listed first or second, respectively.
In agreement with our previous results (Fig.

3A), DIS values for the comparison between
SARS-CoV-2 and SARS-CoV-1 are enriched near
zero, which indicates a high number of shared
interactions (Fig. 4B, yellow). By contrast,

comparing interactions from either SARS-
CoV-1 or SARS-CoV-2withMERS-CoV resulted
in DIS values closer to ±1, which indicates a
higher divergence (Fig. 4B, blue and green).
The breakdown of DISs by homologous viral
proteins reveals a high similarity of interac-
tions for proteins N, Nsp8, Nsp7, and Nsp13
(Fig. 4C), reinforcing the observations made
by overlapping thresholded interactions (Fig. 3,
C and D). As the greatest dissimilarity was ob-
served between the SARS coronaviruses and
MERS-CoV, we computed a fourth DIS (SARS-
MERS) by averaging K from SARS-CoV-1 and
SARS-CoV-2 before calculating the difference
with MERS-CoV (Fig. 4, B and C, purple). We
next created a network visualization of the
SARS-MERS comparison (Fig. 4D), permitting
an appreciation of SARS-specific (red; DIS near
+1) versus MERS-specific (blue; DIS near −1)
interactions aswell as those conserved between
all three coronavirus species (black; DIS near
0). SARS-specific interactions include DNA
polymerase a interacting with Nsp1, stress
granule regulators interacting with N protein,
TLE transcription factors interacting with
Nsp13, andAP2 clathrin interactingwithNsp10.
Notable MERS-CoV–specific interactions in-
cludemammalian target of rapamycin (mTOR)
and Stat3 interacting with Nsp1; DNA dam-
age response components p53 (TP53), MRE11,
RAD50, and UBR5 interacting with Nsp14; and
the activating signal cointegrator 1 (ASC-1)
complex interacting with Nsp2. Interactions
shared between all three coronaviruses in-
clude casein kinase II and RNA processing
regulators interacting with N protein; inosine
5′-monophosphate (IMP) dehydrogenase 2
(IMPDH2) interactingwithNsp14; centrosome,
protein kinase A, and TBK1 interacting with
Nsp13; and the signal recognition particle,
7SK small nuclear ribonucleoprotein (snRNP),
exosome, and ribosomebiogenesis components
interacting with Nsp8 (Fig. 4D).

Cell-based genetic screens identify SARS-CoV-2
host-dependency factors

To identify host factors that are critical for
infection and therefore potential targets for
host-directed therapies, we performed genetic
perturbations of 332 human proteins—331
previously identified to interact with SARS-
CoV-2 proteins (5) plus ACE2—and observed
their effect on infectivity. To ensure a broad
coverage of potential hits, we carried out two
screens in different cell lines, investigating
the effects on infection: small interfering RNA
(siRNA) knockdowns in A549 cells stably ex-
pressing ACE2 (A549-ACE2) (Fig. 5A) and
CRISPR-based knockouts in Caco-2 cells (Fig.
5B). ACE2 was included as positive control in
both screens as were nontargeting siRNAs or
nontargeted Caco-2 cells as negative controls.
After SARS-CoV-2 infection, effects on virus in-
fectivity were quantified by real-time quantitative
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Fig. 2. Coronavirus protein localization analysis. (A) Overview of experimental design to determine
localization of Strep-tagged SARS-CoV-2, SARS-CoV-1, and MERS-CoV proteins in HeLaM cells (left) or of
viral proteins upon SARS-CoV-2 infection in Caco-2 cells (right). (B) Relative localization for all coronavirus
proteins across viruses expressed individually (blue color bar) or in SARS-CoV-2–infected cells (colored
box outlines). (C and D) Localization of Nsp1 and ORF3a expressed individually (C) or during infection (D);
for representative images of all tagged constructs and viral proteins imaged during infection, see figs. S8 to
S14 and fig. S15, respectively. Scale bars, 10 mm. (E) Prey overlap per bait measured as Jaccard index
comparing SARS-CoV-2 versus SARS-CoV-1 (red dots) and SARS-CoV-2 versus MERS-CoV (blue dots) for
all viral baits (all), viral baits found in the same cellular compartment (yes), and viral baits found in different
compartments (no).
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polymerase chain reaction (RT-qPCR) on cell
supernatants (siRNA) or by titrating virus-
containing supernatants on Vero E6 cells
(CRISPR) (see Materials and methods for de-
tails). Cells were monitored for viability, and

knockdown or editing efficiency was deter-
mined as described (Materials and methods
and fig. S18). This revealed that 93% of the
genes were knocked down at least 50% in the
A549-ACE2 screen, and 95% of the knock-

downs exhibited a <20% decrease in viability.
In the Caco-2 assay, we observed an editing
efficiency of at least 80% for 89% of the genes
tested (Materials andmethods and fig. S18). Of
the 332 human SARS-CoV-2 interactors, the
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Fig. 3. Comparative analysis of coronavirus-host interactomes. (A) Clustering
analysis (K-means) of interactors from SARS-CoV-2, SARS-CoV-1, and MERS-CoV,
weighted according to the average between their MiST and SAINT scores (interaction
score K). Included are only viral protein baits represented amongst all three viruses
and interactions that pass the high-confidence scoring threshold for at least
one virus. Seven clusters highlight all possible scenarios of shared versus individual
interactions, and percentages of total interactions are noted. (B) GO enrichment
analysis of each cluster from (A), with the top six most-significant terms per cluster.
Color indicates −log10(q), and the number of genes with significant (q < 0.05;
white) or nonsignificant enrichment (q > 0.05; gray) is shown. (C) Percentage of
interactions for each viral protein belonging to each cluster identified in (A).
(D) Correlation between protein sequence identity and PPI overlap (Jaccard index)

comparing SARS-CoV-2 and SARS-CoV-1 (blue) or MERS-CoV (red). Interactions for
PPI overlap are derived from the final thresholded list of interactions per virus.
(E) GO biological process terms significantly enriched (q < 0.05) for all three virus
PPIs with Jaccard index indicating overlap of genes from each term for pairwise
comparisons between SARS-CoV-1 and SARS-CoV-2 (purple), SARS-CoV-1 and
MERS-CoV (green), and SARS-CoV-2 and MERS-CoV (orange). (F) Fraction of shared
preys between orthologous (blue) and nonorthologous (red) viral protein baits.
(G) Heatmap depicting overlap in PPIs (Jaccard index) between each bait from
SARS-CoV-2 and MERS-CoV. Baits in gray were not assessed, do not exist, or do not
have high-confidence interactors in the compared virus. Nonorthologous bait
interactions are highlighted with a red square. GO, gene ontology; PPI, protein-
protein interaction; SARS2, SARS-CoV-2; SARS1, SARS-CoV-1; MERS, MERS-CoV.
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final A549-ACE2 dataset includes 331 gene
knockdowns, and the Caco-2 dataset includes
286 gene knockouts, with the differencemain-
ly owing to the removal of essential genes
(Materials and methods). The readouts from
both assays were then separately normalized
using robust z-scores (Materials and methods),
with negative and positive z-scores indicating
proviral-dependency factors (perturbation leads
to decreased infectivity) and antiviral host fac-
tors with restrictive activity (perturbation leads
to increased infectivity), respectively.As expected,
negative controls resulted in neutral z-scores
(Fig. 5, C and D, and tables S6 and S7). Sim-
ilarly, perturbations of the positive control
ACE2 resulted in strongly negative z-scores
in both assays (Fig. 5, C and D). Overall, the
z-scores did not exhibit any trends related to
viability, knockdown efficiency, or editing ef-
ficiency (fig. S18). With a cutoff of jzj > 2 to
highlight genes that notably affect SARS-CoV-2
infectivity when perturbed, 31 and 40 depen-
dency factors (z < −2) and 3 and 4 factors with
restrictive activity (z > 2) were identified in
A549-ACE2 and Caco-2 cells, respectively
(Fig. 5E). Of particular interest are the host-
dependency factors for SARS-CoV-2 infection,
which represent potential targets for drug de-
velopment and repurposing. For example, non-
opioid receptor sigma 1 (sigma-1, encoded by
SIGMAR1) was identified as a functional host-
dependency factor in both cell systems, in ag-
reement with our previous report of antiviral
activity for sigma receptor ligands (5). To pro-
vide a contextual view of the genetics results,
we generated a network that integrates the
hits from both cell lines and the PPIs of their
encoded proteins with SARS-CoV-2, SARS-
CoV-1, and MERS-CoV proteins (Fig. 5F). Not-
ably, we observed an enrichment of genetic
hits that encode proteins interactingwith viral
Nsp7, which has a high degree of interactions
shared across all three viruses (Fig. 3C). Prost-
aglandin E synthase 2 (PGES2, encoded by
PTGES2), for example, is a functional interac-
tor of Nsp7 from SARS-CoV-1, SARS-CoV-2, and
MERS-CoV. Other dependency factors were spe-
cific to SARS-CoV-2, including interleukin-17
(IL-17) receptor A (IL17RA), which interacts with

SARS-CoV-2 ORF8. We also identify depen-
dency factors that are shared interactors be-
tween SARS-CoV-1 and SARS-CoV-2 such as the
aforementioned sigma receptor 1 (SIGMAR1),
which interacts with Nsp6, and the mitochon-
drial import receptor subunit Tom70 (TOMM70),
which interacts with ORF9b.Wewill use these
interactions to validate virus-host interactions
(ORF8-IL17RA and ORF9b-Tom70), connect
our systems biology data to evidence for the
clinical impact of the host factors we identified
(IL17RA), and analyze outcomes of COVID-19
patients treated with putative host-directed
drugs against PGES-2 and sigma receptor 1.

SARS ORF9b interacts with Tom70

ORF9b of SARS-CoV-1 and SARS-CoV-2 were
found to be localized to mitochondria upon
overexpression as well as in SARS-CoV-2–
infected cells. In line with this, the mitochon-
drial outer membrane protein Tom70 (encoded
by TOMM70) is a high-confidence interactor
of ORF9b in both SARS-CoV-1 and SARS-CoV-2
interaction maps (Fig. 6A), and it acts as
a host-dependency factor for SARS-CoV-2
(Fig. 6B). Tom70 falls below the scoring thres-
hold as a putative interactor of MERS-CoV
Nsp2, a viral protein not associated with mito-
chondria (table S2). Tom70 is one of the ma-
jor import receptors in the translocase of the
outer membrane (TOM) complex that recog-
nizes and mediates the translocation of mito-
chondrial preproteins from the cytosol into
the mitochondria in a chaperone-dependent
manner (8). Additionally, Tom70 is involved
in the activation of the mitochondrial antivi-
ral signaling (MAVS) protein, which leads to
apoptosis upon viral infection (9, 10).
To validate the interaction between viral

proteins and Tom70, we performed a coim-
munoprecipitation experiment in the pres-
ence or absence of Strep-tagged ORF9b from
SARS-CoV-1 and SARS-CoV-2 as well as Strep-
tagged Nsp2 from all three coronaviruses.
Endogenous Tom70—but not other translo-
case proteins of the outer membrane including
Tom20, Tom22, and Tom40—coprecipitated
only in the presence of ORF9b but not Nsp2 in
both HEK293T and A549 cells, which con-

firms our affinity purification–mass spectrom-
etry (AP-MS) data and suggests that ORF9b
specifically interacts with Tom70 (Fig. 6C and
fig. S19A). Further, upon coexpression in bac-
terial cells, we were able to copurify the
ORF9b-Tom70 protein complex, which indi-
cates a stable complex (Fig. 6D). We found
that SARS-CoV-1 and SARS-CoV-2 ORF9b ex-
pressed inHeLaM cells colocalizedwith Tom70
(Fig. 6E) and observed that SARS-CoV-1 or
SARS-CoV-2 ORF9b overexpression led to de-
creases in Tom70 expression (Fig. 6, E and F).
Similarly, ORF9b was found to colocalize with
Tom70 on SARS-CoV-2 infection (Fig. 6G).
This is in agreement with the known outer
mitochondrial membrane localization of Tom70
(11) and ORF9b localization to mitochondria
upon overexpression and during SARS-CoV-2
infection (Fig. 2B). We also saw decreases in
Tom70 expression during SARS-CoV-2 infec-
tion (Fig. 6G) but did not see pronounced
changes in expression levels of the mitochon-
drial protein Tom20 after individual Strep-
ORF9bexpressionoruponSARS-CoV-2 infection
(fig. S19, B and C).

Cryo–electron microscopy structure of
ORF9b-Tom70 complex reveals ORF9b interacting
at the substrate binding site of Tom70

Tom70, as part of the TOM complex, is in-
volved in the recognition of mitochondrial
preproteins from the cytosol (12). To further
understand the molecular details of ORF9b-
Tom70 interactions, we obtained a 3-Å cryo–
electron microscopy (cryo-EM) structure of
the ORF9b-Tom70 complex (Fig. 7A and fig.
S20). Notably, although purified proteins failed
to interact upon attempted in vitro complex
reconstitution, they yielded a stable and pure
complex when coexpressed in Escherichia coli
(Fig. 6D). This may be because of the fact that
ORF9b alone purifies as a dimer (as inferred
by the apparent molecular weight on size-
exclusion chromatography) andwould need to
dissociate to interact with Tom70 on the basis
of our structure. Tom70 preferentially binds
preproteins with internal hydrophobic target-
ing sequences (13). It contains an N-terminal
transmembrane domain and tetratricopeptide
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Fig. 4. Comparative differential interaction analysis reveals shared
virus-host interactions. (A) Flowchart depicting calculation of DIS values using
the average between the SAINT and MiST scores between every bait (i) and prey
(j) to derive interaction score (K). The DIS is the difference between the
interaction scores from each virus. The modified DIS (SARS-MERS) compares
the average K from SARS-CoV-1 and SARS-CoV-2 to that of MERS-CoV (see
Materials and methods). Only viral bait proteins shared between all three viruses
are included. (B) Density histogram of the DISs for all comparisons. (C) Dot
plot depicting the DISs of interactions from viral bait proteins shared between
all three viruses, ordered left to right by the mean DIS per viral bait. (D) Virus-
human PPI map depicting the SARS-MERS comparison [purple in (B) and
(C)]. The network depicts interactions derived from cluster 2 (all three viruses),
cluster 4 (SARS-CoV-1 and SARS-CoV-2), and cluster 5 (MERS-CoV only).

Edge color denotes DIS: red indicates interactions specific to SARS-CoV-1
and SARS-CoV-2 but absent in MERS-CoV; blue indicates interactions specific
to MERS-CoV but absent from both SARS-CoV-1 and SARS-CoV-2; and
black indicates interactions shared between all three viruses. Human-human
interactions (thin dark gray line) and proteins sharing the same protein
complexes or biological processes (light yellow or light blue highlighting,
respectively) are shown. Host-host physical interactions, protein complex
definitions, and biological process groupings are derived from CORUM
(46), GO (biological process), and manually curated from literature sources.
Thin dashed gray lines are used to indicate the placement of node labels
when adjacent node labels would have otherwise been obscured. DIS,
differential interaction score; SARS2, SARS-CoV-2; SARS1, SARS-CoV-1;
MERS, MERS-CoV; SARS, both SARS-CoV-1 and SARS-CoV-2.
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repeat (TPR) motifs in its cytosolic segment.
The C-terminal TPR motifs recognize the in-
ternal mitochondrial targeting signals (MTSs)
of preproteins, and the N-terminal TPR clamp
domain serves as a docking site for multi-
chaperone complexes that contain preprotein
(14, 15). Obtained cryo-EM density allowed us

to build atomic models for residues 109 to 600
of humanTom70 and residues 39 to 76 of SARS-
CoV-2 ORF9b (Fig. 7A and table S8). ORF9b
makes extensive hydrophobic interactions at
the pocket on Tom70 that have been impli-
cated in its binding to MTS, with the total
buried surface area at the interface being quite

extensive—~2000 Å2 (Fig. 7B). In addition to
the mostly hydrophobic interface, four salt
bridges further stabilize the interaction (Fig.
7C). On interaction with ORF9b, the interact-
ing helices on Tom70 move inward to tightly
wraparoundORF9bas comparedwithprevious-
ly crystallized yeast Tom70 homologs (movie S1).

Gordon et al., Science 370, eabe9403 (2020) 4 December 2020 8 of 25

A

-24 h 0 h 72 h

Virus quantification
(SARS-CoV-2 RT-qPCR)

Cell viability

Knockdown efficiency

siRNA transfection
of A549-ACE2 cells

SARS-CoV-2
infection Data collection

C

-10

-5

0

5

siRNA target gene

Z
-s

co
re

Infectivity in A549-ACE2 cells

ACE2
Non-targeted

-20

-15

-10

-5

0

5

CRISPR KO gene

Infectivity in Caco-2 cells

ACE2

Non-targeted -10

10

-20

-15

-10

-5 5

A549-ACE2
Z-score

Caco-2 Z-score

ACE2

PPT1

RAB2A
NGDN

ATP6AP1

SIGMAR1

Infectivity in A549-ACE2
and Caco-2 cells

B SARS-CoV-2 infection 
of KO Caco-2 cells Viability and titration Data collection

0 h

Supernatants
for viral titers

Cells for 
viability assay

Virus 
quantification

(SARS-CoV-2 anti N,
foci counting)

96 h72 h

DAPI stain
(viability)

Row-wise 
titrations

E

F

Z
-s

co
re

D

SARS-CoV-2 Protein SARS-CoV-1 Protein MERS-CoV Protein
Decreased infectivity 
in KD/KO

Increased infectivity
in KD/KO PPI spectral counts

ZDHHC5

ORF9c

S

ORF7a

BZW2

SAAL1

FASTKD5

Nsp15

ETFA

Nsp14

M

ZC3H18

ELOB

BRD2

Nsp11

ZYG11B

BRD4

PPT1

ARF6

E

ORF10

Nsp15

MAT2B
SIRT5

M

NUP62Nsp14

NDUFB9

Nsp9

BCS1L

ECSIT

PIGO

TAPT1
SCAP

ORF9c

SLC9A3R1

FAM162A

ERGIC1

ORF4a

ORF9b

DCAKD

Nsp10

Nsp7

ADAM9

NDUFAF2

PKP2

Nsp2

SIL1TOR1AIP1

POLA1

Nsp16

ERP44MOGS

Nsp1

Nsp13

NEU1
LMAN2

IL17RAGNB1

ORF9b

EMC1

RAB1A

RBM28

ORF8a

OS9
RHOA

PABPC1

DNMT1

RAB2A

N

Nsp8 ORF8

RAB7A

Nsp7

VPS11

CYB5B

Nsp6

VPS39

Nsp7

TRIM59

SIGMAR1

HMOX1

ATP6AP1

Nsp13

ORF3a

Nsp6

Nsp12

ALG11
Nsp4

Nsp10Nsp1N

MIPOL1

MRPS27

CLIP4

MRPS5

CNTRL

MRPS2

GOLGA2

SEPSECS

CENPF

NGDN

PCNT

MRPS25

Nsp13
PTBP2

Nsp8

PPIL3

DPH5

RAB18

UBAP2L

TOMM70

PTGES2

Nsp12

Fig. 5. Functional interrogation of SARS-CoV-2 interactors using genetic
perturbations. (A) A549-ACE2 cells were transfected with siRNA pools
targeting each of the human genes from the SARS-CoV-2 interactome, followed
by infection with SARS-CoV-2 and virus quantification using RT-qPCR. Cell viability
and knockdown efficiency in uninfected cells was determined in parallel.
(B) Caco-2 cells with CRISPR knockouts (KO) of each human gene from the
SARS-CoV-2 interactome were infected with SARS-CoV-2, and supernatants were
serially diluted and plated onto Vero E6 cells for quantification. Viabilities of
the uninfected CRISPR knockout cells after infection were determined in parallel
by DAPI staining. (C and D) Plot of results from the infectivity screens in
A549-ACE2 knockdown cells (C) and Caco-2 knockout cells (D) sorted by z-score

(z < 0, decreased infectivity; z > 0 increased infectivity). Negative controls
(nontargeting control for siRNA, nontargeted cells for CRISPR) and positive
controls (ACE2 knockdown or knockout) are highlighted. (E) Results from
both assays with potential hits ðjzj > 2Þ highlighted in red (A549-ACE2),
yellow (Caco-2), and orange (both). (F) Pan-coronavirus interactome reduced
to human preys with significant increase (red nodes) or decrease (blue
nodes) in SARS-CoV2 replication upon knockdown or knockout. Viral proteins
baits from SARS-CoV-2 (red), SARS-CoV-1 (orange), and MERS-CoV (yellow)
are represented as diamonds. The thickness of the edge indicates the
strength of the PPI in spectral counts. KD, knockdown; KO, knockout; PPI,
protein-protein interaction.

RESEARCH | RESEARCH ARTICLE

Corrected 21 December 2020. See full text. 
on January 7, 2021
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


Gordon et al., Science 370, eabe9403 (2020) 4 December 2020 9 of 25

SARS1
ORF9b

TOMM70

SARS2
ORF9b

A B C D

G

F
F

U
/m

l

104

103

102

**

Con
tro

l

ACE2

TOM
M

70

IP: Anti-StrepInput

Strep-Nsp2

Strep-ORF9b

Tom70

V
ec

to
r

O
R

F
9b

 S
A

R
S

1-
S

tr
ep

O
R

F
9b

 S
A

R
S

2-
S

tr
ep

N
sp

2 
S

A
R

S
1-

S
tr

ep
N

sp
2 

S
A

R
S

2-
S

tr
ep

N
sp

2 
M

E
R

S
-S

tr
ep

Tom20

Tom22

ORF9b alone

Tom70 alone

Complex

0
0.1
0.2

0.5
0.6

0.8
0.9

N
or

m
al

iz
ed

 a
bs

or
ba

nc
e

0.3
0.4

0.7

-0.1

1.0
1.1

11 13 15 17 19
Volume (ml)

ORF9b

Tom70

kDa

72
55
43

E
To

m
 7

0 
m

ea
n 

flu
or

es
ce

nc
e 

in
te

ns
ity

(n
or

m
al

iz
ed

 to
 n

on
-t

ra
ns

fe
ct

ed
)

0

20

40

60

80

100

120

GFP-S
tre

p

ORF9b
 S

ARS1-
Stre

p

ORF9b
 S

ARS2-
Stre

p

**
**

0

2

4

6

8

10

12

To
m

 7
0 

m
ea

n 
flu

or
es

ce
nc

e 
in

te
ns

ity

Unin
fe

cte
d

In
fe

cte
d

**

Tom70

Tom70

Tom70

GFP-Strep

ORF9b SARS1-Strep

ORF9b SARS2-StrepORF9b SARS2-StrepORF9b SARS2-Strep

ORF9b Tom70

V
ec

to
r

O
R

F
9b

 S
A

R
S

1-
S

tr
ep

O
R

F
9b

 S
A

R
S

2-
S

tr
ep

Flag-Tom70 + ++ +++ +

Flag-Tom70

Strep-ORF9b

β-tubulin

F

34
26

17
10

V
ec

to
r

O
R

F
9b

 S
A

R
S

1-
S

tr
ep

O
R

F
9b

 S
A

R
S

2-
S

tr
ep

N
sp

2 
S

A
R

S
1-

S
tr

ep
N

sp
2 

S
A

R
S

2-
S

tr
ep

N
sp

2 
M

E
R

S
-S

tr
ep

Fig. 6. Interaction between ORF9b and human Tom70. (A) ORF9b-Tom70
interaction is conserved between SARS-CoV-1 and SARS-CoV-2. (B) Viral titers
in Caco-2 cells after CRISPR knockout of TOMM70 or controls. (C) Coimmuno-
precipitation of endogenous Tom70 with Strep-tagged ORF9b from SARS-CoV-1
and SARS-CoV-2; Nsp2 from SARS-CoV-1, SARS-CoV-2, and MERS-CoV; or vector
control in HEK293T cells. Representative blots of whole-cell lysates and eluates after
IP are shown. (D) Size exclusion chromatography traces (10/300 S200 increase)
of ORF9b alone, Tom70 alone, and coexpressed ORF9b-Tom70 complex
purified from recombinant expression in E. coli. Insert shows SDS-PAGE of the
complex peak indicating presence of both proteins. (E) Immunostainings for

Tom70 in HeLaM cells transfected with GFP-Strep and ORF9b from SARS-
CoV-1 and SARS-CoV-2 (left) and mean fluorescence intensity ± SD values
of Tom70 in GFP-Strep and ORF9b expressing cells (normalized to
nontransfected cells) (right). Scale bar, 10 mm. (F) Flag-Tom70 expression
levels in total cell lysates of HEK293T cells upon titration of cotransfected
Strep-ORF9b from SARS-CoV-1 and SARS-CoV-2. (G) Immunostaining for
ORF9b and Tom70 in Caco-2 cells infected with SARS-CoV-2 (left) and mean
fluorescence intensity ± SD values of Tom70 in uninfected and SARS-CoV-2–
infected cells (right). SARS2, SARS-CoV-2; SARS1, SARS-CoV-1; MERS,
MERS-CoV; IP, immunoprecipitation. **P < 0.05, Student’s t test.

RESEARCH | RESEARCH ARTICLE

Corrected 21 December 2020. See full text. 
on January 7, 2021
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


No structure for human Tom70 without a sub-
strate has been reported to date, and therefore
we cannot rule out the idea that the confor-
mational differences are because of differences
between homologs. However, it is possible that
this conformational change upon substrate
binding is conserved across homologs, as many
of the Tom70 residues interacting with ORF9b
are highly conserved, which likely indicates
residues essential for endogenous MTS sub-
strate recognition.
Although a previously published crystal

structure of SARS-CoV-2 ORF9b revealed that
it entirely consists of beta sheets [Protein Data
Bank (PDB) ID: 6Z4U] (16), we observed that,
upon binding Tom70 residues 52 to 68, ORF9b
forms a helix (Fig. 7D). This is consistent with
the fact that MTS sequences recognized by
Tom70 are usually helical, and analysis with
the TargetP MTS prediction server revealed
a high probability for this region of ORF9b to

have an MTS (Fig. 7E). This shows structural
plasticity in this viral protein where, depend-
ing on the binding partner, ORF9b changes
between helical and beta strand folds. Fur-
thermore, we had previously identified two
infection-driven phosphorylation sites on
ORF9b, S50 and S53 (17), which map to the
region on ORF9b buried deep in the Tom70
binding pocket (Fig. 7B, yellow). S53 con-
tributes two hydrogen bonds to the interac-
tion with Tom70 in this overall hydrophobic
region. Therefore, once phosphorylated, it is
likely that the ORF9b-Tom70 interaction is
weakened. These residues are surface exposed
in the dimeric structure of ORF9b, which
could potentially allow phosphorylation to
partition ORF9b between Tom70-bound and
dimeric populations.
The two binding sites on Tom70—the sub-

strate binding site and the TPR domain that
recognizes Hsp70 and Hsp90—are known to

be conformationally coupled (18). Tom70’s
interaction with a C-terminal EEVD motif
of Hsp90 via the TPR domain is key for its
function in the interferon pathway and induc-
tion of apoptosis on viral infection (10, 19).
Whether ORF9b, by binding to the substrate
recognition site of Tom70, allosterically inhib-
its Tom70’s interaction with Hsp90 at the TPR
domain remains to be investigated; but not-
ably we observe in our structure that R192, a
key residue in the interaction with Hsp70 and
Hsp90, is moved out of position to interact
with the EEVD sequence, which suggests that
ORF9b may modulate interferon and apopto-
sis signaling via Tom70 (fig. S21). Alternatively,
Tom70 has been described as an essential
import receptor for PTEN induced kinase
1 (PINK1), and therefore the loss of mitochon-
drial import efficiency as a result of ORF9b
binding to the Tom70 substrate binding pocket
may induce mitophagy.
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Fig. 7. Cryo-EM structure of ORF9b-Tom70 complex reveals ORF9b adopting
a helical fold and binding at the substrate recognition site of Tom70.
(A) Surface representation of the ORF9b-Tom70 structure. Tom70 is depicted as
molecular surface in green, ORF9b is depicted as ribbon in orange. Region in
charcoal indicates Hsp70 or Hsp90 binding site on Tom70. (B) Magnified view
of ORF9b-Tom70 interactions with interacting hydrophobic residues on Tom70
indicated and shown in spheres. The two phosphorylation sites on ORF9b,
S50 and S53, are shown in yellow. (C) Ionic interactions between Tom70 and ORF9b
are depicted as sticks. Highly conserved residues on Tom70 making hydrophobic
interactions with ORF9b are depicted as spheres. (D) Diagram depicting
secondary structure comparison of ORF9b as predicted by JPred server—as

visualized in our structure—or as visualized in the previously crystallized dimer
structure (PDB ID: 6Z4U) (16). Pink tubes indicate helices, charcoal arrows
indicate beta strands, and the amino acid sequence for the region visualized in
the cryo-EM structure is shown on top. (E) Predicted probability of having an
internal MTS as output by TargetP server by serially running N-terminally
truncated regions of SARS-CoV-2 ORF9b. Region visualized in the cryo-EM
structure (amino acids 39 to 76) overlaps with the highest internal MTS
probability region (amino acids 40 to 50). MTS, mitochondrial targeting signal.
Single-letter abbreviations for the amino acid residues are as follows: A, Ala; C,
Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn;
P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.
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Implications of the ORF8-IL17RA interaction
for COVID-19
As described above, we found that IL-17 re-
ceptor A (IL17RA) physically interacts with
ORF8 from SARS-CoV-2, but not SARS-CoV-1
or MERS-CoV (Fig. 5D, table S2, and Fig. 8A).
Several recent studies have identified high
IL-17 levels or aberrant IL-17 signaling as a
correlate of severe COVID-19 (20–23). We
demonstrated that the physical interaction
of SARS-CoV-2 ORF8 with IL17RA occurs with
or without IL-17A treatment, which suggests
that signaling through the receptor does not
disrupt the interaction with ORF8 (Fig. 8B).
Furthermore, knockdown of IL17RA led to a
significant decrease in SARS-CoV-2 viral rep-
lication in A549-ACE2 cells (Fig. 8C). These
data suggest that the ORF8-IL17RA interac-
tion modulates systemic IL-17 signaling.
One manner in which this signaling is reg-

ulated is through the release of the extracel-
lular domain of the receptor as soluble IL17RA
(sIL17RA), which acts as a decoy in circulation
by soaking up IL-17A and inhibiting IL-17 sig-
naling (24). Production of sIL17RA has been
demonstrated by alternative splicing in cul-
tured cells (25), but the mechanism by which
IL17RA is shed in vivo remains unclear (26).
ADAM family metalloproteases are known
to mediate the release of other interleukin
receptors into their soluble form (27). We
found that SARS-CoV-2 ORF8 physically in-
teracted with both ADAM9 and ADAMTS1 in
our previous study (5). We find that knock-
down of ADAM9, like that of IL17RA, leads
to significant decreases in SARS-CoV-2 rep-
lication in A549-ACE2 cells (Fig. 5D and
table S2).
To test the in vivo relevance of sIL17RA in

modulating SARS-CoV-2 infection, we lever-
aged a genome-wide association study (GWAS)
which identified 14 single-nucleotide polymor-
phisms (SNPs) near the IL17RA gene that
causally regulate sIL17RA plasma levels (28).
We then used generalized summary-based
Mendelian randomization (GSMR) (28, 29) on
the curated GWAS datasets of the COVID-19
Host Genetics Initiative (COVID-HGI) (30)
and observed that genotypes that predicted
higher sIL17RA plasma levels were associated
with lower risk of COVID-19 when compared
with the population (Fig. 8D and table S9),
which is seemingly consistent with our molec-
ular data. Similar results were obtained when
comparing only hospitalized COVID-19 patients
to the population. However, there was no evi-
dence of association in hospitalized versus non-
hospitalized COVID-19 patients. Though the
COVID-HGI dataset is underpowered and this
observation needs to be replicated in other
cohorts, the clinical observations, functional
genetics, and clinical genetics all suggest that
SARS-CoV-2 benefits from modulating IL-17
signaling. One potentially contradictory caveat

is that we find high-level IL-17A treatment
diminishes SARS-CoV-2 replication in A549-
ACE2 cells (fig. S22); however, IL-17 is a
pleiotropic cytokine and it is likely to play
multiple roles during SARS-CoV-2 infection in
the context of a competent immune system.
Infectious and transmissible SARS-CoV-2 vi-

ruses with large deletions of ORF8 have arisen
during the pandemic and have been associ-
ated with milder disease and lower concentra-
tions of proinflammatory cytokines (31). Notably,
compared with healthy controls, patients in-
fected with wildtype, but not ORF8-deleted
virus, had threefold elevated plasma levels of
IL-17A (31). More workwill be needed to under-
stand if and how ORF8 manipulates the IL-17
signaling pathway during the course of SARS-
CoV-2 infection.

Investigation of druggable targets identified
as interactors of multiple coronaviruses

The identification of druggable host factors
provides a rationale for drug repurposing ef-
forts. Given the extent of the current pande-
mic, real-world data can now be used to study
the outcome of COVID-19 patients coinci-
dentally treated with host factor–directed,
U.S. Food and Drug Administration (FDA)–
approved therapeutics. Using medical bill-
ing data, we identified 738,933 patients in the
United States with documented SARS-CoV-2

infection (Materials and methods). In this co-
hort, we probed the use of drugs against tar-
gets identified here that were shared across
coronavirus strains and found to be function-
ally relevant in the genetic perturbation screens.
In particular, we analyzed outcomes for an
inhibitor of prostaglandin E synthase type 2
(PGES-2, encoded by PTGES2) and for po-
tential ligands of sigma nonopioid receptor
1 (sigma-1, encoded by SIGMAR1), and inves-
tigated whether these patients fared better
than carefully matched patients treated with
clinically similar drugs without predicted anti-
coronavirus activity.
PGES-2, an interactor of Nsp7 from all three

viruses (Fig. 4D), is a dependency factor for
SARS-CoV-2 (Fig. 5F). It is inhibited by the
FDA-approved prescription nonsteroidal anti-
inflammatory drug (NSAID) indomethacin.
Computational docking of Nsp7 and PGES-2
to predict binding configuration showed that
the dominant cluster of models localizes Nsp7
adjacent to the PGES-2–indomethacin binding
site (fig. S23). However, indomethacin did not
inhibit SARS-CoV-2 in vitro at reasonable anti-
viral concentrations (fig. S24 and table S10). A
previous study also found that similarly high
levels of the drug were needed for inhibition
of SARS-CoV-1 in vitro, but this study still
showed efficacy for indomethacin against ca-
nine coronavirus in vivo (32). This motivated
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Fig. 8. SARS-CoV-2 ORF8 and functional interactor IL17RA are linked to viral outcomes. (A) IL17RA
and ADAM9 are functional interactors of SARS-CoV-2 ORF8. Only interactors identified in the genetic
screening are shown. (B) Coimmunoprecipitation of endogenous IL17RA with Strep-tagged ORF8 or EGFP
with or without IL-17A treatment at different times. Overexpression was done in HEK293T cells. (C) Viral titer
after IL17RA or control knockdown in A549-ACE2 cells. (D) OR of membership in indicated cohorts by
genetically predicted sIL17RA levels. SARS2, SARS-CoV-2; IP, immunoprecipitation; SD, standard deviation;
OR, odds ratio; CI, confidence interval; sIL17RA, soluble IL17RA. *P < 0.05, unpaired t test. Error bars in
(C) indicate SDs; in (D), they indicate 95% CIs.
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us to observe outcomes in a cohort of out-
patients with confirmed SARS-CoV-2 infec-
tion who by happenstance initiated a course
of indomethacin compared with those who
initiated the prescription NSAID celecoxib,

which lacks anti–PGES-2 activity. We com-
pared the odds of hospitalization by risk-set
sampling (RSS) patients treated at the same
time and at similar levels of disease severity
and then by further matching on propensity

score (PS) (33) (Fig. 9A and table S11). RSS and
PS—combined with a new user, active com-
parator design that mimics the intervention-
al component of parallel group randomized
studies—are established design and analytic
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Fig. 9. Real-world data analysis of drugs identified through molecular
investigation support their antiviral activity. (A) Schematic of retrospective
real-world clinical data analysis of indomethacin use for outpatients with SARS-
CoV-2. Plots show distribution of propensity scores (PSs) for all included patients
(red, indomethacin users; blue, celecoxib users). For a full list of inclusion,
exclusion, and matching criteria, see Materials and methods and table S11.
(B) Effectiveness of indomethacin versus celecoxib in patients with confirmed
SARS-CoV-2 infection treated in an outpatient setting. Average standardized
absolute mean difference (ASAMD) is a measure of balance between
indomethacin and celecoxib groups calculated as the mean of the absolute
standardized difference for each PS factor (table S11); P value and ORs with 95%

CIs are estimated using the Aetion Evidence Platform r4.6. No ASAMD was >0.1.
(C) Schematic of retrospective real-world clinical data analysis of typical
antipsychotic use for inpatients with SARS-CoV-2. Plots show distribution of
PSs for all included patients (red, typical users; blue, atypical users). For a full list
of inclusion, exclusion, and matching criteria see Materials and methods and
table S11. (D) Effectiveness of typical versus atypical antipsychotics among
hospitalized patients with confirmed SARS-CoV-2 infection treated in hospital.
ASAMD is a measure of balance between typical and atypical groups calculated
as the mean of the absolute standardized difference for each PS factor (table
S11); P value and ORs with 95% CIs are estimated using the Aetion Evidence
Platform r4.6. No ASAMD was >0.1.

RESEARCH | RESEARCH ARTICLE

Corrected 21 December 2020. See full text. 
on January 7, 2021
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


techniques that mitigate biases that can arise
in observational studies. A complete list of risk
factors used formatching,which include demo-
graphic data, baseline health care utilization,
comorbidities, andmeasures of disease sever-
ity, are found in table S11.
Among SARS-CoV-2–positive patients, new

users of indomethacin in the outpatient set-
ting were less likely than matched new users
of celecoxib to require hospitalization or in-
patient services [Fig. 9B; odds ratio (OR) =
0.33; 95% confidence interval (CI): 0.03 to
3.19]. The CI of our primary analysis included
the null value. In sensitivity analyses, neither
using the larger, risk-set–sampled cohort nor
relaxing our outcome definition to include any
hospital visit appreciably changed the inter-
pretation of our findings, but it did narrow the
CIs, particularly when both approaches were
combined (OR = 0.25; 95% CI: 0.08 to 0.76).
Although we acknowledge that this is a small,
noninterventional study, it is nonetheless an
example of how molecular insight can rapidly
generate testable clinical hypotheses and help
prioritize candidates for prospective clinical
trials or future drug development.
To create larger patient cohorts, we next

grouped drugs that shared activity against the
same target—sigma receptors. We previously
identified sigma-1 and sigma-2 as drug targets
in our SARS-CoV-2–human PPImap, andmul-
tiple potent, nonselective sigma ligands were
among the most promising inhibitors of SARS-
CoV-2 replication in Vero E6 cells (5). As shown
above, knockout and knockdown of SIGMAR1,
but not of SIGMAR2 (also known asTMEM97),
led to robust decreases in SARS-CoV-2 repli-
cation (fig. S24 and Fig. 5F), which suggests
that sigma-1 may be a key therapeutic target.
We analyzed SIGMAR1 sequences across 359
mammals and observed positive selection of
several residues within beaked whale, mouse,
and ruminant lineages, which may indicate a
role in host-pathogen competition (fig. S25).
Additionally, the sigma ligand drug amiodar-
one inhibited replication of SARS-CoV-1 as
well as SARS-CoV-2, consistent with the con-
servation of theNsp6–sigma-1 interaction across
the SARS viruses (fig. S24 and Fig. 4D). We
then looked for other FDA-approved drugswith
reported nanomolar affinity for sigma receptors
or those that fit the sigma ligand chemotype
(5, 34–41), and we selected 13 such therapeu-
tics. We find that all are potent inhibitors of
SARS-CoV-2 with half-maximal inhibitory con-
centration (IC50) values <10 mM, though there
is a wide range in reported sigma receptor
affinity with no clear correlation between
sigma receptor binding affinity and antiviral
activity (fig. S24D). Several clinical drug classes
were represented bymore than one candidate,
including typical antipsychotics and antihis-
tamines. Over-the-counter antihistamines are
not well represented in medical billing data

and are therefore poor candidates for real-
world analysis, but users of typical antipsy-
chotics can be easily identified in our patient
cohort. By grouping these individual drug can-
didates by clinical indication, we were able to
build a better-powered comparison.
We constructed a cohort for retrospective

analysis on new, inpatient users of antipsy-
chotics. In inpatient settings, typical and atyp-
ical antipsychotics are used similarly, most
commonly for delirium. We compared the
effectiveness of typical antipsychotics, which
have sigma activity and antiviral effects (fig.
S24E), versus atypical antipsychotics, which
do not have antiviral activity (fig. S24F), for
treatment of COVID-19 (Fig. 9C). Observing
mechanical ventilation outcomes in inpatient
cohorts is a proxy for the worsening of severe
illness rather than the progression frommild
disease signified by the hospitalization of
indomethacin-exposed outpatients above.We
again used RSS plus PS to build a robust, di-
rectly comparable cohort of inpatients (table
S11). In our primary analysis, half as many of
the new users of typical antipsychotics com-
pared with the new users of atypical antipsy-
chotics progressed to the point of requiring
mechanical ventilation, demonstrating signif-
icantly lower use with an OR of 0.46 (95% CI:
0.23 to 0.93; P = 0.03; Fig. 9D). As above, we
conducted a sensitivity analysis in the RSS-
only cohort andobserved the same trend (OR=
0.56; 95% CI: 0.31 to 1.02; P = 0.06), which
emphasizes the primary result of a beneficial
effect for typical versus atypical antipsychotics
observed in the RSS-plus-PS–matched cohort.
Although a careful analysis of the relative ben-
efits and risks of typical antipsychotics should
be undertaken before considering prospective
studies or interventions, these data and analy-
ses demonstrate how molecular information
can be translated into real-world implications
for the treatment of COVID-19—an approach
that can ultimately be applied to other dis-
eases in the future.

Discussion

In this study, we generated and compared
three different coronavirus-human PPI maps
in an attempt to identify and understand pan-
coronavirus molecular mechanisms. The use
of a quantitative DIS allowed for the identifi-
cation of virus-specific as well as shared inter-
actions among distinct coronaviruses. We also
systematically carried out subcellular local-
ization analysis using tagged viral proteins
and antibodies targeting specific SARS-CoV-2
proteins. Our results suggest that protein lo-
calization can often differ when comparing
individually expressed viral proteins with the
localization of the same protein in the context
of infection. This can be because of factors
such asmislocation driven by tagging, changes
in localization due to interaction partners, or

cellular compartments that are specific to the
infection state. These differences are notable
caveats of virus-host interaction studies per-
formed with tagged, expressed proteins. How-
ever, previous studies and the work performed
here show how these data can be powerful for
the identification of host-targeted processes
and relevant drug targets.
These data were integrated with genetic

data where the interactions uncovered with
SARS-CoV-2 were perturbed using RNA inter-
ference (RNAi) and CRISPR in different cel-
lular systems and viral assays—an effort that
functionally connected many host factors to
infection. One of these, Tom70, which we have
shown binds to ORF9b from both SARS-CoV-1
and SARS-CoV-2, is a mitochondrial outer
membrane translocase that has been previ-
ously shown to be important for mounting an
interferon response (42). Our functional data,
however, show that Tom70 has at least some
role in promoting infection rather than inhib-
iting it. Using cryo-EM, we obtained a 3-Å
structure of a region of ORF9b binding to the
active site of Tom70. Notably, we found that
ORF9b is in a markedly different conforma-
tion than previously visualized. This suggests
the possibility that ORF9b may partition be-
tween two distinct structural states, with each
having a different function and possibly ex-
plaining its apparent pleiotropy. The exact
details of functional significance and regu-
lation of the ORF9b-Tom70 interaction will
require further experimental elucidation. This
interaction, however, which is conserved be-
tweenSARS-CoV-1 andSARS-CoV-2, couldhave
value as a pan-coronavirus therapeutic target.
Finally, we attempted to connect our in vitro

molecular data to clinical information availa-
ble for COVID-19 patients to understand the
pathophysiology of COVID-19 and explore the-
rapeutic avenues. To this end, using GWAS
datasets of the COVID-HGI (30), we observed
that increased predicted sIL17RA plasma levels
were associated with lower risk of COVID-19.
Notably, we find that IL17RA physically binds
to SARS-CoV-2 ORF8, and genetic disruption
results in decreased infection. These collec-
tive data suggest that future studies should
be focused on this pathway as both an indi-
cator and therapeutic target for COVID-19.
Furthermore, using medical billing data, we
also observed trends in COVID-19 patients
on specific drugs indicated by our molecular
studies. For example, inpatients prescribed
sigma-ligand typical antipsychotics appear
to have better COVID-19 outcomes compared
with users of atypical antipsychotics, which
do not have anti–SARS-CoV-2 activity in vitro.
However, we cannot be certain that the sigma
receptor interaction is the mechanism under-
pinning this effect, as typical antipsychotics
are known to bind to a multitude of cellular
targets, and some atypical antipsychotics,
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which lack anti–SARS-CoV-2 activity, none-
theless have reported affinity for rodent sigma
receptors (table S10). Replication in other pa-
tient cohorts and further work will be needed
to see whether there is therapeutic value in
these connections, but we have at least dem-
onstrated a strategy wherein protein network
analyses can be used to make testable predic-
tions from real-world clinical information.
We have described an integrative and col-

laborative approach to study and understand
pathogenic coronavirus infection, identifying
conserved targetedmechanisms that are likely
to be of high relevance for other viruses of this
family, some of which have yet to infect hu-
mans. We used proteomics, cell biology, viro-
logy, genetics, structural biology, biochemistry,
and clinical and genomic information in an
attempt to provide a holistic view of SARS-
CoV-2 and other coronaviruses’ interactions
with infected host cells. We propose that such
an integrative and collaborative approach could
and should be used to study other infectious
agents as well as other disease areas.

Materials and methods
Cells

HEK293T/17 (HEK293T) cells were procured
from theUniversity of California, San Francisco
(UCSF) Cell Culture Facility, and are available
throughUCSF's Cell and Genome Engineering
Core (https://cgec.ucsf.edu/cell-culture-and-
banking-services). HEK293T cells were cul-
tured in Dulbecco’s modified Eagle’s medium
(DMEM) (Corning) supplemented with 10%
fetal bovine serum (FBS) (Gibco, Life Techno-
logies) and 1% penicillin-streptomycin (Corn-
ing) and maintained at 37°C in a humidified
atmosphere of 5% CO2. Short tandem repeat
(STR) analysis by the Berkeley Cell Culture
Facility on 8 August 2017 authenticates these
as HEK293T cells with 94% probability.
HeLaM cells (RRID: CVCL_R965) were

originally obtained from the laboratory of
M. S.Robinson (CIMR,University ofCambridge,
UK) and have been routinely tested for my-
coplasma contamination. HeLaM cells were
grown in DMEM supplementedwith 10% FBS,
100 U/ml penicillin, 100 mg/ml streptomycin,
and 2 mM glutamine at 37°C in a 5% CO2 hu-
midified incubator.
A549 cells stably expressing ACE2 (A549-

ACE2) were a gift fromO. Schwartz. A549-ACE2
cells were cultured in DMEM supplemented
with 10% FBS, blasticidin (20 mg/ml) (Sigma)
and maintained at 37°C with 5% CO2. STR
analysis by the Berkeley Cell Culture Facility
on 17 July 2020 authenticates these as A549
cells with 100% probability.
Caco-2 cells (ATTC, HTB-37, RRID:CVCL_

0025) were cultured in DMEMwith GlutaMAX
and pyruvate (Gibco, 10569010) and supple-
mented with 20% FBS (Gibco, 26140079). For
Caco-2 cells utilized in Cas9-RNP knockouts,

STR analysis by the Berkeley Cell Culture Fa-
cility on 23 April 2020 authenticates these as
Caco-2 cells with 100% probability.
Vero E6 cells were purchased from the

American Type Culture Collection (ATCC)
and thus authenticated [VERO C1008 (Vero
76, clone E6, Vero E6)] (ATCC, CRL-1586).
Vero E6 cells tested negative for mycoplasma
contamination. Vero E6 cells were cultured
in DMEM (Corning) supplemented with
10% FBS (Gibco, Life Technologies) and 1%
penicillin-streptomycin (Corning) and main-
tained at 37°C in a humidified atmosphere of
5% CO2.

Microbes

LOBSTER E. coli Expression Strain: LOBSTR-
[BL21(DE3)] Kerafast no. EC1002.

Antibodies
Commercially available primary antibodies
used in this study

Rabbit anti-beta-actin (Cell Signaling Technol-
ogy #4967, RRID:AB_330288); mouse anti-
beta tubulin (Sigma-Aldrich #T8328, RRID:
AB_1844090); rabbit anti-BiP (Cell Signaling
Technology #3177S, RRID:AB_2119845); mouse
anti-EEA1 (BD Biosciences #610457, RRID:AB_
397830, used at 1:200); mouse anti-ERGIC53
(Enzo Life Sciences #ALX-804-602-C100, RRID:
AB_2051363, used at 1:200); anti-GM130; rabbit
anti-GRP78 BiP (Abcam #Ab21685, RRID:AB_
2119834); rabbit anti–SARS-CoV–nucleocapsid
protein (NP) (Rockland #200-401-A50, RRID:
AB_828403); rabbit anti-PDI (protein disul-
fide isomerase) (Cell Signaling Technology
#3501, RRID:AB_2156433); mouse anti-Strep
tag (QIAGEN #34850, RRID:AB_2810987, used
at 1:5000); mouse anti-strepMAB (IBA Life-
sciences #2-1507-001, used at 1:1000); rabbit
anti–Strep-tag II (Abcam #ab232586); rabbit
anti-Tom20 (Proteintech #11802-1-AP, RRID:
AB_2207530, used at 1:1000); rabbit anti-
Tom20 (Cell Signaling Technology #42406,
RRID:AB_2687663); mouse anti-Tom22 (Santa
Cruz Biotechnology #sc-101286, RRID:AB_
1130526); rabbit anti-Tom40 (Santa Cruz Bio-
technology #sc-11414, RRID:AB_793274); mouse
anti-Tom70 (Santa Cruz #sc-390545, RRID:
AB_2714192, used at 1:500); Rabbit anti-STX5
(Synaptic Systems 110 053, used at 1:500); and
ActinStaining Kit 647-Phalloidin (Hypernol
#8817-01, used at 1:400).

Commercially available secondary
antibodies used in this study

Alexa Fluor 488 chicken anti-mouse immuno-
globulin G (IgG) (Invitrogen #A21200, RRID_
AB_2535786, used at 1:400); Alexa Fluor 488
chicken anti-rabbit IgG (Invitrogen #A21441,
RRID_AB_10563745, used at 1:400); Alexa
Fluor 568 donkey anti-sheep IgG (Invitrogen
#A21099, RRID_AB_10055702, used at 1:400);
Alexa Fluor Plus 488 goat anti-rabbit (Thermo-

Fisher A32731, used at 1:500); Alexa Fluor Plus
594 goat anti-mouse (ThermoFisher A32742,
used at 1:500); and goat anti-mouse IgG-HRP
(horseradish peroxidase) (BioRad #170-6516,
RRID:AB_11125547, used at 1:20000).

Noncommercial antisera

Rabbit anti–SARS-CoV-2–NP antiserum was
produced by the Garcia-Sastre laboratory and
used at 1:10000. For information on polyclo-
nal sheep antibodies targeting SARS-CoV-
2 proteins, see below, table S3, and https://
mrcppu-covid.bio/.

Coronavirus annotation and plasmid cloning

SARS-CoV-1 isolate Tor2 (NC_004718) and
MERS-CoV (NC_019843) were downloaded
from GenBank and utilized to design 2xStrep-
tagged expression constructs of ORFs and pro-
teolytically mature Nsps derived from ORF1ab
(with N-terminal methionines and stop co-
dons added as necessary). Protein termini
were analyzed for predicted acylation motifs,
signal peptides, and transmembrane regions,
and either the N or C terminus was chosen for
tagging as appropriate. Finally, reading frames
were codon optimized and cloned into pLVX-
EF1alpha-IRES-Puro (Takara/Clontech) includ-
ing a 5′ Kozak motif.

Immunofluorescence microscopy of viral
protein constructs

Approximately 60,000 HeLaM cells were
seeded onto glass coverslips in a 12-well dish
and grown overnight. The cells were trans-
fected using 0.5 mg of plasmid DNA and
either polyethylenimine (Polysciences) or Fu-
gene HD (Promega; 1 part DNA to 3 parts
transfection reagent) and grown for a fur-
ther 16 hours.
Transfected cells were fixed with 4% para-

formaldehyde (Polysciences) in phosphate-
buffered saline (PBS) at room temperature
for 15 min. The fixative was removed and
quenched using 0.1 M glycine in PBS. The cells
were permeabilized using 0.1% saponin in PBS
containing 10% FBS. The cells were stained
with the indicated primary and secondary anti-
bodies for 1 hour at room temperature. The
coverslips were mounted onto microscope
slides using ProLong Gold antifade reagent
(ThermoFisher) and imaged using a UplanApo
60x oil (NA 1.4) immersion objective on a
Olympus BX61 motorized wide-field epifluor-
escence microscope. Images were captured
using a Hamamatsu Orca monochrome cam-
era and processed using ImageJ.
To gain insight into the intracellular dis-

tribution of each Strep-tagged construct, ~100
cells per transfection were manually scored.
Each construct was assigned an intracellular
distribution in relation to the plasma mem-
brane, ER, Golgi, cytoplasm, and mitochon-
dria (scored out of 7). Many of the constructs
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had several localizations so this was also re-
flected in the scoring. The scoring also took
into account the impact of expression level on
the localization of the constructs.

Meta-analysis of immunofluorescence data

We first sorted the data concerning viral pro-
tein location for all Strep-tagged viral proteins
expressed individually in three heatmaps (one
per virus) using a customR script (“pheatmap”
package). The information concerning protein
localization during SARS-CoV-2 infection was
added as a square border color code in the first
heatmap, to compare the two different local-
ization patterns. To compare the predicted ver-
sus the experimentally determined locations,
for each protein we took the top scoring
sequence-based localization prediction from
DeepLoc (43) if the score was >1. Whenmore
than one localization can be assigned to the
same protein, we took as many top scoring
ones as experimentally assigned localizations
we had for the same protein. Finally, for each
cell compartment, we count the number of
experimentally assigned viral proteins and the
subset of them predicted to that same com-
partment as correct predictions. To compare
changes in protein interactions with changes
in protein localization (Strep-tagged experi-
ment versus sequence-based prediction), we
calculated the Jaccard index of prey overlap
for each viral protein (SARS-CoV-2 versus
SARS-CoV-1 and SARS-CoV-2 versus MERS-
CoV) and plotted them together, for proteins
with the same localization and for proteins
with different localization.

Generation of polyclonal sheep antibodies
targeting SARS-CoV-2 proteins

Sheep were immunized with individual N-
terminal glutathioneS-transferase (GST)–tagged
SARS-CoV-2 recombinant proteins or N-terminal
maltose binding protein (MBP)–tagged pro-
teins (for SARS-CoV-2 S, S-RBD, and ORF7a),
followed by up to five booster injections
4 weeks apart from each other. Sheepwere sub-
sequently bled and IgGs were affinity purified
using the specific recombinant N-terminal
MBP-tagged viral proteins. Each antiserum
specifically recognized the appropriate native
viral protein. Characterization of each antibody
can be found at https://mrcppu-covid.bio/. All
antibodies generated can be requested at
https://mrcppu-covid.bio/. Also see table S3.

Immunofluorescence microscopy of infected
Caco-2 cells

For infection experiments in human colon
epithelial Caco-2 cells (ATCC, HTB-37), SARS-
CoV-2 isolate Muc-IMB-1 (provided by the
Bundeswehr Institute ofMicrobiology,Munich,
Germany) was used. SARS-CoV-2 was propa-
gated in Vero E6 cells in DMEM supplemented
with 2% FBS. All work involving live SARS-

CoV-2 was performed in the BSL3 facility of
the Institute of Virology, University Hospital
Freiburg, and was approved according to the
German Act of Genetic Engineering by the lo-
cal authority (RegierungspraesidiumTuebingen,
permit UNI.FRK.05.16/05).
Caco-2 human colon epithelial cells seeded

on glass coverslips were infected with SARS-
CoV-2 {Strain Muc-IMB-1/2020, second pas-
sage on Vero E6 cells [2 × 106 plaque-forming
units (PFU)/ml]} at a multiplicity of infection
(MOI) of 0.1. At 24 hours postinfection, cells
were washed with PBS and fixed in 4% para-
formaldehyde in PBS for 20 min at room
temperature, followed by 5 min of quenching
in 0.1 M glycine in PBS at room temperature.
Cells were permeabilized and blocked in 0.1%
saponin in PBS supplemented with 10% FBS
for 45 min at room temperature and incubated
with primary antibodies for 1 hour at room
temperature. After washing 15 min with block-
ing solution, AF568-labeled donkey–anti-sheep
(Invitrogen, #A21099; 1:400) secondary anti-
body as well as AF4647-labeled Phalloidin
(Hypermol, #8817-01; 1:400) were applied
for 1 hour at room temperature. Subsequent
washing was followed by embedding in Diam-
ond Antifade Mountant with 4′,6-diamidino-
2-phenylindole (DAPI) (ThermoFisher, #P36971).
Fluorescence images were generated using a
LSM800 confocal laser-scanning microscope
(Zeiss) equipped with a 63X, 1.4 NA oil objec-
tive and Airyscan detector and the Zen blue
software (Zeiss) and processed with Zen blue
software and ImageJ/Fiji.

Transfection and cell harvest for
immunoprecipitation experiments

For each affinity purification [SARS-CoV-1
baits, MERS-CoV baits, green fluorescent pro-
tein (GFP)–2xStrep, or empty vector controls],
10 million HEK293T cells were transfected
with up to 15 mg of individual expression con-
structs using PolyJet transfection reagent
(SignaGen Laboratories) at a 1:3 mg:ml ratio
of plasmid to transfection reagent on the
basis of the manufacturer’s protocol. After
>38 hours, cells were dissociated at room
temperature using 10 ml PBS without calcium
and magnesium (D-PBS) with 10 mM ethyl-
enediaminetetraacetic acid (EDTA) for at least
5 min, pelleted by centrifugation at 200 × g, at
4°C for 5 min, washed with 10 ml D-PBS, pel-
leted once more, and frozen on dry ice before
storage at−80°C for later immunoprecipitation
analysis. For each bait, three independent
biological replicates were prepared.
Whole-cell lysates were resolved on 4 to 20%

Criterion SDS–polyacrylamide gel electropho-
resis (SDS-PAGE) gels (Bio-Rad Laboratories)
to assess Strep-tagged protein expression by
immunoblotting using mouse anti-Strep tag
antibody 34850 (QIAGEN) and anti-mouse
HRP secondary antibody (BioRad).

Anti–Strep tag affinity purification
Frozen cell pellets were thawed on ice for 15
to 20 min and suspended in 1 ml lysis buffer
[immunoprecipitation (IP) buffer (50mM tris-
HCl, pH 7.4 at 4°C; 150 mM NaCl, 1 mM
EDTA) supplemented with 0.5% Nonidet P 40
Substitute (NP-40; Fluka Analytical) and cOm-
plete mini EDTA-free protease and PhosSTOP
phosphatase inhibitor cocktails (Roche)]. Sam-
ples were then freeze-fractured by refreezing
on dry ice for 10 to 20min, then rethawed and
incubated on a tube rotator for 30 min at
4°C. Debris was pelleted by centrifugation
at 13,000 × g, at 4°C for 15 min. Up to 56 sam-
ples were arrayed into a 96-well Deepwell
plate for affinity purification on the KingFisher
Flex Purification System (Thermo Scientific)
as follows: MagStrep “type3” beads (30 ml; IBA
Lifesciences) were equilibrated twicewith 1ml
wash buffer (IP buffer supplemented with
0.05% NP-40) and incubated with 0.95 ml
lysate for 2 hours. Beads were washed three
times with 1 ml wash buffer and then once
with 1 ml IP buffer. Beads were released into
75 ml denaturation-reduction buffer [2 M urea,
50 mM Tris-HCl pH 8.0, 1 mM dithiothreitol
(DTT)] in advance of on-bead digestion. All
automated protocol steps were performed at
4°C using the slow mix speed and the follow-
ing mix times: 30 s for equilibration and wash
steps, 2 hours for binding, and 1 min for final
bead release. Three 10-s bead collection times
were used between all steps.

On-bead digestion for affinity purification

Bead-bound proteins were denatured and re-
duced at 37°C for 30min, alkylated in the dark
with 3 mM iodoacetamide for 45 min at room
temperature, and quenched with 3 mM DTT
for 10min. To offset evaporation, 22.5 ml 50mM
Tris-HCl, pH 8.0 were added before trypsin
digestion. Proteins were then incubated at
37°C, initially for 4 hours with 1.5 ml trypsin
(0.5 mg/ml; Promega) and then another 1 to
2 hours with 0.5 ml additional trypsin. All
steps were performed with constant shaking
at 1100 rpm on a ThermoMixer C incubator.
Resulting peptides were combined with 50 ml
50 mM Tris-HCl, pH 8.0 used to rinse beads
and acidified with trifluoroacetic acid (0.5%
final, pH < 2.0). Acidified peptides were de-
salted for MS analysis using a BioPureSPE
Mini 96-Well Plate (20 mg PROTO 300 C18;
The Nest Group, Inc.) according to standard
protocols.

MS operation and peptide search

Samples were resuspended in 4% formic acid,
2% acetonitrile solution, and separated by a
reversed-phase gradient over a nanoflow C18
column (Dr. Maisch). HPLC buffer A was
composed of 0.1% formic acid, and HPLC
buffer B was composed of 80% acetonitrile
in 0.1% formic acid. Peptides were eluted by
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a linear gradient from 7 to 36% B over the
course of 52 min, after which the column
was washed with 95% B and re-equilibrated
at 2% B. Each sample was directly injected
by means of an Easy-nLC 1200 (Thermo Fisher
Scientific) into a Q-Exactive Plus mass spec-
trometer (Thermo Fisher Scientific) and analy-
zed with a 75-min acquisition, with all MS1
and MS2 spectra collected in the orbitrap;
data were acquired using the Thermo soft-
ware Xcalibur (4.2.47) and Tune (2.11 QF1
Build 3006). For all acquisitions, QCloud was
used to control instrument longitudinal per-
formance during the project (44). All proteomic
data were searched against the human pro-
teome (uniprot reviewed sequencesdownloaded
28 February 2020), enhanced green fluorescent
protein (EGFP) sequence, and the SARS-CoV
or MERS protein sequences using the default
settings for MaxQuant (version 1.6.12.0) (45).
Detected peptides and proteins were filtered
to 1% false discovery rate in MaxQuant. All
MS raw data and search results files have been
deposited to theProteomeXchangeConsortium
via the PRIDE partner repository with the
dataset (PXD identifier PXD021588).

High-confidence protein interaction scoring

Identified proteins were then subjected to PPI
scoring with both SAINTexpress (version 3.6.3)
andMiST (https://github.com/kroganlab/mist)
(6, 7). We applied a two-step filtering strategy
to determine the final list of reported inter-
actors, which relied on two different scoring
stringency cut-offs. In the first step, we chose
all protein interactions that had a MiST score
≥0.7, a SAINTexpress Bayesian false-discovery
rate (BFDR) ≤0.05, and an average spectral
count ≥2. For all proteins that fulfilled these
criteria, we extracted information about the
stable protein complexes that they partici-
pated in from the CORUM (46) database of
known protein complexes. In the second step,
we then relaxed the stringency and recovered
additional interactors that (i) formed com-
plexes with interactors determined in filtering
step 1 and (ii) fulfilled the following criteria:
MiST score ≥0.6, SAINTexpress BFDR ≤0.05,
and average spectral counts ≥2. Proteins that
fulfilled filtering criteria in either step 1 or
step 2 were considered to be high-confidence
protein-protein interactions (HC-PPIs).
Using this filtering criteria, nearly all of our

baits recovered a number of HC-PPIs in close
alignment with previous datasets reporting
an average of around six PPIs per bait (47).
However, for a subset of baits, we observed
a much higher number of PPIs that passed
these filtering criteria. For these baits, the
MiST scoring was instead performed using
a larger in-house database of 87 baits that
were prepared and processed in an analogous
manner to this SARS-CoV-2 dataset. This was
done to provide a more comprehensive col-

lection of baits for comparison, to minimize
the classification of nonspecifically binding
background proteins as HC-PPIs. This was
performed for SARS-CoV-1 baits (M, Nsp12,
Nsp13, Nsp8, and ORF7b), MERS-CoV baits
(Nsp13, Nsp2, and ORF4a), and SARS-CoV-2
Nsp16. SARS-CoV-2 Nsp16 MiST was scored
using the in-house database as well as all
previous SARS-CoV-2 data (5).

Hierarchical clustering of virus-human
protein interactions

Hierarchical clustering was performed on
interactions for (i) viral bait proteins shared
across all three viruses and (ii) passed the high-
confidence scoring criteria (MiST score ≥0.6,
SAINTexpress BFDR ≤0.05, and average spec-
tral counts ≥2) in at least one virus. We clus-
tered using a new interaction score (K), which
we defined as the average between the MiST
and SAINT score for each virus-human inter-
action. This was done to provide a single score
that captured the benefits from each scoring
method. Clustering was performed using the
ComplexHeatmap package in R, using the
“average” clustering method and “euclidean”
distance metric. K-means clustering (k = 7)
was applied to capture all possible combina-
tions of interaction patterns between viruses.

GO enrichment analysis on clusters

Sets of genes found in seven clusters were
tested for enrichment of GO terms, which
was performed using the enricher function
of clusterProfiler package in R (48). The GO
terms were obtained from the C5 collection
of Molecular Signature Database (MSigDBv7.1)
and include biological process, cellular com-
ponent, and molecular function ontologies.
Significant GO termswere identified (adjusted
P < 0.05) and further refined to select non-
redundant terms. To select nonredundant
gene sets, we first constructed a GO term tree
based on distances (1 − Jaccard similarity co-
efficients of shared genes) between the signif-
icant terms. The GO term tree was cut at a
specific level (h = 0.99) to identify clusters of
nonredundant gene sets. For results withmul-
tiple significant terms belonging to the same
cluster, we selected the term with the lowest
adjusted P value.

Sequence similarity analysis

Protein sequence similarity was assessed by
comparing the protein sequences from SARS-
CoV-1 and MERS-CoV to SARS-CoV-2 for
orthologous viral bait proteins. The corre-
sponding PPI similarity was represented by
a Jaccard index, using the high-confidence
interactomes for each virus.

GO enrichment and PPI similarity analysis

The high-confidence interactors of the three
viruses were tested for enrichment of GO terms

as described above. We then identified GO
terms that are significantly enriched (adjusted
P value < 0.05) in all three viruses. For each
enriched term, we generated the list of its asso-
ciated genes and computed the Jaccard index
of pairwise comparisons of the three viruses.

Orthologous versus nonorthologous
interactions analysis

For a given pair of viruses, we identified all
pairs of baits that share interactors and cat-
egorized these into orthologous and nonortho-
logous groups on the basis of whether the two
baits were orthologs or not. We then summed
up the total number of shared interactors in
each group to calculate the corresponding
fractions. This was performed for all pairwise
combinations of the three viruses.

Structural modeling and comparison of
MERS-CoV ORF4a and SARS-CoV-2 Nsp8

To obtain a sensitive sequence comparison
between MERS-CoV ORF4a and SARS-CoV-2
Nsp8, we took into consideration their homo-
logs. We first searched for homologs of these
proteins in theUniRef30 database using hhblits
(1 iteration, E-value cutoff 1 × 10−3) (49). Sub-
sequently, the resulting alignments were fil-
tered to include only sequences with at least
80% coverage to the corresponding query se-
quence, and hidden Markov models (HMMs)
were created using hhmake. Finally, theHMMs
of ORF4a and Nsp8 homologs were locally
aligned using hhalign. The structure of ORF4a
was predicted de novo using trRosetta (50). To
provide greater coverage than that provided
by experimental structures, SARS-CoV-2 Nsp8
was modeled using the structure of its SARS-
CoV homolog as template (PDB ID: 2AHM)
(51) using SWISS-MODEL (52). To search for
local structural similarities between ORF4a
and Nsp8, we used Geometricus, a structure
embedding tool based on three-dimensional
(3D) rotation invariant moments (53). This
generates so-called shape-mers, analogous
to sequence k-mers. The structures were frag-
mented into overlapping k-mers on the basis
of the sequence (k = 20) and into overlapping
spheres surrounding each residue (radius =
15 Å). To ensure that the similarities found
between these distinct structures were sig-
nificant, we used a high resolution of 7 to
define the shape-mers. This resulted in the
identification of four different shape-mers
common to ORF4a and Nsp8. We aligned the
entire ORF4a structure with residues 96 to 191
of the Nsp8 structure (i.e., after removal of
the long N-terminal helix) using the Caretta
structural alignment algorithm (54), using
3D rotation invariant moments (53) for ini-
tial superposition. We optimized parameters
to maximize the Caretta score. The resulting
alignment used k = 30, radius = 16 Å, gap open
penalty = 0.05, gap extend penalty = 0.005,
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and had a rootmean square deviation (RMSD)
of 7.6 Å across 66 aligning residues.

DIS analysis

We computed a DIS for interactions that (i)
originated fromviral bait proteins shared across
all three viruses and (ii) passed the high-
confidence scoring criteria (see above) in at
least one virus. We defined the DIS to be the
difference between the interaction scores (K)
from each virus. A DIS near 0 indicates that
the interaction is confidently shared between
the two viruses being compared, whereas a
DIS near −1 or +1 indicates that the host-
protein interaction is specific for one virus or
the other. We computed a fourth DIS (SARS-
MERS) by averaging K from SARS-CoV-1 and
SARS-CoV-2 before calculating the difference
withMERS-CoV. Here, a DIS near +1 indicates
SARS-specific interactions (shared between
SARS-CoV-1 and SARS-CoV-2 but absent in
MERS-CoV), a DIS near −1 indicates MERS-
specific interactions (present in MERS-CoV
and absent or lowly confident in both SARS-
CoVs), and a DIS near 0 indicates interactions
shared between all three viruses.
For each pairwise virus comparison, as well

as the SARS-MERS comparison, the DIS was
defined on the basis of cluster membership of
interactions (Fig. 3A). For the SARS2-SARS1
comparison, interactions from every cluster
except 5 were used, as those interactions
are considered absent from both SARS-CoV-2
and SARS-CoV-1. For the SARS2-MERS com-
parison, interactions from all clusters except
3 were used. For the SARS1-MERS comparison,
interactions from all clusters except 6 were
used. For the SARS-MERS comparison, only
interactions from clusters 2, 4, and 5 were used.

Network generation and visualization

PPI networks were generated in Cytoscape (55)
and subsequently annotated using Adobe Illus-
trator. Host-host physical interactions, protein
complex definitions, and biological process
groupings were derived from CORUM (46),
GO (biological process), and manually curated
from literature sources. All networks were
deposited in NDEx (56).

siRNA library and transfection in A549-ACE2 cells

An OnTargetPlus siRNA SMARTpool library
(Horizon Discovery) was purchased targeting
331 of the 332 human proteins previously
identified to bind SARS-CoV-2 (5) (PDE4DIP
was not available for purchase and was ex-
cluded from the assay). This library was ar-
rayed in a 96-well format, with each plate
also including two nontargeting siRNAs and
one siRNA pool targeting ACE2 (table S12).
The siRNA library was transfected into A549
cells stably expressing ACE2 (A549-ACE2, pro-
vided by O. Schwartz), using Lipofectamine
RNAiMAX reagent (Thermo Fisher). Briefly,

6 pmol of each siRNA pool were mixed with
0.25 ml RNAiMAX transfection reagent and
OptiMEM (Thermo Fisher) in a total volume
of 20 ml. After a 5 min incubation period, the
transfection mix was added to cells seeded in
a 96-well format. Twenty-four hours after trans-
fection, the cells were subjected to SARS-CoV-2
infection, as described in the section Viral
infection and quantification assay in A549-
ACE2 cells, or incubated for 72 hours to assess
cell viability using the CellTiter-Glo lumines-
cent viability assay according to the manufac-
turer’s protocol (Promega). Luminescence was
measured in a Tecan Infinity 2000 plate reader,
and percentage viability calculated relative to
untreated cells (100% viability) and cells lysed
with 20% ethanol or 4% formalin (0% viabil-
ity), included in each experiment.

Viral infection and quantification assay
in A549-ACE2 cells

Cells seeded in a 96-well format were inocu-
lated with a SARS-CoV-2 stock (BetaCoV/
France/IDF0372/2020 strain, generated and
propagated once in Vero E6 cells and a gift
from the National Reference Centre for Res-
piratory Viruses at Institut Pasteur, Paris, orig-
inally supplied through the European Virus
Archive goes Global platform) at aMOI of 0.1
PFU per cell. After a 1-hour incubation period
at 37°C, the virus inoculum was removed, and
replaced byDMEM containing 2% FBS (Gibco,
Thermo Fisher). Seventy-two hours postinfec-
tion, the cell culture supernatant was collec-
ted, heat inactivated at 95°C for 5 min, and
used for RT-qPCR analysis to quantify viral
genomes present in the supernatant. Briefly,
SARS-CoV-2–specific primers targeting the
N gene region: 5′-TAATCAGACAAGGAACT-
GATTA-3′ (forward) and 5′-CGAAGGTGTGA-
CTTCCATG-3′ (reverse) (57) were used with
the Luna Universal One-Step RT-qPCR Kit
(New England Biolabs) in an Applied Bio-
systems QuantStudio 6 thermocycler, with the
following cycling conditions: 55°C for 10 min,
95°C for 1 min, and 40 cycles of 95°C for 10 s,
followed by 60°C for 1 min. The number of
viral genomes is expressed as PFU equivalents
per milliliter, and was calculated by perform-
ing a standard curve with RNA derived from a
viral stock with a known viral titer.

Knockdown validation with RT-qPCR
in A549-ACE2 cells

Gene-specific qPCR primers targeting all genes
represented in the OnTargetPlus library were
purchased and arrayed in a 96-well format
identical to that of the siRNA library (IDT;
table S13). A549-ACE2 cells treated with siRNA
were lysed using the Luna Cell Ready Lysis
Module (New England Biolabs) following the
manufacturer’s protocol. The lysate was used
directly for gene quantification by RT-qPCR
with the Luna Universal One-Step RT-qPCR

Kit (New England Biolabs), using the gene-
specific PCR primers and glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) as a
housekeeping gene. The following cycling
conditions were used in an Applied Biosystems
QuantStudio 6 thermocycler: 55°C for 10 min,
95°C for 1 min, and 40 cycles of 95°C for 10 s,
followed by 60°C for 1 min. The fold change in
gene expression for each gene was derived
using the 2−DDCT, 2 (Delta Delta CT) method
(58), normalized to the constitutively expressed
housekeeping gene GAPDH. Relative changes
were generated comparing the control siRNA
knockdown transfected cells to the cells trans-
fected with each siRNA.

Single guide RNA selection for Cas9 knockout screen

Single guide RNAs (sgRNAs) were designed
according to Synthego’smultiguide gene knock-
out (59). Briefly, two or three sgRNAs are
bioinformatically designed to work in a co-
operative manner to generate small, knockout-
causing, fragment deletions in early exons (fig.
S18). These fragment deletions are larger than
standard indels generated from single guides.
The genomic repair patterns from amultiguide
approach are highly predictable on the basis of
the guide spacing and design constraints to
limit off-targets, resulting in a higher proba-
bility protein knockout phenotype (table S14).

sgRNA synthesis for Cas9 knockout screen

RNA oligonucleotides were chemically synthe-
sized on Synthego solid-phase synthesis plat-
form, using CPG solid support containing a
universal linker. 5-benzylthio-1H-tetrazole (BTT,
0.25 M solution in acetonitrile) was used for
coupling,[3-((dimethylamino-methylidene)amino)-
3H-1,2,4-dithiazole-3-thione (DDTT, 0.1 M so-
lution in pyridine)] was used for thiolation,
dichloroacetic acid (DCA, 3% solution in to-
luene) was used for detritylation. Modified
sgRNAwere chemically synthesized to contain
2′-O-methyl analogs and 3′ phosphorothioate
nucleotide interlinkages in the terminal three
nucleotides at both 5′ and 3′ ends of the RNA
molecule. After synthesis, oligonucleotides were
subject to a series of deprotection steps, fol-
lowed by purification by solid-phase extrac-
tion (SPE). Purified oligonucleotides were
analyzed by electrospray ionizationmass spec-
trometry (ESI-MS).

Arrayed knockout generation with Cas9-RNPs

For Caco-2 transfection, 10 pmol Streptococcus
Pyogenes NLS-Sp.Cas9-NLS (SpCas9) nuclease
(Aldevron; 9212) was combined with 30 pmol
total synthetic sgRNA (10 pmol each sgRNA,
Synthego) to form ribonucleoproteins (RNPs)
in 20 ml total volume with SF Buffer (Lonza
V5SC-2002) and allowed to complex at room
temperature for 10 min.
All cells were dissociated into single cells

using TrypLE Express (Gibco), resuspended in
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culture media and counted. 100,000 cells per
nucleofection reaction were pelleted by cen-
trifugation at 200 × g for 5 min. After centrifu-
gation, cells were resuspended in transfection
buffer according to cell type and diluted to 2 ×
104 cells/ml. Five ml of cell solution was added
to preformed RNP solution and gently mixed.
Nucleofections were performed on a Lonza HT
384-well nucleofector system (Lonza, #AAU-
1001) using program CM-150 for Caco-2. Im-
mediately after nucleofection, each reaction
was transferred to a tissue-culture treated 96-
well plate containing 100 ml of normal culture
media and seeded at a density of 50,000 cells
per well. Transfected cells were incubated
following standard protocols.

Quantification of arrayed knockout efficiency

Two days after nucleofection, genomic DNA
was extracted from cells using DNA Quick-
Extract (Lucigen, #QE09050). Briefly, cells were
lysed by removal of the spent media followed
by addition of 40 ml of QuickExtract solution to
each well. Once the QuickExtract DNA Extrac-
tion Solution was added, the cells were scraped
off the plate into the buffer. After transfer to
compatible plates, DNA extract was then in-
cubated at 68°C for 15min followed by 95°C for
10 min in a thermocycler before being stored
for downstream analysis.
Amplicons for indel analysis were generated

by PCR amplification with NEBNext polymer-
ase (NEB, #M0541) or AmpliTaq Gold 360 poly-
merase (Thermo Fisher Scientific, #4398881)
according to the manufacturer’s protocol. The
primers were designed to create amplicons
between 400 and 800 base pairs (bp), with both
primers at least 100 bp from any of the sgRNA
target sites (table S15). PCR products were
cleaned-up and analyzed by Sanger sequenc-
ing (Genewiz). Sanger data files and sgRNA
target sequences were input into Inference
of CRISPR Edits (ICE) analysis (ice.synthego.
com) to determine editing efficiency and to
quantify generated indels (60). Percentage of
alleles edited is expressed as an ice-d score.
This score is a measure of how discordant the
sanger trace is before versus after the edit. It is
a simple and robust estimate of editing effi-
ciency in a pool, especially suited to highly dis-
ruptive editing techniques like multiguide.

Identification of essential genes for siRNA and
Cas9 knockout screen

We used longitudinal imaging in A549 cells
to assess cell viability (fig. S18). For bench-
marking, relative cell viability was measured
by CellTiter-Glo Luminescent Cell Viability As-
say (Promega; G7571) as per manufacturer’s
instructions. Briefly, two passages postnucleo-
fection A549 siRNA pools cultured in 96-well
tissue-culture treated plates (Corning, #3595)
were lysed in the CellTIter-Glo reagent, by re-
moving spent media and adding 100 ml of the

CellTiter-Glo reagent containing the CellTiter-
Glo buffer and CellTiter-Glo Substrate. Cells
were placed on an orbital shaker for 2 min on
a SpectraMax iD5 (Molecular Devices) and
then incubated in the dark at room tempera-
ture for 10 min. Completely lysed cells were
pipette mixed and 25 ml were transferred to a
384-well assay plate (Corning, #3542). The
luminescence was recorded on a SpectraMax
iD5 (Molecular Devices) with an integration
time of 0.25 s per well. Luminescence readings
were all normalized to the without-sgRNA
control condition.
To determine cell viability in Caco-2 knock-

outs we used longitudinal imaging (fig. S18).
All gene knockout pools were maintained for
a minimum of six passages to determine the
effect of loss of protein function on cell fitness
before viral infection. Viability was determined
through longitudinal imaging and automated
image analysis using a Celigo Imaging Cytom-
eter (Celigo). Each gene knockout poolwas split
in triplicate wells on separate plates. Every day,
except the day of seeding, each well was scan-
ned and analyzed using built-in Confluence
imaging parameters using autoexposure and
autofocus with an offset of −45 mm. Analysis
was performed with standard settings except
for an intensity threshold setting of 8. Con-
fluency was averaged across three wells and
plotted over time. Viability genes were deter-
mined as pools that, after six passages, re-
mained <20% confluent 5 days after seeding.
Genes deemed essential were excluded from
the knockout screen.

Cells, virus, and infections for Caco-2 Cas9
knockout screen

Wild-type and CRISPR-edited Caco-2 cells were
grown at 37°C, 5% CO2 in DMEM, 10% FBS.
SARS-CoV-2 stocks were grown and titered on
Vero E6 cells as described previously (61). Wild-
type and CRISPR-edited Caco-2 cell lines were
infected with SARS-CoV-2 at a MOI of 0.01 in
DMEM supplemented with 2% FBS. Seventy-
two hours postinfection, supernatants were
harvested and stored at −80°C and the Caco-2
wild-type (WT) and CRISPR knockout (KO)
cells were fixed with 10% neutral buffered
formalin (NBF) for 1 hour at room temper-
ature to enable further analysis.

Focus-forming assay for Caco-2 Cas9 knockout screen

Vero E6 cells were plated into 96-well plates
at confluence (50,000 cells per well) in DMEM
supplemented with 10% heat-inactivated FBS
(Gibco). Before infection, supernatants from
infected Caco-2WT and CRISPRKO cells were
thawed and serially diluted from 10−1 to 10−8.
Growth media was removed from the Vero E6
cells and 40 ml of each virus dilution was
plated. After 1 hour of adsorption at 37°C, 5%
CO2, 40 ml of 2.4% microcrystalline cellulose
(MCC) overlay supplemented with DMEM

powdered media (Gibco) to a concentration
of 1x was added to each well of the 96-well
plate to achieve a final MCC overlay concen-
tration of 1.2%. Plates were then incubated
at 37°C, 5%CO2 for 24 hours. TheMCC overlay
was gently removed and cells were fixed with
10%NBF for 1 hour at room temperature. After
removal of NBF, monolayers were washed with
ultrapure water and ice-cold 100% methanol/
0.3% H2O2 was added for 30 min to permea-
bilize the cells and quench endogenous perox-
idase activity. Monolayers were then blocked
for 1 hour in PBS with 5% nonfat dry milk
(NFDM). After blocking, monolayers were in-
cubated with SARS-CoV N primary antibody
(Novus Biologicals; NB100-56576; 1:2000) for
1 hour at room temperature in PBS, 5%NFDM.
Monolayers were washed with PBS and in-
cubated with an HRP-conjugated secondary
antibody for 1 hour at room temperature in
PBS with 5% NFDM. Secondary antibody was
removed, monolayers were washed with PBS,
and then developed using TrueBlue substrate
(KPL) for 30 min. Plates were imaged on a
Bio-Rad Chemidoc utilizing a phosphorscreen
and foci were counted by eye to calculate focus-
forming units perml (FFU/ml) for each knock-
out. The original formalin-fixed Caco-2 WT
and CRISPR KO cells were stained with DAPI
(Thermo Scientific) and imaged on a Cytation
5-plate reader to determine cell viability. Wells
containing no cells were excluded from fur-
ther analyses.

Quantitative analysis and scoring of knockdown
and knockout library screens

Virus readout by qPCR (A549-ACE2, expressed
as plaque-forming units per milliliter) and
focus-forming assay readouts (Caco-2, focus-
forming units per milliliter) were processed
using the RNAither package (www.bioconductor.
org/packages/release/bioc/html/RNAither.html)
in the statistical computing environment R.
The two datasets were normalized separately,
using the following method. The readouts
were first log transformed (natural logarithm),
and robust z-scores [using median and MAD
(median absolute deviation) instead of mean
and standard deviation] were then calculated
for each 96-well plate separately. z-scores of
multiple replicates of the same perturbation
were averaged into a final z-score for presen-
tation in Fig. 5. No filtering was done on the
basis of differences in replicate z-scores, but all
replicate scores are individually listed in tables
S6 and S7. We suggest consulting the replicate
z-scores for all genes and perturbations of in-
terest. The A549-ACE2 siRNA screen includes
three replicates (or more) of each perturba-
tion, and the Caco-2 CRISPR screen includes
two replicates (or more) of each perturbation.
The results from the A549-ACE2 screen cover
all 332 screened genes (331 SARS-CoV-2 in-
teractors plus ACE2). The results from the
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Caco-2 screen cover 286 of the screened genes
plus ACE2. The remaining Caco-2 genes were
either deemed essential, failed editing, or
failed in the focus-forming assay.

Antiviral drug and cytotoxicity assays
(A549-ACE2 cells)

In total, 2500 A549-ACE2 cells were seeded
into 96- or 384-well plates in DMEM (10%
FBS) and incubated for 24 hours at 37°C, 5%
CO2. Two hours before infection, the media
was replaced with 120 ml (96-well format) or
50 ml (384-well format) of DMEM (2% FBS)
containing the compound of interest at the
indicated concentration. At the time of infec-
tion, the media was replaced with virus in-
oculum (MOI 0.1 PFU per cell) and incubated
for 1 hour at 37°C, 5% CO2. After the ad-
sorption period, the inoculum was removed,
replaced with 120 ml (96-well format) or 50 ml
(384-well format) of drug-containing media,
and cells were incubated for an additional
72 hours at 37°C, 5% CO2. At this point, the
cell culture supernatant was harvested, and
viral load was assessed by RT-qPCR (as de-
scribed in the section Viral infection and
quantification assay in A549-ACE2 cells).
Viability was assayed using the CellTiter-Glo
assay following the manufacturer’s protocol
(Promega). Luminescence was measured in a
Tecan Infinity 2000 plate reader, and percent-
age viability calculated relative to untreated
cells (100% viability) and cells lysed with 20%
ethanol or 4% formalin (0% viability), included
in each experiment.

Antiviral drug and cytotoxicity assays
(Vero E6 cells)

Viral growth and cytotoxicity assays in the
presence of inhibitors were performed as
previously described (5). In total, 2000 Vero
E6 cells were seeded into 96-well plates in
DMEM (10% FBS) and incubated for 24 hours
at 37°C, 5% CO2. Two hours before infection,
the medium was replaced with 100 ml of
DMEM (2% FBS) containing the compound
of interest at concentrations 50% greater
than those indicated, including a DMSO con-
trol. SARS-CoV-2 virus (100 PFU; MOI 0.025)
was added in 50 ml of DMEM (2% FBS), bring-
ing the final compound concentration to those
indicated. Plates were then incubated for
48 hours at 37°C. After infection, supernatants
were removed, and cells were fixed with 4%
formaldehyde for 24 hours before being re-
moved from the BSL3 facility. The cells were
then immunostained for the viral NP protein
(rabbit antisera produced in the Garcia-Sastre
laboratory; 1:10,000) with a DAPI counter-
stain. Infected cells (488 nm) and total
cells (DAPI) were quantified using a Celigo
(Nexcelcom) imaging cytometer. Infectivity is
measured by the accumulation of viral NP
protein in the nucleus of the cells (fluores-

cence accumulation). Percent infection was
quantified as {[(number of infected cells /
total cells) − background] × 100}, and the
DMSO control was then set to 100% infec-
tion for analysis. The IC50 and IC90 for each
experiment was determined using the Prism
(GraphPad Software) software. Cytotoxicity
measurements were performed using the
MTT assay (Roche), according to the manu-
facturer’s instructions. Cytotoxicity was per-
formed in uninfected Vero E6 cells with same
compound dilutions and concurrent with
viral replication assay. All assays were per-
formed in biologically independent triplicates.
Sourcing information for all drugs tested may
be found in table S10.

Coimmunoprecipitation assays for ORF9b
and Tom70

HEK293T and A549 cells were transfected
with the indicatedmammalian expression plas-
mids using Lipofectamine 2000 (Invitrogen)
andTransIT-X2 (Mirus Bio), respectively. Twenty-
four hours after transfection, cells were har-
vested and lysed in NP-40 lysis buffer [0.5%
Nonidet P 40 Substitute (NP-40; Fluka Ana-
lytical), 50mMTris-HCl, pH 7.4 at 4°C, 150mM
NaCl, 1 mM EDTA] supplemented with cOm-
plete mini EDTA-free protease and PhosSTOP
phosphatase inhibitor cocktails (Roche). Clari-
fied cell lysates were incubated with Streptac-
tin Sepharose beads (IBA) for 2 hours at 4°C,
followed by five washes with NP-40 lysis buf-
fer. Protein complexes were eluted in the SDS
loading buffer and were analyzed by Western
blotting with the indicated antibodies.

Quantification of Tom70 down-regulation in
HeLaM cells overexpressing ORF9b

HeLaM cells were transiently transfected with
plasmids encoding GFP-Strep, SARS-CoV-1
ORF9b-Strep, or SARS-CoV-2 ORF9b-Strep.
The next day, the cells were fixed using 4%
paraformaldehyde and immunostained with
antibodies against Strep tag, and Tom20 or
Tom70. Representative images for each con-
struct were captured by acquiring a single
optical section using aNikonA1 confocal fitted
with a CFI Plan Apochromat VC 60x oil ob-
jective (NA 1.4). For image quantification mul-
tiple fields of view were captured for each
construct using a CFI Super Plan Fluor ELWD
40x objective (NA 0.6). Themean fluorescent
intensity for Tom20 and Tom70 was mea-
sured by manually drawing a region of in-
terest around each cell using ImageJ. Between
30 and 60 cells were quantified for each
construct.

Quantification of Tom70 down-regulation in
infected Caco-2 cells

Caco-2 cells were seeded on glass coverslips
in triplicate and infected with SARS-CoV-2
at aMOI of 0.1 as described above. At 24 hours

postinfection, cells were fixed with 4% para-
formaldehyde and immunostained with anti-
bodies against Tom70, Tom20, and ORF9b.
For signal quantification images of nonin-
fected and neighboring infected cells were
acquired using a LSM800 confocal laser-
scanning microscope (Zeiss) equipped with a
63X, 1.4 NA oil objective and the Zen blue
software (Zeiss). Themean fluorescence inten-
sity of each cell was measured by ImageJ
software. Forty-three cells were quantified for
each condition—infected or noninfected—from
three independent experiments.

Coexpression and purification of ORF9b-Tom70
(residues 109 to end) complexes

SARS-CoV-2 ORF9b and Tom70 (residues 109
to end) were coexpressed using a pET29-b(+)
vector backbone where ORF9b was tag-less
and Tom70 had anN-terminal 10XHis-tag and
SUMO-tag. LOBSTR E. coli cells transformed
with the above construct were grown at 37°C
until they reached an optical density at 600 nm
(OD600) of 0.8, then expression was induced
at 37°C with 1 mM IPTG for 4 hours. Frozen
cell pellets were resuspended in 25 ml of lysis
buffer (200 mM NaCl, 50 mM Tris-HCl pH 8.0,
10% v/v glycerol, 2 mMMgCl2) per liter of cell
culture, supplementedwith cOmplete protease
inhibitor tablets (Roche), 1 mMphenylmethyl-
sulfonyl fluoride (PMSF) (Sigma), 100 mg/ml
lysozyme (Sigma), 5 mg/ml DNaseI (Sigma),
and then homogenized with an immersion
blender (Cuisinart). Cells were lysed by 3x pas-
sage through an Emulsiflex C3 cell disrup-
tor (Avestin) at ~103,000 kPa, and the lysate
clarified by ultracentrifugation at 100,000 × g
for 30 min at 4°C. The supernatant was col-
lected, supplemented with 20 mM imidazole,
loaded into a gravity flow column containing
Ni-NTA superflow resin (Qiagen), and rocked
with the resin at 4°C for 1 hour. After allow-
ing the column to drain, resin was rinsed
twice with 5 column volumes (cv) of wash
buffer [150 mMKCl, 30 mM Tris-HCl pH 8.0,
10% v/v glycerol, 20 mM imidazole, 0.5 mM
tris(hydroxypropyl)phosphine (THP, VWR)]
supplemented with 2 mM ATP (Sigma) and
4 mM MgCl2, then washed with 5 cv wash
buffer with 40mM imidazole. Resin was then
rinsed with 5 cv Buffer A (50 mMKCl, 30mM
Tris-HCl pH 8.0, 5% glycerol, 0.5 mM THP)
and protein was eluted with 2 × 2.5 cv Buffer A
plus 300mM imidazole. Elution fractions were
combined, supplemented with Ulp1 protease,
and rocked at 4°C for 2 hours. Ulp1-digested
Ni-NTA eluate was diluted 1:1 with additional
Buffer A, loaded into a 50 ml Superloop, and
applied to aMonoQ 10/100 column on an Äkta
pure system (GE Healthcare) using 100% Buf-
fer A, 0% Buffer B (1000mMKCl, 30mMTris-
HCl pH 8.0, 5% glycerol, 0.5 mM THP). The
MonoQ column was washed with 0 to 40%
Buffer B gradient over 15 cv, peak fractions
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were analyzed by SDS-PAGE and the identity
of tagless Tom70 (109 to end) and ORF9b pro-
teins confirmed by intact protein MS (Xevo
G2-XS Mass Spectrometer, Waters). Peak frac-
tions eluting at ~15% B contained relatively
pure Tom70 (109 to end) andORF9b, and these
were concentrated using 10 kDa Amicon cen-
trifugal filter (Millipore) and further purified
by size exclusion chromatography using a Sup-
erdex 200 increase 10/300 GL column (GE
Healthcare) in buffer containing 150 mM KCl,
20 mM HEPES-NaOH pH 7.5, 0.5 mM THP.
The sole size-exclusion peak contained both
Tom70 (109 to end) and ORF9b, and the cen-
ter fraction was used directly for cryo-EM grid
preparation.

Expression and purification of
SARS-CoV-2 ORF9b

ORF9bwith N-terminal 10XHis-tag and SUMO-
tag was expressed using a pET-29b(+) vector
backbone. LOBSTR E. coli cells transformed
with the above construct were grown at 37°C
until they reached an optical density at 600 nm
(OD600) of 0.8, then expression was induced at
37°C with 1 mM IPTG for 6 hours. Frozen cell
pellets were lysed, homogenized, clarified, and
subject to Ni affinity purification as described
above for ORF9b-Tom70 complexes, with sev-
eral small changes. Lysis buffers and Ni-NTA
wash buffers contained 500 mMNaCl, and an
additional wash step using 10 cv wash buffer
plus 0.2% TWEEN20 plus 500 mM NaCl was
carried out before the ATP wash. ORF9b was
eluted from Ni-NTA resin in Buffer A (50 mM
NaCl, 25 mM Tris pH 8.5, 5% glycerol, 0.5 mM
THP) supplemented with 300 mM imidazole.
This eluate was diluted 1:1 with additional
Buffer A, loaded into a 50 ml Superloop, and
applied to aMonoQ 10/100 column on anÄkta
pure system (GE Healthcare) using 100%
Buffer A, 0% Buffer B (1000 mM NaCl, 25mM
Tris-HCl pH 8.5, 5% glycerol, 0.5 mM THP).
The MonoQ column was washed with 0 to
40% Buffer B gradient over 15 cv, and rela-
tively pure ORF9b eluted at 20 to 25% Buffer
B, whereas ORF9b and contaminating pro-
teins eluted at 30 to 35% buffer B. Fractions
from these two peaks were combined and in-
cubated with Ulp1 and HRV3C proteases at
4°C for 2 hours, supplemented with 10 mM
imidazole, then thrice flowed back through
1 ml of Ni-NTA resin equilibrated with size-
exclusion buffer (as above) plus10 mM imid-
azole. The reverse-Ni purified sample was
concentrated using 10 kDaAmicon centrifugal
filter and then further purified by size exclu-
sion chromatography using a Superdex 200
increase 10/300 GL column.

Expression and purification of Tom70 (109-end)

Tom70 (109 to end) with N-terminal 10XHis-
tag and SUMO-tag and C terminus Spy-tag,
HRV-3C protease cleavage site, and eGFP-tag

was expressed using a pET-21(+) vector back-
bone. LOBSTR E. coli cells transformed with
the above construct were grown at 37°C until
they reached an optical density at 600 nm
(OD600) of 0.8, then expression was induced
at 16°C with 0.5 mM IPTG overnight. The
soluble domain of Tom70 [Tom70 (109-end)]
was purified as described in (62) with some
modifications. Frozen cell pellets of LOBSTR
E. coli transformed with the above construct
were resuspended in 50ml lysis buffer (500mM
NaCl, 20 mM KH2PO4 pH 7.5) per liter cell cul-
ture, supplemented with 1 mM PMSF (Sigma)
and 100 mg/ml, and homogenized. Cells were
lysed by 3x passage through an Emulsiflex C3
cell disruptor (Avestin) at ~103,000 kPa, and
the lysate clarified by ultracentrifugation at
100,000 × g for 30 min at 4°C. The superna-
tant was collected, supplemented with 20mM
imidazole, loaded into a gravity flow column
containing Ni-NTA superflow resin (Qiagen),
and rocked with the resin at 4°C for 1 hour.
After allowing the column to drain, resin was
rinsed twice with 5 column volumes (cv) of
wash buffer (500 mM KCl, 20 mM KH2PO4

pH 8.0, 20 mM imidazole, 0.5 mM THP) sup-
plemented with 2 mM ATP (Sigma) and 4 mM
MgCl2, then washed with 5 cv wash buffer with
40 mM imidazole. Bound Tom70 (109 to end)
was then cleaved from the resin by 2-hour in-
cubation with Ulp1 protease in 4 cv elution
buffer (150 mMKCl, 20 mMKH2PO4 pH 8.0,
5 mM imidazole, 0.5 mM THP). After cleav-
age with Ulp1, the flow through was collected
along with a 2-cv rinse of the resin with ad-
ditional elution buffer. These fractions were
combined and HRV3C protease was added
to remove the C-terminal EGFP tag (1:20
HRV3C to Tom70). After 2-hour HRV3C di-
gestion at 4°C, the double-digested Tom70
(109 to end) was concentrated using a 30 kDa
Amicon centrifugal filter (Millipore) and further
purified by size exclusion chromatography
using a Superdex 200 increase 10/300 GL
column (GE Healthcare) in buffer containing
150 mM KCl, 20 mM HEPES-NaOH pH 7.5,
0.5 mM THP.

Prediction of SARS-CoV-2 ORF9b internal
mitochondrial targeting sequence

ORF9b was analyzed for the presence of an
internal mitochondrial targeting sequence
(i-MTS) as described in (63) using the TargetP-
2.0 server (64). Sequences corresponding to
ORF9b N-terminal truncations of 0 to 62 resi-
dues were submitted to the TargetP-2.0 server,
and the probability of the peptides containing
an MTS plotted against the numbers of resi-
dues truncated. A similar analysis using the
MitoFates server (65) predicted that ORF9b
residues 54 to 63 were the most likely to make
up a presequence MTS on the basis of their
propensity to formapositively charged amphi-
pathic helix. Notably this analysis was con-

sistent with the secondary structure prediction
from JPRED (66).

Cryo-EM sample preparation and data collection

Three ml ofORF9b-Tom70 complex (12.5 mM)was
added to a 400 mesh 1.2/1.3R Au Quantifoil
grid previously glow discharged at 15 mA for
30 s. Blotting was performed with a blot force
of 0 for 5 s at 4°C and 100% humidity in a FEI
VitrobotMark IV (ThermoFisher) before plunge
freezing into liquid ethane. A total of 1534
118-frame super-resolutionmovies were collected
with a 3 by 3 image-shift collection strategy at
a nominal magnification of 105,000x (physical
pixel size: 0.834 Å per pixel) on a Titan Krios
(ThermoFisher) equipped with a K3 camera and
aBioquantum energy filter (Gatan) set to a slit
width of 20 eV. Collection dose rate was 8 elec-
trons per pixel per second for a total dose of 66
electronsper squareangstrom.Defocus rangewas
−0.7 to −2.4 mm. Each collection was performed
with semiautomated scripts in SerialEM (67).

Cryo-EM image processing and model building

We motion corrected 1534 movies using
Motioncor2 (68), andwe imported dose-weighted
summed micrographs in cryosparc (version
2.15.0). Then, 1427 micrographs were curated
on the basis of contrast transfer function
(CTF) fit (better than 5 Å) from a patch CTF
job. Template-based particle picking resulted
in 2,805,121 particles, and 1,616,691 particles
were selected after 2D classification. Five
rounds of 3D classification using multiclass
ab initio reconstruction and heterogeneous
refinement yielded 178,373 particles. Homo-
geneous refinement of these final particles led
to a 3.1-Å electron density map which was used
for model building. The reconstruction was fil-
tered by the masked Fourier shell correlation
(FSC) and sharpened with a b-factor of −145.
To build the model of Tom70 (109 to end),

the crystal structure of Saccharomyces cerevisiae
Tom71 (PDB ID: 3fp3; sequence identity 25.7%)
was first fit into the cryo-EM density as a rigid
body inUCSF ChimeraX and then relaxed into
the final density using Rosetta FastRelaxmover
in torsion space. Thismodel, alongwith a BLAST
alignment of the two sequences (69), was used as
a starting point for manual building using COOT
(70). After initial building by hand, the regions
with poor density fit or geometry were itera-
tively rebuilt using Rosetta (71). ORF9b was
built de novo into the final density using COOT,
informed and facilitated by the predictions of
the TargetP-2.0, MitoFates, and JPRED servers.
The ORF9b-Tom70 complex model was sub-
mitted to the Namdinator web server (72) and
further refined in ISOLDE 1.0 (73) using the
plugin for UCSF ChimeraX (74). Final model
b-factorswereestimatedusingRosetta.Themodel
was validated using phenix.validation_cryoem
(75). The final model contains residues 109 to
272 and 298 to 600 of human Tom70 and 39
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to 76 of SARS-CoV-2 ORF9b. Molecular inter-
face between ORF9b and Tom70was analyzed
using the PISA web server (76). Figures were
prepared using UCSF ChimeraX.

Computational human genetics analysis

To look for genetic variants associated with our
list of proteins that had a meaningful impact
on SARS-CoV-2 replication, we used the largest
proteomic GWAS study to date (28). We identi-
fied IL17RA as one of the proteins assayed in
Sun et al.’s proteomic GWAS and observed that
it had multiple cis-acting protein quantitative
trait loci (pQTLs) at a corrected P value of 1 ×
10−5, where cis-acting is defined as within 1Mb
of the transcription start site of IL17RA.
We used the GSMRmethod (29) to perform

Mendelian randomization (MR) using near-
independent [linkage disequilibrium (LD) R2 =
0.05, where R2 is the coefficient of determi-
nation] cis-pQTLs for IL17RA. The advantage
of the GSMR method over conventional MR
methods is twofold. First, GSMR performsMR
adjusting for any residual correlation between
selected genetic variants by default. Second,
GSMR has a built-in method called HEIDI
(heterogeneity in dependent instruments)–
outlier that performs heterogeneity tests in
the near-independent genetic instruments and
removes potentially pleiotropic instruments
(i.e., where there is evidence of heterogeneity
at P < 0.01). Details of the GSMR and HEIDI
method have been published previously (29).
Summary statistics generated by COVID-

HGI (round 3; www.covid19hg.org/results/)
for COVID-19 versus population, hospitalized
COVID-19 versus population and hospitalized
COVID-19 versus nonhospitalized COVID-19
were used for IL17RA MR analysis. We used
the 1000 genomes phase 3 European popula-
tion genotype data to derive the LD correlation
matrix for this analysis. The phenotype defini-
tions as provided byCOVID-HGI are as follows.
COVID-19 versus population: Case, individuals
with laboratory confirmation of SARS-CoV-2
infection, EHR/ICD coding/Physician-confirmed
COVID-19, or self-reported COVID-19 positive;
control, everybody that is not a case. Hospi-
talized COVID-19 versus population: case, hos-
pitalized, laboratory confirmed SARS-CoV-2
infection or hospitalization due to COVID-
19-related symptoms; control, everybody that
is not a case, e.g., population. Hospitalized
COVID-19 versus nonhospitalized COVID-19:
case, hospitalized, laboratory confirmed SARS-
CoV-2 infection or hospitalization due to
COVID-19-related symptoms; control, labora-
tory confirmed SARS-CoV-2 infection and not
hospitalized 21 days after the test.

Infections and treatments for IL-17A
treatment studies

TheWA-1 strain (BEI resources) of SARS-CoV-2
was used for all experiments. All live virus

experiments were performed in a BSL3 labo-
ratory. SARS-CoV-2 stocks were passaged in
Vero E6 cells (ATCC) and titer was determined
via plaque assay on Vero E6 cells as previously
described (77). Briefly, virus was diluted 1:102

to 1:106 and incubated for 1 hour on Vero E6
cells before an overlay of Avicel and complete
DMEM (Sigma Aldrich, SLM-241) was added.
After incubation at 37°C for 72 hours, the
overlay was removed and cells were fixed with
10% formalin, stained with crystal violet, and
counted for plaque formation. SARS-CoV-2 in-
fections of A549-ACE2 cells were done at a
MOI of 0.05 for 24 hours. Inhibitors and cyto-
kines were added concurrently with virus. All
infectionswere done in technical triplicate. Cells
were treated with the following compounds:
Remdesivir (SELLECKCHEMICALSLLC, S8932)
and IL-17A (Millipore-Sigma, SRP0675).

RNA extraction, RT, and RT-qPCR for IL-17A
treatment studies

Total RNA from samples was extracted using
the Direct-zol RNA kit (Zymogen, R2060)
and quantified using the NanoDrop 2000c
(ThermoFisher). cDNA was generated using
500 ng of RNA from infected A549-ACE2 cells
with Superscript III reverse transcription
(ThermoFisher, 18080-044) and oligo(dT)12-18
(ThermoFisher, 18418-012) and random hexa-
mer primers (ThermoFisher, S0142). RT-qPCR
reactions were performed on a CFX384 (BioRad)
and delta cycle threshold (DCt) was deter-
mined relative to RPL13A levels. Viral detection
levels and target host genes in treated samples
were normalized to water-treated controls. The
SYBRgreen qPCR reactions contained 5 ml of 2x
Maxima SYBR green/Rox qPCR Master Mix
(ThermoFisher; K0221), 2 ml of diluted cDNA,
and 1 nmol of both forward and reverse pri-
mers, in a total volume of 10 ml. The reactions
were run as follows: 50°C for 2 min and 95°C
for 10 min, followed by 40 cycles of 95°C for 5 s
and 62°C for 30 s. Primer efficiencies were
~100%. Dissociation curve analysis after the
end of the PCR confirmed the presence of a
single and specific product. RT-qPCR primers
were used against the SARS-CoV-2 E gene
(PF_042_nCoV_E_F: ACAGGTACGTTAATAGT-
TAATAGCGT; PF_042_nCoV_E_R: ATATTG-
CAGCAGTACGCACACA), the CXCL8 gene
(CXCL8 For: ACTGAGAGTGATTGAGAGTG-
GAC; CXCL8 Rev: AACCCTCTGCACCCAGTT-
TTC), and the RPL13A gene (RPL13A For:
CCTGGAGGAGAAGAGGAAAGAGA; RPL13A
Rev: TTGAGGACCTCTGTGTATTTGTCAA).

Transfections for IL-17A treatment studies

HEK293T cells were seeded 5 × 105cells per
well (in 6-well plate) or 3 × 106 cells per 10-cm2

plates. The next day, 2 or 10 mg of plasmidswas
transfected using X-tremeGENE 9 DNA Trans-
fection Reagent (Roche) in 6-well plate or
10-cm2 plates, respectively. For IL-17A (Millipore-

Sigma, SRP0675) incubation in cells, 0.5 mg of
IL-17A was treated either before or after trans-
fection and incubated at 37°C. After 48 hours,
cells were collected by trypsinization. For
IL-17A incubation with cell lysates, transfected
cell lysates were incubated in the presence
of 0.5 or 5 mg/ml IL-17A at 4°C on a rotator
overnight. Plasmids pLVX-EF1alpha–SARS-CoV-
2–orf8-2xStrep-IRES-Puro (ORF8) and pLVX-
EF1alpha-eGFP-2xStrep-IRES-Puro (EGFP-Strep)
were a gift fromN. J. Krogan. (Addgene plasmid
#141390, 141395) (5). pLVX-EF1alpha- IRES-Puro
(Vector) was obtained from Takara/Clontech.

SARS-CoV-2 ORF8 and IL17RA
coimmunoprecipitation

Transfected and treated HEK293T cells were
pelleted and washed in cold D-PBS and later
resuspended in Flag-IP Buffer (50 mM Tris
HCl, pH 7.4, with 150 mM NaCl, 1 mM EDTA,
and 1% NP-40) with 1x HALT (ThermoFisher
Scientific, 78429), incubated with buffer for
15 min on ice then centrifuged at 13,000 rpm
for 5 min. The supernatant was collected and
1 mg of protein was used for immunoprecipi-
tation (IP) with 100 ml of Streptactin Sepharose
(IBA, 2-1201-010) on a rotor overnight at 4°C.
Immunoprecipitates were washed five times
with Flag-IP buffer and eluted with 1x Buffer E
(100 mM Tris-Cl, 150 mM NaCl, 1 mM EDTA,
2.5mMDesthiobiotin). Eluate was dilutedwith
1x-NuPAGE (ThermoFisher Scientific, #NP0008)
LDS SampleBuffer with 2.5% b-Mercaptoethanol
and blotted for targeted antibodies. Antibodies
usedwere Strep tag II (Qiagen, #34850), B-Actin
(Sigma, #A5316), and IL17RA (Cell Signaling,
#12661S).

Computational docking of PGES-2 and Nsp7

A model for human PGES-2 dimer was con-
structed by homology using MODELER (78)
from the crystal structure ofMacaca fascularis
mPGES-2 [PDB ID: 1Z9H (79); 98% sequence
identity] bound to indomethacin. Indomethacin
was removed from the structure utilized for
docking. The structure of SARS-CoV-2 Nsp7
was extracted from PDB ID 7BV2 (80). Dock-
ing models were produced using ClusPro
(81), ZDock (82), HDock (83), Gramm-X (84),
SwarmDock (85), and PatchDock (86) with
SOAP-PP score (87). For each protocol, up to
100 top scoring models were extracted (fewer
for those that do not report >100 models); for
PatchDock, models with SOAP-PP z-scores
>3.0 were used (fig. S23A). The 420 models
were clustered at 4.0-Å RMSD, resulting in
127 clusters. The two largest clusters, composed
of 192 models, are related by dimer symmetry.
All other clusters contain <15 models.

Assessment of positive selection signatures
in SIGMAR1

SIGMAR1 protein alignments were generated
fromwhole-genome sequences of 359mammals
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curated by the Zoonomia consortium. Pro-
tein alignments were generated with TOGA
(https://github.com/hillerlab/TOGA), and miss-
ing sequence gaps were refined with CACTUS
(88, 89). Branches undergoing positive selec-
tion were detected with the branch-site test
aBSREL (90) implemented in the HyPhy pack-
age (90, 91). PhyloP was used to detect codons
undergoing accelerated evolution along branches
detected as undergoing positive selection by
aBSREL relative to the neutral evolution rate
in mammals, determined using phyloFit on
third nucleotide positions of codons which
are assumed to evolve neutrally. P values from
phyloP were corrected for multiple tests using
the Benjamini-Hochbergmethod (92). PhyloFit
and phyloP are both part of the PHAST pack-
age version 1.4 (93, 94).

Comparative SARS-CoV-1 inhibition
by amiodarone

SARS-CoV-1 (Urbani)drugscreenswereperformed
with Vero E6 cells (ATCC #1568, Manassas,
VA) cultured in DMEM (Quality Biological),
supplemented with 10% (v/v) heat-inactivated
FBS (Sigma), 1% (v/v) penicillin-streptomycin
(GeminiBio-products), and 1% (v/v) L-glutamine
(2 mM final concentration, Gibco). Cells were
plated in opaque 96-well plates 1 day before
infection. Drugs were diluted from stock to
50 mM and an 8-point 1:2 dilution series pre-
pared in duplicate in Vero Media. Every com-
pound dilution and control were normalized
to contain the same concentration of drug ve-
hicle (e.g., DMSO). Cells were pretreated with
drug for 2 hours at 37°C (5% CO2) before in-
fection with SARS-CoV-1 at MOI 0.01. In addi-
tion to plates that were infected, parallel plates
were left uninfected to monitor cytotoxicity
of drug alone. All plates were incubated at
37°C (5% CO2) for 3 days before performing
CellTiter-Glo (CTG) assays as per the manu-
facturer’s instruction (Promega,Madison,WI).
Luminescence was read on a BioTek Synergy
HTX plate reader (BioTek Instruments Inc.,
Winooski, VT) using the Gen5 software (version
7.07, Biotek Instruments Inc., Winooski, VT).

Real-world data source and analysis

This study used deidentified patient-level re-
cords fromHealthVerity’sMarketplace dataset,
a nationally representative dataset covering
>300 million patients with medical and phar-
macy records from >60 health care data sources
in the United States. The current study used
data from 738,933 patients with documented
COVID-19 infection between 1 March 2020
and 17 August 2020, defined as a positive or
presumptive positive viral laboratory test result
or an International Classification of Diseases,
10th Revision, Clinical Modification (ICD-10-
CM) diagnosis code of U07.1 (COVID-19).
For this population, we analyzed medical

claims, pharmacy claims, laboratory data, and

hospital chargemaster data containing diag-
noses, procedures, medications, and COVID-
19 laboratory results from both inpatient and
outpatient settings. Claims data included open
(unadjudicated) claims sourced in near-real
time from practice management and billing
systems, claims clearinghouses, and labora-
tory chains, as well as closed (adjudicated)
claims encompassing all major U.S. payer types
(commercial, Medicare, and Medicaid). For
inpatient treatment evaluations, we used linked
hospital chargemaster data containing records
of all billable procedures, medical services, and
treatments administered in hospital settings.
Linkage of patient-level records across these
data types provides a longitudinal view of base-
line health status, medication use, and COVID-19
progression for each patient under study. Data
for this study covered the period of 1December
2018 through 17 August 2020. All analyses
were conducted with the Aetion Evidence Plat-
form version r4.6.
This study was approved by the NewEngland

institutional review board (IRB) (no. 1-9757-1).
Medical records constitute protected health in-
formation and can be made available to qua-
lified individuals on reasonable request.

Observation of hospitalization outcomes
in outpatient new users of indomethacin
(treatment arm) versus celecoxib (active
comparator) using real-world data

We used an incident (new) user, active com-
parator design (95, 96) to assess the risk of hos-
pitalization among newly diagnosed COVID-19
patients who were subsequently treated with
indomethacin or the comparator agent, cele-
coxib. Patients were required to have COVID-19
infection recorded in an outpatient setting
during the study period of 1 March 2020 to
17 August 2020 and occurring in the 21 days
before (and including) thedate of indomethacin
or celecoxib treatment initiation. Prevalent
users of prescription-only NSAIDs (any prescript-
ion fill for indomethacin, celecoxib, ketoprofen,
meloxicam, sulindac, or piroxicam 60 days
prior) and patients hospitalized in the 21 days
before and including the date of treatment
initiation were excluded from this analysis.
Using RSS, patients treated with indometh-

acin were matched at a 1:1 ratio to controls
randomly selected among patients treatedwith
celecoxib, with direct matching on calendar
date of treatment (±7 days), age (±5 years), sex,
Charlson comorbidity index (exact) (97), time
since confirmed COVID-19 (±5 days), and dis-
ease severity based on the highest-intensity
COVID-19–related health service in the 7 days
before and including the date of treatment
initiation (laboratory service only versus out-
patientmedical visit versus emergency depart-
ment visit) and symptom profile in the 21 days
before and including the date of treatment
initiation (recorded symptoms versus none).

This risk-set–sampled population was further
matched on a PS (33) estimated using logistic
regression with 24 demographic and clinical
risk factors, including covariates related to
baseline medical history and COVID-19 sever-
ity in the 21 days before treatment (table S11).
Balance between indomethacin and celecoxib
treatment groups was evaluated by compari-
son of absolute standardized differences in
covariates, with an absolute standardized dif-
ference of <0.2 indicating good balance be-
tween the treatment groups (98).
The primary analysis was an intention-to-

treat design, with follow-up beginning 1 day
after indomethacin or celecoxib initiation and
ending on the earliest occurrence of 30 days of
follow-up reached or end of patient data. ORs
for the primary outcome of all-cause inpatient
hospitalization were estimated for the RSS-
plus-PS–matched population as well as for the
RSS-matched population. Our primary out-
come definition required a record of inpatient
hospital admission with a resulting inpatient
stay; as a sensitivity, a broader outcome de-
finition captured any hospital visit (defined
with revenue and place of service codes).

Observation of mechanical ventilation outcomes
in inpatient new users of typical antipsychotics
(treatment arm) versus atypical antipsychotics
(active comparator) using real-world data

We used an incident user, active comparator
design (95, 96) to assess the risk of mechani-
cal ventilation among hospitalized COVID-19
patients treated with typical or atypical anti-
psychotics in an inpatient setting. See table S11
for a list of drugs included in each category. To
permit assessment of day-level in-hospital con-
founders and outcomes, this analysis was re-
stricted to hospitalized patients observable in
hospital chargemaster data. Prevalent users of
typical or atypical antipsychotics (any prescript-
ion fill or chargemaster-documented use in
60 days prior) and patients with evidence of
mechanical ventilation in the 21 days before
and including the date of treatment initia-
tion were excluded from this analysis.
Using RSS, hospitalized patients treated

with typical antipsychotics were matched at a
1:1 ratio to controls randomly selected among
patients treated with atypical antipsychotics,
with direct matching (1:1 fixed ratio) on calen-
dar date of treatment (±7 days), age (±5 years),
sex, Charlson comorbidity index (exact) (97),
time since hospital admission, and disease
severity as defined with a simplified version
of the World Health Organization’s ordinal
scale for clinical improvement (99). This risk-
set–sampled population was further matched
on a PS estimated using logistic regression
with 36 demographic and clinical risk factors,
including covariates related to baseline med-
ical history, admitting status, and disease sev-
erity at treatment (table S11). Balance between
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typical and atypical treatment groups was
evaluated by comparison of absolute stand-
ardized differences in covariates, with an ab-
solute standardized difference of <0.2 indicating
goodbalance between the treatment groups (98).
The primary analysis was an intention-to-

treat design, with follow up beginning 1 day
after the date of typical or atypical antipsy-
chotic treatment initiation and ending on the
earliest occurrence of 30 days of follow-up
reached, discharge from hospital, or end of
patient data. ORs for the primary outcome of
inpatientmechanical ventilationwere estimated
for the RSS-plus-PS–matched population as well
as for the RSS-matched population.
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how targeting host factors may be relevant to clinical outcomes.
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