
HAL Id: hal-03049400
https://hal.science/hal-03049400

Submitted on 9 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simplitigs as an efficient and scalable representation of
de Bruijn graphs

Karel Brinda, Michael Baym, Gregory Kucherov

To cite this version:
Karel Brinda, Michael Baym, Gregory Kucherov. Simplitigs as an efficient and scalable representation
of de Bruijn graphs. Genome Biology, 2021, 22 (96), �10.1101/2020.01.12.903443�. �hal-03049400�

https://hal.science/hal-03049400
https://hal.archives-ouvertes.fr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Simplitigs as an efficient and scalable representation

of de Bruijn graphs

Karel Břinda 1,2,* , Michael Baym 1,$, and Gregory Kucherov 3,4,$

1 Department of Biomedical Informatics, Harvard Medical School, Boston, USA

2 Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public

Health, Boston, USA

3 CNRS/LIGM Univ Gustave Eiffel, Marne-la-Vallée, France

4 Skolkovo Institute of Science and Technology, Moscow, Russia

* The corresponding author: karel.brinda@hms.harvard.edu

$ These authors contributed equally to this work

Abstract

De Bruijn graphs play an essential role in computational biology. However, despite their widespread use, they lack a

universal scalable representation suitable for different types of genomic data sets. Here, we introduce simplitigs as a

compact, efficient and scalable representation and present a fast algorithm for their computation. On examples of

several model organisms and two bacterial pan-genomes, we show that, compared to the best existing

representation, simplitigs provide a substantial improvement in the cumulative sequence length and their number,

especially for graphs with many branching nodes. We demonstrate that this improvement is amplified with more

data available. Combined with the commonly used Burrows-Wheeler Transform index of genomic sequences,

simplitigs substantially reduce both memory and index loading and query times, as illustrated with large-scale

examples of GenBank bacterial pan-genomes.

Keywords

Sequence analysis, de Bruijn graphs, -mers, representation, scaling k

1

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

mailto:karel.brinda@hms.harvard.edu
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Background

Advances in DNA sequencing started the golden age of biology when previously unobservable phenomena can be

studied on an unprecedented scale. However, sequencing capacity has been growing faster than computer

performance and memory, and also faster than available human resources. Today large amounts of sequence data

are available. Consequently, traditional sequence-based representations and sequence alignment-based techniques

[1–3] have become less suitable for real-life scenarios due to the space- and time-complexities they impose and

their inefficiency in handling polymorphisms.

De Bruijn graphs provide an elegant solution for genomic data representation. They build on top of the concept of k

-mers, which are substrings of a fixed length of the genomic strings to be represented, such as sequencing reads, k

genomes, or transcriptomes. For a given -mer set, the corresponding de Bruijn graph is a directed graph with the k

-mers being vertices and long overlaps between pairs of these -mers indicating edges (Methods). There is k k ­ 1 k

an obvious correspondence between -mer sets and de Bruijn graphs, and we can use both terms interchangeably. k

If is chosen appropriately, de Bruijn graphs capture substantial information about the sequenced molecules as k

these correspond to some walks in the graph.

The use of de Bruijn graphs is ubiquitous in sequence analysis. Genome assembly uses the property that sequenced

molecules form paths [4–6] , which is exploited in numerous modern assemblers [7–12] . On the other hand,

alignment-free sequence comparison follows the idea that similar sequences share common -mers, and k

comparing de Bruijn graphs provides thus a good measure of sequence similarity [13] . This involves applications of

de Bruijn graphs to variant calling and genotyping [14–18] , transcript abundance estimation [19] , and metagenomic

classification [20–23] . In the latter application, -mer-based classifiers perform best among all classifiers in k

inferring abundance profiles [24] , which suggests that de Bruijn graphs truthfully approximate the graph structures

of bacterial pan-genomes, even if constructed from noisy assemblies from incomplete databases. Even if more

advanced pan-genome graph representations are available, such as variation graphs [25] , de Bruijn graphs with

large -mer lengths are still useful for indexing [26,27] . k

2

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/aDDI+tlA1+ClF9
https://paperpile.com/c/48fmZz/k6Xg+l2lo+DR3C
https://paperpile.com/c/48fmZz/wa8D+f114+n3EN+KwNc+qsyT+jtmK
https://paperpile.com/c/48fmZz/IRdH
https://paperpile.com/c/48fmZz/ffj7+wIsb+MBTq+iwn2+pJaP
https://paperpile.com/c/48fmZz/NYvU
https://paperpile.com/c/48fmZz/EZCt+Ub1O+hGKh+mCvz
https://paperpile.com/c/48fmZz/E1LI
https://paperpile.com/c/48fmZz/g57j
https://paperpile.com/c/48fmZz/eEI3+8hgJ
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

As de Bruijn graphs are one of the primary data structures in much of sequence analysis, the efficiency of many

algorithms is directly tied to the efficiency of computation and representation of the graph. De Bruijn graphs can be

readily computed through a scan of the datasets including the raw reads, genomes or multiple sequence files. In

practice, such a scan often consists in -mer counting as this allows efficient denoising of the graph, e.g., by k

removing low-frequency -mers corresponding to sequencing errors in the reads. Algorithms for -mer counting k k

have been extensively studied and many well-engineered software solutions are available [28–36] .

On the other hand, de Bruijn graph representations have received much less attention. The most commonly used

representation are unitigs, which are strings resulting from compaction of -mers along maximal paths with k

non-branching nodes [37,38] . Unitigs have many advantages: the representation is “textual”, in the form of a set of

sequences that contain each -mer exactly once while preserving graph topology. However, unitigs impose large k

resource overhead for many types of de Bruijn graphs and do not scale well when a lot of variation is included.

Specifically, with a high proportion of branching nodes, unitigs become fragmented, in an extreme case up to the

level of individual -mers. Subsequently, unitig computation and storage may require inappropriately large k

resources and become prohibitive in variation-heavy applications, e.g., in bacterial pan-genomics.

In this paper, we propose simplitigs as a compact, efficient and scalable representation of de Bruijn graphs.

Simplitigs generalize the unitig representation by relaxing the restriction of stopping at branching nodes. We

present an algorithm for rapid simplitig computation from a -mer set and implement it in a tool called ProphAsm. k

ProphAsm proceeds by loading a -mer set into memory and a greedy enumeration of maximal vertex-disjoint k

paths in the associated de Bruijn graph. We use ProphAsm to evaluate the improvement of simplitigs over unitigs,

in terms of two main characteristics: the cumulative sequence length (CL) and the number of sequences (NS). We

demonstrate that greedily computed simplitigs are close to theoretical bounds in practical applications and provide,

compared to unitigs, a substantial improvement in memory requirements and speed in applications such as -mer k

matching.

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/Hxfr+ZWYX+8drX+RPNu+rm21+KGPT+Xifa+HAIy+f7AB
https://paperpile.com/c/48fmZz/jhyi+BWOb
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

Results

The concept of simplitigs

We developed the concept of simplitigs to efficiently represent de Bruijn graphs of sequence data (Fig. 1).

Simplitigs are a generalization of unitigs and correspond to spellings of vertex-disjoint paths covering a given de

Bruijn graph (Fig. 1a , Methods). Consequently, maximal simplitigs are such simplitigs where no two simplitigs can

be merged by a overlap (Methods). Note that unitigs and -mers are also simplitigs, but not maximal in k) (­ 1 k

general (Fig. 1b). The main conceptual difference between maximal simplitigs and maximal unitigs is that

simplitigs are not limited by branching nodes, which allows for further compaction, with a benefit increasing

proportionally to the amount of branching nodes in the graph.

To compare simplitig and unitig representations, we created a benchmarking procedure based on the two

characteristics: the number of sequences (NS) and their cumulative length (CL) (Methods, example in Fig. 2).

While NS determines the number of records to be kept in memory, CL largely determines the total memory needed.

NS and CL are readily bounded from below by one and by the number of -mers, respectively, and they are also k

tightly connected ((eq 1) in Methods). As every step of compaction decreases both NS and CL (Fig. 1b , Methods),

we can optimize them jointly. However, finding an optimal simplitig representation translates to the vertex disjoint

path coverage problem. While NP-hard for general graphs (by reduction from the well-known NP-hard problem of

computing a Hamiltonian path), the problem may be tractable for observed de Bruijn graphs (Methods).

Since practical applications do not require optimal simplitigs, we prioritized speed and designed a greedy algorithm

for their rapid computation (Alg. 1 , Methods). In an iterative fashion, the algorithm selects an arbitrary -mer as a k

seed of a new simplitig and keeps extending it forwards and then backwards as long as possible, while removing the

already used -mers from the set. This process is repeated until all -mers are covered. Loading -mers into k k k

memory and simplitig computation are linear in the length of the input and the number of -mers, respectively, k

4

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

99

100

101

102

103

104

105

106

107

108

109

110

111

112

and the memory footprint is linear in the number of -mers. We implemented Alg. 1 in a program called k

ProphAsm, available at https://github.com/prophyle/prophasm .

Fig. 1 Overview of the simplitig approach. a Textual representations of -mer sets ordered by the degree of k

compaction: individual -mers, maximal unitigs, and maximal simplitigs. Every component of a simplitig subgraph k

(black arrows) of the de Bruijn graph (all arrows) corresponds to a path, and its spelling constitutes a simplitig

(Methods). b Scheme of all possible simplitig representations according to the degree of compaction. While unitigs

(dark gray area) correspond to compaction along non-branching nodes in the associated de Bruijn graph, simplitigs

(gray area) can also contain branching nodes. Every step of compaction decreases the number of sequences (NS)

and their cumulative length (CL) by and by , respectively. Maximal simplitigs may not be determined 1 k ­ 1

uniquely; the simplitig representation can have multiple local optima, depending on which edges were selected at

the branching nodes. c The workflow of simplitigs. Simplitigs represent de Bruijn graphs and carry implicitly the

same information as unitigs. De Bruijn graphs are usually computed from either assemblies or weighted de Bruijn

graphs. Weighted de Bruijn graphs are typically obtained by -mer counting and allow removing noise, e.g., k

5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://github.com/prophyle/prophasm
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

low-frequency -mers, which frequently originate in sequencing errors. k

Alg. 1 Greedy computation of maximal simplitigs for a -mer set or a de Bruijn graph. In an iterative fashion, the k

algorithm draws a -mer from the set of canonical -mers , uses it as a seed of a new simplitig, and then keeps k k K

extending the simplitig forwards as long as possible, and then backwards, while removing the already used

canonical -mers from . k K

Function extend_simplitig_forwards (K, simplitig):

extending = True

while extending:

extending = False

q = suffix (simplitig, k-1),

for x in [‘A’, ‘C’, ‘G’, ‘T’]:

canon_kmer = canonical (q + x)

if canon_kmer in K:

extending = True

simplitig = simplitig + x

K.remove (canon_kmer)

break

return K, simplitig

Function compute_maximal_simplitig_from_kmer (K, seeding_kmer):

simplitig = initial_kmer

K, simplitig = extend_simplitig_forwards (K, simplitig)

simplitig = reverse_completent (simplitig)

K, simplitig = extend_simplitig_forwards (K, simplitig)

return K, simplitig

Function compute_simplitigs (input_kmers):

K = {}

for kmer in input_kmers:

K.add (canonical (kmer))

maximal_simplitigs = {}

while |K| > 0:

seeding_kmer = K.pop ()

K, simplitig = compute_maximal_simplitig_from_kmer (K, seeding_kmer)

maximal_simplitigs.add (simplitig)

return maximal_simplitigs

6

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

Simplitigs of model organisms

We first evaluated simplitig and unitig representations on assemblies of six model organisms (Fig. 2). As different

applications of de Bruijn graphs call for different -mer lengths, we sought to characterize the NS and CL scaling k

for both representations with growing, as well as the effect of the species’ genome size. Therefore, selected model k

organisms were evaluated in an increasing order of the genome size and benchmarked for both representations on a

range of -mer lengths corresponding to common alignment-free-based applications [19,20,39] . k

We observe that simplitigs always provide substantially better performance than unitigs (Fig. 2). In particular, they

quickly approach the theoretical lower bounds for both characteristics tested. Every data set has a range of -mer k

lengths where the difference between simplitigs and unitigs is very large, and after a certain threshold, the

difference almost vanishes. While for short genomes this threshold is located at smaller -mer lengths than those k

typically used in alignment-free applications (e.g., for E. coli), for bigger genomes this threshold has not 7 k ≈ 1

been attained on the tested range and seems to be substantially shifted towards large -mers (e.g., B. mori). k

Interestingly, maxima of the NS and CL values for both representations occur very close to the value , Gk = log4

where is the genome size (Fig. 2). This is readily explained by edge saturation: for values of up to , an G k Glog4

overwhelming fraction of all -mers belong to the genome, which makes the de Bruijn graph branch at nearly 4k k

every node. As a consequence, unitigs are then essentially reduced to individual -mers and their number grows k

exponentially whereas simplitigs stay compact on the whole range of -mer lengths. Starting from the k Gk = log4

graph starts to form longer non-branching paths, which drives down the NS and CL of unitigs, and they approach

those of simplitigs. However, the difference between simplitigs and unitigs in their count and length may stay

considerable even for larger values of , especially in case of large eukaryotic genomes. k

7

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/7vCD+EZCt+NYvU
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

172

173

174

175

176

177

178

Fig. 2 Comparison of the simplitig and unitig representations for selected model organisms and a range of -mers. k

The number of sequences (NS, millions) and their cumulative length (CL, megabase pairs) for both representations

of six model organisms ordered by their genome size: a Streptococcus pneumoniae , 2.22 Mbp; b Escherichia coli ,

4.64 Mbp; c Saccharomyces cerevisiae , 12.2 Mbp; d Caenorhabditis elegans , 100 Mbp; e Bombyx mori , 482 Mbp;

and f Homo sapiens , 3.21 Gbp. The CL lower bound corresponds to the number of -mers. Full results are available k

in Additional File 1 .

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

Performance assessment

We then analyzed the computational resources that had been used to compute the simplitigs using ProphAsm and

the unitigs using BCALM (Fig. 3). Both representations were computed in the environment of a computational

cluster, with individual experiments deployed as parallel jobs using SLURM (Methods). Even though we primarily

focused on the total CPU time, we also tested BCALM using 4 threads to evaluate the effect of parallelization.

We observe that throughout our experiments ProphAsm outcompeted BCALM, both in terms of the memory

consumption and the CPU time, even if BCALM was run with 4 threads (Fig. 3). The only exception was the

memory consumption for H. sapiens , suggesting that BCALM may be more memory-efficient for large genomes.

Importantly, ProphAsm used a consistent amount of resources: memory 38–51 bytes of RAM per -mer in the k

dataset, a limited CPU time and no additional disk space. On the other hand, BCALM’s resource usage was less

predictable and less consistent across experiments and required frequent trial-and-error resource adjustments and

re-running (Methods).

Besides the comparatively high memory and CPU time requirements, the most challenging resource was the disk

space. In order to fit within the available disk capacity, we reduced the BCALM consumption using the ‘-maxdisk’

parameter. However, despite that we requested BCALM to use no more than 30 GB per experiment, a random

manual inspection revealed a substantially higher use – for instance, 116 GB of disk space for H. sapiens with

 and 4 threads. The extensive disk space consumption also disabled a similar comparison on a desktop 7k = 1

computer.

Overall, the better performance of ProphAsm can be explained by simplitigs being fundamentally easier to compute

than unitigs and by BCALM being optimized for a particular class of de Bruijn graphs that emerge in assembly-like

applications. As the ProphAsm resource usage is highly predictable, it appears to be more suitable for the use on

clusters in many parallel instances, unless the number of -mers in the dataset exceeds a critical threshold k

determined by the available RAM.

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

205

206

207

208

209

Fig. 3 Comparison of CPU time and memory consumption of ProphAsm and BCALM. Resources to compute

unitigs using BCALM (using one and four threads) and simplitigs using ProphAsm (using one thread) of the six

model organisms. Full results are available in Additional File 2 .

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

Simplitigs of bacterial pan-genomes

We then sought to evaluate the impact of additional variation in a de Bruijn graph (Fig. 4). Such variation may

originate in polymorphisms, varying gene content in a population of genomes that are represented jointly, in

haplotypes of viral quasispecies, or in sequencing errors in case of graphs constructed directly from sequencing

reads. In all these cases, many nodes of the de Bruijn graph become branching and new paths emerge. To model

gradually increasing variation, we used bacterial pan-genomes with different levels of sampling. Given the high

diversity and variability of bacteria, de Bruijn graphs provide a convenient option for computational

pan-genomes [40] . Such pan-genomes can be constructed from draft assemblies or even directly from sequencing

reads, and thanks to bacterial genomes being short and haploid, the information captured by the graphs is sufficient

for many analyses.

We first constructed a pan-genome of N. gonorrhoeae , and characterized unitigs and simplitigs as a function of

pan-genome size (Fig. 4a). We used 1,102 draft assemblies of clinical isolates from the Prevention’s Gonococcal

Isolate Surveillance Project [41] , from which we built a series of de Bruijn graphs using an increasing number of

genomes. Consistent with previous experiments (Fig 2ab ,), both representations perform comparably well 1k = 3

when only one bacterial genome is included (Fig. 4a). However, as the number of genomes or -mers grows, the k

NS and CL grow as well, but with an increasing gap between unitigs and simplitigs; importantly, the latter stay close

to the theoretical lower bounds. When the pan-genome size is measured via the number of genomes included, the

CL and NS resemble logarithmic functions for both unitigs and simplitigs (Fig. 4a , left-hand column). However,

when the number of -mers included is used instead, the NS and CL functions act as affine functions (Fig. 4a , k

right-hand column). This suggests that a pan-genome -mer count and a species-specific slope may be used as the k

predictors of simplitig performance in future applications.

To analyze the relative benefit of simplitigs with growing de Bruijn graphs, we evaluated the NS and CL reduction

ratio of simplitigs over unitigs in different configurations (Fig. 4b). We used the same N. gonorrhoeae dataset and

considered also another dataset of S. pneumoniae , consisting of 616 draft Illumina assemblies of isolates from a

11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/SGxm
https://paperpile.com/c/48fmZz/LiPb
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

carriage study of children in Massachusetts, USA [42,43] . For both species and for , we constructed a 8, 1k = 1 3

series of de Bruijn graphs as previously, but this time we visualized the NS and CL reduction ratios. In all cases, the

NS reduction ratios eventually stabilized at values close to 3, following an L-shape () or being almost constant 8k = 1

(). The CL reduction ratio admitted approximately a logarithmic dependence on the number of genomes and 1k = 3

still resembled a linear dependence on the number of -mers. Overall, these experiments provided further evidence k

that the benefit of simplitigs over unitigs grows with the increased proportion of branching nodes in a de Bruijn

graph or with increasing data in case of pan-genome reference structures.

Fig. 4 Scaling of simplitigs and unitigs of bacterial pan-genomes as the pan-genome size grows with a better

sampling and more within-species variation. a Number of sequences (NS, thousands) and their cumulative length

(CL, megabase pairs) for simplitigs (simpl) and unitigs (unit) and the lower bound (lobound) of N. gonorrhoeae

and , as a function of the number of genomes (left) and -mers (right, millions) included. b Reduction ratio 1k = 3 k

of simplitigs over unitigs for S. pneumoniae (sp) and N. gonorrhoeae (gc) and , as a function of the 8, 1k = 1 3

number of genomes (left) and -mers (right, millions) included. Full results are available in Additional File 3 . k

12

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/Om01+2h6g
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Application of simplitigs for k -mer search

Finally, we sought to demonstrate the benefit of simplitigs in a real application. A major use of de Bruijn graphs

consists in -mer matching, which requires the graphs to act as a membership data structure. As both simplitigs k

and unitigs are text-based representations, -mer queries can be implemented using an arbitrary full-text k

index [44] , notably a Burrows-Wheeler Transform index [45] (sometimes referred to as an FM-index). Here, we

used the index of BWA [46] , as one of the best-engineered solutions available, to analyze the impact of unitig

replacement by simplitigs.

Single pan-genome

We first evaluated the simplitig improvement on the same N. gonorrhoeae pan-genome (Fig. 5). We considered

four different -mer lengths and for each of them, we built three pan-genome representations from k 9, 3, 7, 1k = 1 2 2 3

the original draft genome assemblies: first, we merged the assemblies as the most straightforward approach to

collect all -mers; then we computed pan-genome representations by unitigs and simplitigs. As all the three k

representations carry the same -mer set, a full-text index built upon them should provide the same results, but k

with a performance reflecting the differences in NS and CL.

We analysed the NS and CL characteristics of the computed representations (Fig. 5a). Simplitigs improved NS and

CL over unitigs by factors of 3.1×–3.2× and 1.5×–1.6×, respectively, consistent with Fig. 4 . This suggests that

memory required for unitigs would be approximately by 50% higher than for unitigs across all the values of k

considered. We also compared simplitigs and unitigs to assemblies; both improved the CL by two orders of

magnitude while the NS stayed comparable for simplitigs and increased twofold for unitigs.

We then evaluated -mer query performance and memory footprint (Fig. 5b). For each representation, we k

constructed a standard BWA index and matched 10 million random -mers from the pan-genome using BWA k

fastmap [47] , with no restriction on maximum size of the suffix-array interval to ensure evaluation correctness

(Methods). Surprisingly, simplitigs improved memory by factors of 2.7× – 3.0× (Fig. 5b), thus twice as much as we

13

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/GOjV
https://paperpile.com/c/48fmZz/FFFo
https://paperpile.com/c/48fmZz/e9nk
https://paperpile.com/c/48fmZz/WgMv
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

276

277

278

279

280

281

282

283

284

285

286

287

288

previously anticipated. This is explained by the fact that the underlying full-text engine has to keep information

about individual sequences in memory as separate records. As NS grows, it has a negative impact on both the

memory footprint and query speed. Nevertheless, since simplitigs provided a substantial reduction in NS over

unitigs, this overhead has been reduced. Therefore, the excessive number of unitigs observed throughout our

experiments (Fig. 1 and Fig. 2) provides a further argument for replacing unitigs by simplitigs when possible.

Fig. 5 -mer queries for the N. gonorrhoeae pan-genome on top of the draft assemblies, unitigs, and simplitigs. K

a Characteristics of the obtained unitigs and simplitigs: number of sequences (NS, thousands) and their cumulative

length (CL, megabase pairs). The dot-dash line depicts the CL lower bound corresponding to the number of -mers. k

b Time and memory footprint of BWA -mer queries (10 million -mers). Full results including relative k k

improvements are available in Additional File 4 .

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

Multiple pan-genomes

We evaluated the performance of the simplitig representation for simultaneous indexing of a large number bacterial

pan-genomes (Fig. 6). We downloaded all complete bacterial genomes from Genbank that had not been excluded

from RefSeq (as of May 2020; 9,869 records out of which 9,032 had genomic sequences available; Methods). We

restricted ourselves to complete genomes as draft genomes in Genbank are substantially impacted by false genetic

variability [48–50] that is particularly common in bacterial studies, mainly due to the contaminant DNA [51] . By

grouping individual genomes per species, we obtained 3,179 bacterial pan-genomes which we call the “All” dataset.

After computing simplitigs and unitigs per species, we merged the obtained representations and constructed

indexes using BWA; all this was done for to evaluate the impact of the -mer length. As the unitig 9, 3, 7, 1k = 1 2 2 3 k

index could not fit into RAM of our desktop computer for any , we also created the “Solid” dataset by omitting k

pan-genomes with less than 11 genomes; this resulted in 112 pan-genomes with 3,958 genomes. We provide all the

constructed pan-genomes in the form of simplitigs on Zenodo (10.5281/zenodo.3800713).

First we analyzed the obtained simplitig and unitig representations of both datasets (Fig. 6a). We observe that

simplitigs provide substantial improvement in both test characteristics. In the Solid dataset, NS and CL were

reduced by simplitigs by factors of 3.1–4.5 and 1.4–1.9, respectively; and in the All dataset, NS and CL were reduced

by factors of 3.0–4.3 and 1.2–1.4, respectively; all consistent with the scaling observed previously (Fig. 4 , Fig. 5).

While the improvement in NS was almost identical in both datasets (consistent with the top-right graph in Fig 4b),

the improvement in CL was clearly better in the Solid dataset. Indeed, as the vast majority of pan-genomes in the

All dataset contained only one genome, the de Bruijn graphs had a comparatively low number of branching nodes,

therefore the difference between simplitigs and unitigs was less striking (consistent with the values for small

pan-genome sizes in Fig 4b). We also observe that, in contrast to unitigs, -mer length had only little impact on k

the CL of simplitigs within the tested range, which provides better guarantees on required computational resources

in future applications.

We then measured the performance of -mer lookup (Fig. 6b). Both on a desktop and on a cluster, we evaluated k

memory footprints, index loading time and time to match ten million random -mers from the index using BWA k

15

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/JRL7+Gptx+LFia
https://paperpile.com/c/48fmZz/R2Fp
https://doi.org/10.5281/zenodo.3800713
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

316

317

318

319

320

321

322

323

(Methods). We observed that simplitigs substantially improved the memory footprint and index loading times. For

, simplitigs largely improved the matching times, where the difference is caused by “ghost -mers” on unitig 9k = 1 k

borders; these were more common in this experiment due to the short -mer length and the high number of k

unitigs. For higher -mer lengths, simplitigs still provided a moderate improvement in the matching rate. We note k

that the query time with BWT-based -mer indexes is dominated by high-frequency -mers. As these are equally k k

frequent in simplitigs and unitigs, the observed performance is similar unless many ghost -mers emerge on k

sequence borders as seen previously. On the desktop, the unitig All-index could not be evaluated as it did not fit into

memory, and the outlier for may be the result of memory swapping. 9k = 1

16

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

324

325

326

327

328

329

330

331

332

333

Fig. 6 -mer queries for multiple pan-genomes indexed simultaneously. Bacterial pan-genomes were computed K

from the complete Genbank assemblies per individual species. While the All dataset comprises all pan-genomes

with no restriction on their size, the Solid dataset comprises only those that contain at least 11 genomes.

a Characteristics of the obtained unitigs and simplitigs: number of sequences (NS, millions) and their cumulative

length (CL, gigabase pairs). The dot-dash line depicts the lower bound corresponding to the number of -mers. k

b Memory footprint, time of index loading and time of matching 10 million -mers using BWA. The bars k

correspond to the mean of three measurements (black dots). Full results including relative improvements are

available in Additional File 5 .

17

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

Discussion

We introduced the concept of simplitigs, a generalization of unitigs, and demonstrated that simplitigs constitute a

compact, efficient and scalable representation of de Bruijn graphs for various types of genomic datasets. The two

representations share many similarities: they are text-based and individual strings correspond to spellings of

vertex-disjoint paths. Both representations can be seen as irreversible transforms, taking a set of input strings and

producing a new set of strings preserving the -mer sets. In both cases, the resulting files can easily be manipulated k

using common Unix tools, compressed using standard compression techniques, and indexed using full-text indexes.

The main difference consists in that simplitigs do not explicitly carry information about the topology of the de

Bruijn graph. Also simplitigs are not expected to have direct biological significance – neighboring segments of the

same simplitig may correspond to distant parts of the same nucleic acid or even to different ones. Nevertheless,

unitigs can always be recomputed from simplitigs, but this step is not required for many common applications.

Furthermore, a concept analogous to simplitigs, called disjointigs, was recently introduced in the context of genome

assembly using A-Bruijn graphs [52,53] , suggesting that simplitigs may be useful beyond the context of

topology-oblivious applications.

We provided ProphAsm, a tool implementing a greedy heuristic to efficiently compute maximal simplitigs from a k

-mer set. ProphAsm is a spin-off of the ProPhyle software (https://prophyle.github.io , [22,54]) for metagenomic

classification, allowing efficient indexing of -mers propagated to individual nodes of a phylogenetic tree. k

ProphAsm presents a “naive” implementation of the greedy heuristic (Alg 1) that can be further improved. For

instance, a hash table with better memory management may reduce the memory requirement by a factor of 2.5 [55] .

Additional memory reduction may be also achieved in a similar fashion as previously done for unitigs [38,56,57] .

Nevertheless, on the studied data, ProphAsm strikingly outcompeted BCALM in all characteristics measured, with

the only exception of memory in the case of H. sapiens .

The observed lower requirements of ProphAsm can be attributed to two major differences between unitigs and

simplitigs. First, unitigs, and BCALM as one of the reference programs, are designed for assembly applications,

18

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/5Xwn+DcKX
https://prophyle.github.io/
https://paperpile.com/c/48fmZz/hGKh+1orz
https://paperpile.com/c/48fmZz/g80O
https://paperpile.com/c/48fmZz/BWOb+LvyQ+ROzP
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

where only a small proportion of nodes is usually branching. Moreover, experiments are usually run on a cluster in

series, with multiple threads per experiment, rather than in parallel, and the tools can use extensive disk space.

However, when unitigs are tested as a general representation with restricted disk space, the required resources

grow substantially. Second, simplitigs are likely to be, from a computational perspective, fundamentally easier than

unitigs.

A challenging but also promising feature of simplitig representation is the ambiguity of maximal simplitigs. This is

in sharp contrast to maximal unitigs, which are uniquely defined (up to the order, reverse complementing, and

cycles). In practice, every algorithm for simplitig computation has to decide which edge will be included at each

branching node. Here, we prioritized speed, simplitigs were constructed progressively and lexicographically

minimal edges were used in a case of ambiguity. Therefore, the final maximal simplitigs were only dependent on the

choice of seeding -mers; these are determined by the specific implementation of ‘std::unordered_set’ in the C++ k

standard library. Nevertheless, characteristics other than speed could readily be prioritized instead. For instance, a

more sophisticated heuristic may shift the CL and NS closer to the optimum. One could also aim at adding

biological meaning to simplitigs, e.g., by preferring those paths that are better supported by sequence data. On the

other hand, streaming algorithms for operations such as merging or intersecting may require specific prescribed

forms of unitigs. Finally, simplitigs may be optimized for entropy in order to maximize their compressibility.

The data presented in this paper highlight the scaling of computational resources as more sequencing data become

available. The studied N. gonorrhoeae dataset constitutes a relatively complete image of a bacterial population in a

geographical region at a given time scale. As such, it can be used to model the “state of completion” of -mer-based k

pan-genome representations. On the other hand, the multiple pan-genomes experiment shows how simplitigs

perform when a large number of such pan-genomes, although in different states of completion, are considered

simultaneously and queried using a single BWT index. Overall, the presented experiments allow us to predict the

resources for species for which only limited sequence data are available at present, but more are likely to be

generated in the future. Importantly, with more data available, comparative benefits of simplitigs over unitigs grow

as we have shown throughout the paper. As the growth of public databases negatively impacts the accuracy of those

19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

algorithms that operate on top of lossily represented de Bruijn graphs [58] , simplitigs provide a promising solution

offering both exactness and scalability.

In modern bioinformatics applications multiple de Bruijn graphs are often considered simultaneously; the resulting

structure is usually referred to as a colored de Bruijn graph [14] and the associated data structures have been widely

studied [59–70] . Although we touched upon this setting in the Multiple pan-genomes section, exploiting the

similarity between individual de Bruijn graphs for further compression in simplitig-based approaches is to be

addressed in future work. In many applications, including some of the traditional alignment-free methods [13,71] , it

is also desirable to consider -mers with counts. In the context of de Bruijn graphs, this leads to the so-called k

weighted variant of the problem [72] . The fact that frequencies of overlapping -mers are usually similar suggests k

that -mers can be grouped based on frequencies and simplitigs constructed per group . k

Independently and simultaneously with the work we present here, the simplitig representation was recently studied

in [73] under the name “spectrum-preserving string sets”. The associated UST tool follows a similar greedy strategy

to ProphAsm, although operating on unitigs constructed by BCALM rather than on the original -mers. As we k

demonstrated throughout this paper, unitigs are prohibitive for highly branching de Bruijn graphs, where a

simplitig construction through unitigs may create a burden on resources and easily become intractable. The paper

presents a tighter lower bound on the cumulative length of the representation (CL), termed weight, taking into

account the graph topology but requiring a computational overhead. The authors also studied the compression

properties of simplitigs when combined with standard compression algorithms. On the other hand, the paper does

not study the number of sequences (NS) and continuous scaling for parameters such as -mer length or amount of k

additional variation included.

20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/aDBw
https://paperpile.com/c/48fmZz/ffj7
https://paperpile.com/c/48fmZz/4cUY+R9xq+7LwR+JNqQ+lsDq+1pqI+4v3p+M9PH+IkO4+aTSW+8JYV+p7eU
https://paperpile.com/c/48fmZz/IRdH+Tr5E
https://paperpile.com/c/48fmZz/kyO2
https://paperpile.com/c/48fmZz/1sPM
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

Conclusions

In this paper, we addressed the question of efficient and scalable representation of de Bruijn graphs. We showed

that the state-of-the-art unitig representation may require adequately large computational resources, especially

when de Bruijn graphs contain many branching nodes. We introduced simplitigs, which provide a more compact

replacement in applications that do not require explicit information on the graph topology, such as alignment-free

sequence comparison and -mer indexing. We introduced a heuristic simplitig computation and showed on the k

examples of model species that unless the genome is large, even a naive implementation outperforms BCALM, the

main state-of-the-art tool for unitigs. We then studied applications to bacterial pan-genomics and showed that the

utility of simplitigs compared to unitigs grows as more data are available. Finally, we demonstrated on the example

of full-text -mer indexing that simplitigs can substantially reduce computational resources and allow k

computations in situations where unitigs would bring unaffordable costs when exactness should be preserved.

Our work opens many questions and future directions. The presented algorithm for simplitig computation can be

improved, parallelized, de-randomized to ensure reproducibility. We anticipate more theoretical advances in the

analysis of the minimum vertex-disjoint path cover problem and better mapping to results from other disciplines

such as network sciences. We also anticipate improvements in the heuristic approaches that could simplify and

parallelize simplitig computation. The nature of the algorithm suggests that simplitigs might be computed online

directly from a stream of data such as sequencing reads. We anticipate better implementations and libraries for

simplitigs that can be plugged into standard bioinformatics libraries for various programming languages. Another

series of questions is related to low-memory transformations of computed simplitigs that would allow

precomputing simplitigs on computer clusters, and tailoring to specific applications on standard computers; this

includes decreasing , performing set operations on top of simplitig sets and computing maximal unitigs from k

simplitigs. A substantial body of work can be anticipated in the direction of text indexing – we showed that

simplitigs can be combined with full-text indexes; however, specialized simplitig indexes exploiting simplitig

characteristics are yet to be developed. On the theoretical side, many perspectives are open in the direction of

orthogonal algorithmic techniques, such as sketching [74,75] , and in relation to other stringology concepts, such as

21

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/u7AU+CQc8
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

435

436

437

438

439

440

441

442

minimal absent words [76] and shortest superstrings [77] . Finally, simplitigs can serve as components in design of

various specialized data structures; these can involve membership queries of classes of de Bruijn graphs and colored

de Bruijn graphs, where simplitigs may encode not only the -mers themselves, but also additional metadata such k

as -mer frequencies or colors. Furthermore, simplitigs will facilitate new full-text-based data structures for k

approximate matching, based on the inclusion of the proximity variation, that would be completely intractable with

unitigs. Overall, we anticipate that the simplitig representation will become a generic compact representation of de

Bruijn graphs, in particular, in the context of large-scale sequence data search engines [69] and sequence data

repositories such as those of NCBI and EBI.

22

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/rG1Y
https://paperpile.com/c/48fmZz/4lMD
https://paperpile.com/c/48fmZz/8JYV
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

Methods

De Bruijn graphs

All strings are assumed to be over the alphabet . A -mer is a string of length . For a string , A, , , }{ C G T k k ...ss = s1 n

we define and . For two strings and of length at least , we define the (s) ·· pref k = s1 · sk (s) ·· suf k = sn­k+1 · sn s t k

binary connectivity relation if and only if . If , we define the -merging operation ⊙ as t s→k (s) (t)suf k = pref k t s→k k

. ⊙ t · suf (t)s k = s |t|­k

Given a set of -mers, the de Bruijn graph of is the directed graph with and K k K V ,)G = (E V = K

. For every path in , the string is called a spelling of (u,) | u v} E = { v ∈ K2
→k­1 v , ..,)p = (1 . vp G ⊙ v ⊙ ...⊙ v v1

k­1
2

k­1 k­1
p

. This definition of de Bruijn graphs is node-centric , as nodes are identified with -mers and edges are implicit. p k

Therefore, we can use the terms “ -mer set” and “de Bruijn graph” interchangeably. k

Simplitigs

Consider a set of -mers and the corresponding de Bruijn graph . A simplitig graph is a K k K,)G = (E K,)G′ = (E′

spanning subgraph of that is acyclic and the in-degree and out-degree of any node is at most one. It follows from G

this definition that a simplitig graph is a vertex-disjoint union of paths, whose spellings we call simplitigs . A

simplitig is called maximal if it cannot be extended forward or backward without breaking the definition of

simplitig graph. In more detail, a simplitig is maximal if the following conditions hold u ... u u1→k­1 2→k­1 →k­1 n

● either has no incoming edges in , or for any edge , belongs to another simplitig and it is u1 G v,) (u1 ∈ E v

not its last vertex,

● either has no outgoing edges in , or for any edge , belongs to another simplitig and it is un G u ,) (n v ∈ E v

not its first vertex.

A unitig is a simplitig such that each of the nodes has in-degree 1 and each of the u ... u u1→k­1 2→k­1 →k­1 n , ..,u2 . un

nodes has out-degree 1 in graph . A maximal unitig is defined similarly. , .., u1 . un­1 G

23

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

Comparing simplitig and unitig representations

Simplitigs and unitigs representations were compared in terms of the number of sequences produced (NS) and their

cumulative length (CL). For any set of simplitigs (i.e., not necessarily maximal ones), NS is bounded by 1 and

, CL is bounded by and . The upper bound corresponds to the state of maximal kmers# kmers# ⋅ #kmers k

fragmentation, where every -mer forms a simplig. The lower bound corresponds to the maximum possible degree k

of compaction, i.e., a single simplitig containing all -mers. k

NS and CL are readily connected by the following formula:

L #kmers (k) ⋅ NS C = + ­ 1 (eq 1)

As an important consequence, both characteristics are optimized simultaneously.

Greedy computation of simplitigs

The problem of computing maximal simplitigs that are optimal in CL (i.e., also in NS) corresponds to the minimum

vertex-disjoint path cover problem [78] . This is known to be NP-hard in the general case, reducing from the

Hamiltonian path problem. However, the complexity for de Bruijn graphs remains an open question. A greedy

heuristic to compute maximal simplitigs has been used throughout this paper (Alg. 1). Simplitigs are constructed

iteratively, starting from (arbitrary) seeding -mers and being extended greedily forwards and backwards as long k

as possible.

ProphAsm implementation

ProphAsm is written in C++ and implements the greedy approach described above (Alg. 1). -mers are encoded K

using uint64_t and stored in an std::unordered_map. The choice of extension nucleotides on branching nodes is

done based on the lexicographic order. Therefore, the only source of randomness is the choice of seeding -mers by k

std::unordered_set::begin; the C++ standard library makes no guarantees on which specific element is considered

the first element. ProphAsm does not require any disk space to store intermediate data and its memory

24

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/MB8I
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

consumption corresponded to 38–51 bytes per a unique -mer (in dependence on the allocation), consistent with k

[55] .

Uni-directed and bi-directed models

The uni-directed model, as presented above, is useful for introducing the concepts of unitigs and simplitigs, but is

not directly applicable to data obtained using sequencing: since DNA is double-stranded, every string may come

from either strand. At the level of -mers, double-strandedness can be accounted for by using canonical -mers, k k

i.e., by pairing-up every -mer with its reverse complement, typically done by taking the lexicographical minimum k

of the -mer and its reverse complement. This subsequently requires redefinining de Bruijn graphs to bi-directed k

de Bruijn graphs [79] , which requires a more complex formalism.

Correctness evaluation

The correctness of simplitig computation can be verified using an arbitrary -mer counter. Simplitigs have been k

computed correctly if and only if every -mer is present exactly once and the number of distinct -mers is the same k k

as in the original datasets. The correctness of ProphAsm outputs was verified using JellyFish 2 [29] .

Experimental evaluation – model organisms and performance

Reference sequences for six selected model organisms were downloaded from RefSeq and UCSC Genome Browser:

S. pneumoniae str. ATCC 700669 (accession: NC_011900.1, length 2.22 Mbp), E. coli str. K-12 (accession:

NC_000913.3, length: 4.64 Mbp), S. cerevisiae (accession: NC_001133.9, length: 12.2 Mbp), C. elegans (accession:

GCF_000002985.6, length: 100 Mbp), B. mori (accession: GCF_000151625.1, length: 482 Mbp), and H. sapiens

(HG38, http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz , length: 3.21 Gbp). For each

genome, simplitigs and unitigs were computed using ProphAsm and BCALM, respectively, for a range of -mer k

lengths [11,31].

Individual experiments were run in parallel on the Harvard Medical School O2 cluster using Snakemake [80] and

SLURM. ProphAsm and BCALM were run with the following parameters, respectively: ‘-k {kmer-length}’ and

25

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/g80O
https://paperpile.com/c/48fmZz/G2zg
https://paperpile.com/c/48fmZz/ZWYX
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz
https://paperpile.com/c/48fmZz/q5mE
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

‘-kmer-size {kmer-length} -abundance-min 1 -nb-cores {cores} -max-disk 30000’. As BCALM requires a large

undocumented amount of disk space, we used the -max-disk parameter to make a parallel execution of many

BCALM jobs feasible. The SLURM specifications of resource allocation for individual species were iteratively

adjusted until all jobs would finish; the final required resources are provided in Supplementary Table 1 . Time

and memory consumption of jobs were measured independently using GNU Time. Individual jobs were deployed to

computational nodes with different hardware configurations, which are specified in Additional File 2 .

Supplementary Table 1 SLURM resource allocation for ProphAsm and BCALM2 for the performance evaluation.

Species ProphAsm (1 core) BCALM (1 core) BCALM (4 cores)

mem
[GB]

cpu
[hours]

mem
[GB]

cpu
[hours]

mem
[GB]

cpu
[hours]

S. pneumoniae 10 1 10 1 10 1
E. coli 10 1 10 1 10 1
S. cerevisiae 10 1 10 1 10 1
C. elegans 10 1 10 2 10 2
B. mori 20 2 30 10 30 2
H. sapiens 120 4 100 48 100 18

Experimental evaluation – bacterial pan-genomes

First, 1,102 draft assemblies of N. gonorrhoeae clinical isolates (collected from 2000 to 2013 by the Centers for

Disease Control and Prevention’s Gonococcal Isolate Surveillance Project [41] , and sequenced using Illumina

HiSeq) were downloaded from Zenodo [81] . Second, 616 draft assemblies of S. pneumoniae isolates (collected from

2001 to 2007 for a carriage study of children in Massachusetts, USA [42,43] , and sequenced using Illumina HiSeq)

were downloaded from the SRA FTP server using the accession codes provided in Table 1 in [43] . For each of these

datasets, an increasing number of genomes was being taken and merged, and simplitigs and unitigs computed using

ProphAsm and BCALM, respectively. This experiment was performed for and To avoid excessive 8k = 1 1.k = 3

resource usage the functions were evaluated at selected points in an increasing distance: for intervals [10, 100] and

[100,+∞] only multiples of 5 and 20 were evaluated, respectively.

26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/LiPb
https://paperpile.com/c/48fmZz/cgKj
https://paperpile.com/c/48fmZz/Om01+2h6g
https://paperpile.com/c/48fmZz/2h6g
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

Experimental evaluation – full-text k -mer queries

In the single pan-genome experiment, the same 1,102 assemblies of N. gonorrhoeae were merged into a single file.

ProphAsm and BCALM were then used to compute simplitigs and unitigs, respectively, from this file for

. Each of the three obtained FASTA files (assemblies, simplitigs, and unitigs) was used to 9, 23, 27, 31k = 1

construct a BWA index, which was then queried for -mers using ‘bwa fastmap -l {kmer-length}’. We used a k

modified version of BWA fastmap that reports both the time of index loading and the time of querying

(http://github.com/karel-brinda/bwa , commit e1f907c). Query -mers were generated from the same pan-genome k

using WGsim (version 1.10, with the parameters ‘-h 0 -S 42 -r 0.0 -1 {kmer-length} -N 10000000 -e 0’).

For the multiple pan-genome experiment, a list of available bacterial assemblies was downloaded from

ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_summary.txt (2020/05/05). For all assemblies

marked as complete (i.e., the “assembly_level” column equal to “Complete genome”) and present in RefSeq (i.e., an

empty value in the column “excluded_from_refseq”), directory urls and species names were extracted (n=9,869).

These were then used to download the genomes of the isolates using RSync, restricting to genomic sequences only

(i.e., files matching ‘*v?_genomic.fna.gz’, n=9,032). The downloaded assemblies were then merged per species in

order to collect -mers of individual pan-genomes and used for computing simplitigs and unitigs using ProphAsm k

and BCALM, respectively. The obtained simplitig and unitig files were then merged per categories (e.g., simplitigs

for k=19) and used to construct a BWA index. The obtained indexes were queried for 1o million -mers using BWA k

fastmap as previously. The -mers were generated from the original assemblies of randomly selected 100 genomes k

using DWGsim [82] (version 0.1.11, with the parameters ‘-R 0 -e 0 -r 0 -X 0 -y 0 -H -z 42 -m /dev/null -N

10000000 -1 {k} -2 0’); the randomization was performed using ‘sort -R’.

Computational setup

The experiments were performed on the HMS O2 research high-performance cluster and on an iMac 4.2 GHz

Quad-Core Intel Core i7 with 40 GB RAM. The reproducibility of computation was ensured using BioConda [83] .

27

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

http://github.com/karel-brinda/bwa
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_summary.txt
https://paperpile.com/c/48fmZz/IhoS
https://paperpile.com/c/48fmZz/v7o1
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

557

558

All benchmarking was performed using ProphAsm 0.1.1 (commit ea28b708) and BCALM 2.2.2 (commit febf79a3).

Time and memory footprint were measured using GNU Time.

28

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Declarations

Ethics approval and consent to participate

Not applicable.

Availability of data and materials

Additional files

Additional File 1. Detailed information for the single genome experiment: NS, CL and #kmers for unitigs and

simplitigs as a function of for the 6 species: a S. pneumoniae , b E. coli , c S. cerevisiae , d C. elegans , e B. mori , k

and f H. sapiens .

Additional File 2. Detailed information for the performance comparison. a CPU time and memory consumption

(both measured by GNU Time and Snakemake) as a function of species, method, number of threads, and -mer k

length, including the used computational node. b Hardware specifications for individual computational nodes.

Additional File 3. Detailed information for the pan-genome scaling experiment: a N. gonorrhoeae , ; b N. 8k = 1

gonorrhoeae , ; c S. pneumoniae , ; d S. pneumoniae , . 1k = 3 8k = 1 1k = 3

Additional File 4. Detailed information for the single pan-genome -mer indexing experiment. a Characteristics k

of the resulting simplitigs and unitigs for . b Memory footprint, index loading time and time to 9, 3, 7, 1k = 1 2 2 3

query 10 million -mers using BWA. k

Additional File 5. Detailed information for the multiple pan-genomes -mer indexing experiment. a List of all k

genomes used for building the pan-genomes (accession code, version, species, filename, number of sequences,

genome size [bp]); b List of species and the number of genomes included. c Characteristics of the resulting

simplitigs and unitigs of individual pan-genomes for . d Characteristics of the resulting simplitigs 9, 3, 7, 1k = 1 2 2 3

and unitigs for the All-dataset and Solid-dataset and . e Memory footprint, index loading time and 9, 3, 7, 1k = 1 2 2 3

time to query 10 million -mers using BWA (individual repetitions). k

29

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

Data

All data generated or analysed during this study are included in this published article and its supplementary

information files. The simplitigs of the Human genome (HG38, for) and the obtained Genbank 0, 1, .., 2k = 1 1 . 3

pan-genomes (for) are provided on Zenodo under the accessions 10.5281/zenodo.3770419 and 9, 3, 7, 1k = 1 2 2 3

10.5281/zenodo.3800713 , respectively. The code used for the analyses is provided on Github

(https://github.com/karel-brinda/simplitigs-supplementary).

Software

ProphAsm is open source, licensed under the MIT License. The program was developed in C++ and its source code

is available from Github (http://github.com/prophyle/prophasm). ProphAsm binaries for Linux and OS X are

distributed through BioConda [83] (https://bioconda.github.io/recipes/prophasm/README.html). The source

code of the version used in this paper was deposited in Zenodo (10.5281/zenodo.3887035).

Competing interests

No competing interests.

Funding

KB and MB were partially supported by the David and Lucile Packard Foundation and NIGMS of the National

Institutes of Health under award number R35GM133700. GK was partially funded by RFBR, project 20-07-00652,

and joint RFBR and JSPS project 20-51-50007.

Authors’ contributions

KB, MB, GK designed the study, contributed to interpretation of the results, wrote the manuscript, and approved

the final manuscript. KB developed the software and performed the data analysis. KB and GK developed the theory.

30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

http://doi.org/10.5281/zenodo.3770419
https://doi.org/10.5281/zenodo.3800713
https://github.com/karel-brinda/simplitigs-supplementary
http://github.com/prophyle/prophasm
https://paperpile.com/c/48fmZz/v7o1
https://bioconda.github.io/recipes/prophasm/README.html
https://doi.org/10.5281/zenodo.3887035
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

601

602

603

604

605

Acknowledgements

The authors thank Jasmijn Baaijens and Roman Cheplyaka for careful reading and valuable comments, and Kamil

Salikhov and Simone Pignotti for helpful discussions at the initial stage of this project. Portions of this research

were conducted on the O2 high-performance compute cluster, supported by the Research Computing Group at

Harvard Medical School.

31

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

606

607
608

609

610

611

612

613
614

615
616

617
618

619
620

621
622

623
624

625
626

627
628

629
630

631
632
633

634
635

636
637

638
639
640

641

References

1. Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence
of two proteins. J Mol Biol. 1970;48:443–53.

2. Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol. 1981;147:195–7.

3. Gotoh O. An improved algorithm for matching biological sequences. J Mol Biol. 1982;162:705–8.

4. Idury RM, Waterman MS. A New Algorithm for DNA Sequence Assembly. J Comput Biol. 1995;2:291–306.

5. Pevzner PA. 1-Tuple DNA Sequencing: Computer Analysis. J Biomol Struct Dyn. 1989;7:63–73.

6. Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA fragment assembly. Proceedings of the
National Academy of Sciences. 2001;98:9748–53.

7. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res.
2008;18:821–9.

8. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM. ABySS: A parallel assembler for short read sequence
data. 2009;1117–23.

9. Bankevich A, Nurk S, Antipov D, Gurevich A a., Dvorkin M, Kulikov AS, et al. SPAdes: A New Genome Assembly
Algorithm and Its Applications to Single-Cell Sequencing. J Comput Biol. 2012;19:455–77.

10. Chikhi R, Rizk G. Space-efficient and exact de Bruijn graph representation based on a Bloom filter. Algorithms
Mol Biol. 2013;8:22.

11. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and
complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.

12. Souvorov A, Agarwala R, Lipman DJ. SKESA: strategic k-mer extension for scrupulous assemblies. Genome
Biol. 2018;19:153.

13. Zielezinski A, Vinga S, Almeida J, Karlowski WM. Alignment-free sequence comparison: benefits, applications,
and tools. Genome Biol. 2017;18:186.

14. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly and genotyping of variants using colored
de Bruijn graphs. Nat Genet. 2012;44:226–32.

15. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, et al. Rapid antibiotic-resistance predictions from
genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun. Nature
Publishing Group; 2015;6:10063.

16. Shajii AR, Yorukoglu D, William Yu Y, Berger B, Yu YW, Berger B. Fast genotyping of known SNPs through
approximate k-mer matching. Bioinformatics. 2016;32:i538–44.

17. Sun C, Medvedev P. Toward fast and accurate SNP genotyping from whole genome sequencing data for bedside
diagnostics. Bioinformatics. 2019;35:415–20.

18. Nordström KJV, Albani MC, James GV, Gutjahr C, Hartwig B, Turck F, et al. Mutation identification by direct
comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers. Nat
Biotechnol. 2013;31:325–30.

19. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol.

32

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

http://paperpile.com/b/48fmZz/aDDI
http://paperpile.com/b/48fmZz/aDDI
http://paperpile.com/b/48fmZz/tlA1
http://paperpile.com/b/48fmZz/ClF9
http://paperpile.com/b/48fmZz/k6Xg
http://paperpile.com/b/48fmZz/l2lo
http://paperpile.com/b/48fmZz/DR3C
http://paperpile.com/b/48fmZz/DR3C
http://paperpile.com/b/48fmZz/wa8D
http://paperpile.com/b/48fmZz/wa8D
http://paperpile.com/b/48fmZz/f114
http://paperpile.com/b/48fmZz/f114
http://paperpile.com/b/48fmZz/n3EN
http://paperpile.com/b/48fmZz/n3EN
http://paperpile.com/b/48fmZz/KwNc
http://paperpile.com/b/48fmZz/KwNc
http://paperpile.com/b/48fmZz/qsyT
http://paperpile.com/b/48fmZz/qsyT
http://paperpile.com/b/48fmZz/jtmK
http://paperpile.com/b/48fmZz/jtmK
http://paperpile.com/b/48fmZz/IRdH
http://paperpile.com/b/48fmZz/IRdH
http://paperpile.com/b/48fmZz/ffj7
http://paperpile.com/b/48fmZz/ffj7
http://paperpile.com/b/48fmZz/wIsb
http://paperpile.com/b/48fmZz/wIsb
http://paperpile.com/b/48fmZz/wIsb
http://paperpile.com/b/48fmZz/MBTq
http://paperpile.com/b/48fmZz/MBTq
http://paperpile.com/b/48fmZz/iwn2
http://paperpile.com/b/48fmZz/iwn2
http://paperpile.com/b/48fmZz/pJaP
http://paperpile.com/b/48fmZz/pJaP
http://paperpile.com/b/48fmZz/pJaP
http://paperpile.com/b/48fmZz/NYvU
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

642

643
644

645
646

647
648

649
650

651
652

653
654

655
656

657
658
659

660
661

662
663

664
665

666
667

668
669

670
671

672
673

674
675

676
677

678
679

680

2016;34:525–7.

20. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome
Biol. 2014;15:R46.

21. Ames SK, Hysom DA, Gardner SN, Lloyd GS, Gokhale MB, Allen JE. Scalable metagenomic taxonomy
classification using a reference genome database. Bioinformatics. 2013;29:2253–60.

22. Břinda K, Salikhov K, Pignotti S, Kucherov G. ProPhyle: An accurate, resource-frugal and deterministic DNA
sequence classifier [Internet]. Zenodo; 2017. Available from: https://zenodo.org/record/1054443

23. Corvelo A, Clarke WE, Robine N, Zody MC. taxMaps: comprehensive and highly accurate taxonomic
classification of short-read data in reasonable time. Genome Res. 2018;28:751–8.

24. Ye SH, Siddle KJ, Park DJ, Sabeti PC. Benchmarking Metagenomics Tools for Taxonomic Classification. Cell.
Elsevier Inc.; 2019;178:779–94.

25. Paten B, Novak AM, Eizenga JM, Garrison E. Genome graphs and the evolution of genome inference. Genome
Res. 2017;27:665–76.

26. Sirén J. Indexing Variation Graphs. 2017 Proceedings of the Ninteenth Workshop on Algorithm Engineering
and Experiments (ALENEX). Philadelphia, PA: Society for Industrial and Applied Mathematics; 2017. p. 13–27.

27. Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM, Dawson ET, et al. Variation graph toolkit improves read
mapping by representing genetic variation in the reference. Nat Biotechnol. Nature Publishing Group;
2018;36:875–81.

28. Melsted P, Pritchard JK. Efficient counting of k-mers in DNA sequences using a bloom filter. BMC
Bioinformatics. BioMed Central Ltd; 2011;12:333.

29. Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers.
Bioinformatics. 2011;27:764–70.

30. Deorowicz S, Debudaj-Grabysz A, Grabowski S. Disk-based k-mer counting on a PC. BMC Bioinformatics.
2013;14:160.

31. Rizk G, Lavenier D, Chikhi R. DSK: k-mer counting with very low memory usage. Bioinformatics.
2013;29:652–3.

32. Roy RS, Bhattacharya D, Schliep A. Turtle: Identifying frequent k-mers with cache-efficient algorithms.
Bioinformatics. 2014;30:1950–7.

33. Crusoe MR, Alameldin HF, Awad S, Boucher E, Caldwell A, Cartwright R, et al. The khmer software package:
enabling efficient nucleotide sequence analysis. F1000Res. 2015;1–12.

34. Deorowicz S, Kokot M, Grabowski S, Debudaj-Grabysz A. KMC 2: fast and resource-frugal k-mer counting.
Bioinformatics. 2015;31:1569–76.

35. Kokot M, Dlugosz M, Deorowicz S. KMC 3: counting and manipulating k-mer statistics. Bioinformatics.
2017;33:2759–61.

36. Pandey P, Bender MA, Johnson R, Patro R, Berger B. Squeakr: an exact and approximate k-mer counting
system. Bioinformatics. 2018;34:568–75.

37. Chikhi R, Limasset A, Jackman S, Simpson JT, Medvedev P. On the Representation of De Bruijn Graphs. J
Comput Biol. 2015;22:336–52.

38. Chikhi R, Limasset A, Medvedev P. Compacting de Bruijn graphs from sequencing data quickly and in low

33

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

http://paperpile.com/b/48fmZz/NYvU
http://paperpile.com/b/48fmZz/EZCt
http://paperpile.com/b/48fmZz/EZCt
http://paperpile.com/b/48fmZz/Ub1O
http://paperpile.com/b/48fmZz/Ub1O
http://paperpile.com/b/48fmZz/hGKh
http://paperpile.com/b/48fmZz/hGKh
https://zenodo.org/record/1054443
http://paperpile.com/b/48fmZz/mCvz
http://paperpile.com/b/48fmZz/mCvz
http://paperpile.com/b/48fmZz/E1LI
http://paperpile.com/b/48fmZz/E1LI
http://paperpile.com/b/48fmZz/g57j
http://paperpile.com/b/48fmZz/g57j
http://paperpile.com/b/48fmZz/eEI3
http://paperpile.com/b/48fmZz/eEI3
http://paperpile.com/b/48fmZz/8hgJ
http://paperpile.com/b/48fmZz/8hgJ
http://paperpile.com/b/48fmZz/8hgJ
http://paperpile.com/b/48fmZz/Hxfr
http://paperpile.com/b/48fmZz/Hxfr
http://paperpile.com/b/48fmZz/ZWYX
http://paperpile.com/b/48fmZz/ZWYX
http://paperpile.com/b/48fmZz/8drX
http://paperpile.com/b/48fmZz/8drX
http://paperpile.com/b/48fmZz/RPNu
http://paperpile.com/b/48fmZz/RPNu
http://paperpile.com/b/48fmZz/rm21
http://paperpile.com/b/48fmZz/rm21
http://paperpile.com/b/48fmZz/KGPT
http://paperpile.com/b/48fmZz/KGPT
http://paperpile.com/b/48fmZz/Xifa
http://paperpile.com/b/48fmZz/Xifa
http://paperpile.com/b/48fmZz/HAIy
http://paperpile.com/b/48fmZz/HAIy
http://paperpile.com/b/48fmZz/f7AB
http://paperpile.com/b/48fmZz/f7AB
http://paperpile.com/b/48fmZz/jhyi
http://paperpile.com/b/48fmZz/jhyi
http://paperpile.com/b/48fmZz/BWOb
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

681

682
683
684

685
686

687
688
689

690
691

692
693
694

695
696

697
698

699
700

701
702

703
704

705
706

707
708
709

710
711

712
713

714
715

716
717

718
719

720

memory. Bioinformatics. 2016;32:i201–8.

39. Břinda K, Callendrello A, Ma KC, MacFadden DR, Charalampous T, Lee RS, et al. Rapid inference of antibiotic
resistance and susceptibility by genomic neighbour typing. Nature Microbiology [Internet]. 2020; Available from:
http://dx.doi.org/10.1038/s41564-019-0656-6

40. Marschall T, Marz M, Abeel T, Dijkstra L, Dutilh BE, Ghaffaari A, et al. Computational pan-genomics: status,
promises and challenges. Brief Bioinform. 2016;184:bbw089.

41. Grad YH, Harris SR, Kirkcaldy RD, Green AG, Marks DS, Bentley SD, et al. Genomic Epidemiology of
Gonococcal Resistance to Extended-Spectrum Cephalosporins, Macrolides, and Fluoroquinolones in the United
States, 2000–2013. J Infect Dis. 2016;214:1579–87.

42. Croucher NJ, Finkelstein JA, Pelton SI, Mitchell PK, Lee GM, Parkhill J, et al. Population genomics of
post-vaccine changes in pneumococcal epidemiology. Nat Genet. Nature Publishing Group; 2013;45:656–63.

43. Croucher NJ, Finkelstein JA, Pelton SI, Parkhill J, Bentley SD, Lipsitch M, et al. Population genomic datasets
describing the post-vaccine evolutionary epidemiology of Streptococcus pneumoniae. Scientific data.
2015;2:150058.

44. Mäkinen V, Belazzougui D, Cunial F, Tomescu AI. Genome-Scale Algorithm Design. Cambridge University
Press; 2015.

45. Ferragina P, Manzini G. Opportunistic data structures with applications. Proceedings 41st Annual Symposium
on Foundations of Computer Science. IEEE Comput. Soc; 2000. p. 390–8.

46. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics.
Narnia; 2009;25:1754–60.

47. Li H. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Bioinformatics.
2012;28:1838–44.

48. Merchant S, Wood DE, Salzberg SL. Unexpected cross-species contamination in genome sequencing projects.
PeerJ. 2014;2:e675.

49. Lu J, Salzberg SL. Removing contaminants from databases of draft genomes. PLoS Comput Biol.
2018;14:e1006277.

50. Steinegger M, Salzberg SL. Terminating contamination: large-scale search identifies more than 2,000,000
contaminated entries in GenBank [Internet]. bioRxiv. 2020. p. 2020.01.26.920173. Available from:
https://www.biorxiv.org/content/10.1101/2020.01.26.920173v1

51. Goig GA, Blanco S, Garcia-Basteiro AL, Comas I. Contaminant DNA in bacterial sequencing experiments is a
major source of false genetic variability. BMC Biol. 2020;18:24.

52. Lin Y, Yuan J, Kolmogorov M, Shen MW, Chaisson M, Pevzner PA. Assembly of long error-prone reads using de
Bruijn graphs. Proc Natl Acad Sci U S A. 2016;113:E8396–405.

53. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat
Biotechnol. 2019;37:540–6.

54. Břinda K. Novel computational techniques for mapping and classification of Next-Generation Sequencing data
[Internet]. 2016. Available from: https://hal.archives-ouvertes.fr/tel-01484198/

55. Li H. Revisiting hash table performance [Internet]. Attractive Chaos. 2018 [cited 2020 May 1]. Available from:
https://attractivechaos.wordpress.com/2018/01/13/revisiting-hash-table-performance/

56. Pan T, Nihalani R, Aluru S. Fast de Bruijn Graph Compaction in Distributed Memory Environments.

34

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

http://paperpile.com/b/48fmZz/BWOb
http://paperpile.com/b/48fmZz/7vCD
http://paperpile.com/b/48fmZz/7vCD
http://dx.doi.org/10.1038/s41564-019-0656-6
http://paperpile.com/b/48fmZz/SGxm
http://paperpile.com/b/48fmZz/SGxm
http://paperpile.com/b/48fmZz/LiPb
http://paperpile.com/b/48fmZz/LiPb
http://paperpile.com/b/48fmZz/LiPb
http://paperpile.com/b/48fmZz/Om01
http://paperpile.com/b/48fmZz/Om01
http://paperpile.com/b/48fmZz/2h6g
http://paperpile.com/b/48fmZz/2h6g
http://paperpile.com/b/48fmZz/2h6g
http://paperpile.com/b/48fmZz/GOjV
http://paperpile.com/b/48fmZz/GOjV
http://paperpile.com/b/48fmZz/FFFo
http://paperpile.com/b/48fmZz/FFFo
http://paperpile.com/b/48fmZz/e9nk
http://paperpile.com/b/48fmZz/e9nk
http://paperpile.com/b/48fmZz/WgMv
http://paperpile.com/b/48fmZz/WgMv
http://paperpile.com/b/48fmZz/JRL7
http://paperpile.com/b/48fmZz/JRL7
http://paperpile.com/b/48fmZz/Gptx
http://paperpile.com/b/48fmZz/Gptx
http://paperpile.com/b/48fmZz/LFia
http://paperpile.com/b/48fmZz/LFia
https://www.biorxiv.org/content/10.1101/2020.01.26.920173v1
http://paperpile.com/b/48fmZz/R2Fp
http://paperpile.com/b/48fmZz/R2Fp
http://paperpile.com/b/48fmZz/5Xwn
http://paperpile.com/b/48fmZz/5Xwn
http://paperpile.com/b/48fmZz/DcKX
http://paperpile.com/b/48fmZz/DcKX
http://paperpile.com/b/48fmZz/1orz
http://paperpile.com/b/48fmZz/1orz
https://hal.archives-ouvertes.fr/tel-01484198/
http://paperpile.com/b/48fmZz/g80O
https://attractivechaos.wordpress.com/2018/01/13/revisiting-hash-table-performance/
http://paperpile.com/b/48fmZz/LvyQ
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

721

722
723

724
725

726
727

728
729

730
731

732
733

734

735
736

737
738

739
740
741

742
743

744
745

746
747

748
749

750
751

752
753

754
755
756

757
758

759
760

IEEE/ACM Trans Comput Biol Bioinform. 2018;1–1.

57. Guo H, Fu Y, Gao Y, Li J, Wang Y, Liu B. deGSM: memory scalable construction of large scale de Bruijn Graph.
IEEE/ACM Trans Comput Biol Bioinform. 2019;1–1.

58. Nasko DJ, Koren S, Phillippy AM, Treangen TJ. RefSeq database growth influences the accuracy of k-mer-based
lowest common ancestor species identification. Genome Biol. 2018;19:165.

59. Bowe A, Onodera T, Sadakane K, Shibuya T. Succinct de Bruijn Graphs. In: Raphael B, Tang J, editors.
Algorithms in Bioinformatics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 225–35.

60. Holley G, Wittler R, Stoye J. Bloom Filter Trie: an alignment-free and reference-free data structure for
pan-genome storage. Algorithms Mol Biol. BioMed Central; 2016;11:3.

61. Solomon B, Kingsford C. Fast search of thousands of short-read sequencing experiments. Nat Biotechnol.
2016;34:300–2.

62. Muggli MD, Bowe A, Noyes NR, Morley PS, Belk KE, Raymond R, et al. Succinct colored de Bruijn graphs.
Bioinformatics. 2017;33:3181–7.

63. Sun C, Harris RS, Chikhi R, Medvedev P. AllSome Sequence Bloom Trees. J Comput Biol. 2018;25:467–79.

64. Pandey P, Almodaresi F, Bender MA, Ferdman M, Johnson R, Patro R. Mantis: A Fast, Small, and Exact
Large-Scale Sequence-Search Index. Cell Syst. 2018;7:201–7.e4.

65. Yu Y, Liu J, Liu X, Zhang Y, Magner E, Lehnert E, et al. SeqOthello: querying RNA-seq experiments at scale.
Genome Biol. 2018;19:167.

66. Almodaresi F, Sarkar H, Srivastava A, Patro R. A space and time-efficient index for the compacted colored de
Bruijn graph [Internet]. Bioinformatics. 2018. p. i169–77. Available from:
http://dx.doi.org/10.1093/bioinformatics/bty292

67. Harris RS, Medvedev P. Improved representation of sequence Bloom trees [Internet]. Bioinformatics. 2019.
Available from: http://dx.doi.org/10.1093/bioinformatics/btz662

68. Holley G, Melsted P. Bifrost – Highly parallel construction and indexing of colored and compacted de Bruijn
graphs [Internet]. bioRxiv. 2019. p. 695338. Available from: https://www.biorxiv.org/content/10.1101/695338v2

69. Bradley P, den Bakker HC, Rocha EPC, McVean G, Iqbal Z. Ultrafast search of all deposited bacterial and viral
genomic data. Nat Biotechnol. Springer US; 2019;37:152–9.

70. Bingmann T, Bradley P, Gauger F, Iqbal Z. COBS: A Compact Bit-Sliced Signature Index. String Processing and
Information Retrieval. Springer International Publishing; 2019. p. 285–303.

71. Zielezinski A, Girgis HZ, Bernard G, Leimeister C-A, Tang K, Dencker T, et al. Benchmarking of alignment-free
sequence comparison methods. Genome Biol. 2019;20:144.

72. Pandey P, Bender MA, Johnson R, Patro R. deBGR: an efficient and near-exact representation of the weighted
de Bruijn graph. Bioinformatics. 2017;33:i133–41.

73. Rahman A, Medvedev P. Representation of k-mer sets using spectrum-preserving string sets [Internet]. bioRxiv.
2020 [cited 2020 Jan 20]. p. 2020.01.07.896928. Available from:
https://www.biorxiv.org/content/10.1101/2020.01.07.896928v1.abstract

74. Rowe WPM. When the levee breaks: a practical guide to sketching algorithms for processing the flood of
genomic data. Genome Biol. Genome Biology; 2019;20:199.

75. Elworth RAL, Wang Q, Kota PK, Barberan CJ, Coleman B, Balaji A, et al. To Petabytes and beyond: recent
advances in probabilistic and signal processing algorithms and their application to metagenomics. Nucleic Acids

35

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

http://paperpile.com/b/48fmZz/LvyQ
http://paperpile.com/b/48fmZz/ROzP
http://paperpile.com/b/48fmZz/ROzP
http://paperpile.com/b/48fmZz/aDBw
http://paperpile.com/b/48fmZz/aDBw
http://paperpile.com/b/48fmZz/4cUY
http://paperpile.com/b/48fmZz/4cUY
http://paperpile.com/b/48fmZz/R9xq
http://paperpile.com/b/48fmZz/R9xq
http://paperpile.com/b/48fmZz/7LwR
http://paperpile.com/b/48fmZz/7LwR
http://paperpile.com/b/48fmZz/JNqQ
http://paperpile.com/b/48fmZz/JNqQ
http://paperpile.com/b/48fmZz/lsDq
http://paperpile.com/b/48fmZz/1pqI
http://paperpile.com/b/48fmZz/1pqI
http://paperpile.com/b/48fmZz/4v3p
http://paperpile.com/b/48fmZz/4v3p
http://paperpile.com/b/48fmZz/M9PH
http://paperpile.com/b/48fmZz/M9PH
http://dx.doi.org/10.1093/bioinformatics/bty292
http://paperpile.com/b/48fmZz/IkO4
http://paperpile.com/b/48fmZz/IkO4
http://dx.doi.org/10.1093/bioinformatics/btz662
http://paperpile.com/b/48fmZz/aTSW
http://paperpile.com/b/48fmZz/aTSW
https://www.biorxiv.org/content/10.1101/695338v2
http://paperpile.com/b/48fmZz/8JYV
http://paperpile.com/b/48fmZz/8JYV
http://paperpile.com/b/48fmZz/p7eU
http://paperpile.com/b/48fmZz/p7eU
http://paperpile.com/b/48fmZz/Tr5E
http://paperpile.com/b/48fmZz/Tr5E
http://paperpile.com/b/48fmZz/kyO2
http://paperpile.com/b/48fmZz/kyO2
http://paperpile.com/b/48fmZz/1sPM
http://paperpile.com/b/48fmZz/1sPM
https://www.biorxiv.org/content/10.1101/2020.01.07.896928v1.abstract
http://paperpile.com/b/48fmZz/u7AU
http://paperpile.com/b/48fmZz/u7AU
http://paperpile.com/b/48fmZz/CQc8
http://paperpile.com/b/48fmZz/CQc8
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

761

762
763

764

765
766

767

768

769
770
771

772

773
774

775

Res [Internet]. 2020; Available from: http://dx.doi.org/10.1093/nar/gkaa265

76. Pinho AJ, Ferreira PJSG, Garcia SP, Rodrigues JMOS. On finding minimal absent words. BMC Bioinformatics.
2009;10:137.

77. Gallant J, Maier D, Astorer J. On finding minimal length superstrings. J Comput System Sci. 1980;20:50–8.

78. Manuel P. Revisiting path-type covering and partitioning problems [Internet]. arXiv [math.CO]. 2018. Available
from: http://arxiv.org/abs/1807.10613

79. Medvedev P, Brudno M. Maximum likelihood genome assembly. J Comput Biol. 2009;16:1101–16.

80. Köster J, Rahmann S. Snakemake-a scalable bioinformatics workflow engine. Bioinformatics. 2012;28:2520–2.

81. Grad Y. Data for “Genomic Epidemiology of Gonococcal Resistance to Extended-Spectrum Cephalosporins,
Macrolides, and Fluoroquinolones in the United States, 2000-2013” [Internet]. Zenodo; 2019. Available from:
https://zenodo.org/record/2618836

82. Homer N. DWGSIM: Whole Genome Simulator for Next-Generation Sequencing. GitHub repository. 2010;

83. Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, et al. Bioconda: sustainable and
comprehensive software distribution for the life sciences. Nat Methods. 2018;15:475–6.

36

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

http://paperpile.com/b/48fmZz/CQc8
http://dx.doi.org/10.1093/nar/gkaa265
http://paperpile.com/b/48fmZz/rG1Y
http://paperpile.com/b/48fmZz/rG1Y
http://paperpile.com/b/48fmZz/4lMD
http://paperpile.com/b/48fmZz/MB8I
http://paperpile.com/b/48fmZz/MB8I
http://arxiv.org/abs/1807.10613
http://paperpile.com/b/48fmZz/G2zg
http://paperpile.com/b/48fmZz/q5mE
http://paperpile.com/b/48fmZz/cgKj
http://paperpile.com/b/48fmZz/cgKj
https://zenodo.org/record/2618836
http://paperpile.com/b/48fmZz/IhoS
http://paperpile.com/b/48fmZz/v7o1
http://paperpile.com/b/48fmZz/v7o1
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

Reads

Assemblies
Genomes

Transcriptomes
Metagenomes
Pan-genomes

Weighted dBG

dBG
Simplitigs

sequence data

k-mers with counts

k-mers
textual

representations

transformations

transformations

Nucleic acids

Unitigs

Individual k-mers

Simplitigs

Unitigs

Maximal unitigs

Maximal simplitigs

Compaction

NS
CL

a b

c

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

0.0
0.2
0.4
0.6
0.8
1.0

0

5

10

15

12 18 24 30

0.0

0.5

1.0

1.5

2.0

0
5

10
15
20
25
30

12 18 24 30

0
1
2
3
4
5
6

Unitigs
Simplitigs
Lower bound

0

20

40

60

80

12 18 24 30

0

10

20

30

0
100
200
300
400
500

12 18 24 30

0
20
40
60
80

100
120

0

500

1000

1500

2000

12 18 24 30

0

200

400

600

800

1000

0

5000

10000

15000

12 18 24 30

k-mer length

N
S

[M
]

C
L

[M
bp

]
N

S
[M

]
C

L
[M

bp
]

a S. pneumoniae b E.coli c S. cerevisiae

d C. elegans e B. mori f H. sapiens

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

0.3

0.6

0.9

10 15 20 25 30

BCALM 2
(1 thread)

BCALM 2
(4 threads)

ProphAsm
(1 thread)

0.0

0.5

1.0

1.5

10 15 20 25 30

0

2

4

6

10 15 20 25 30

BCALM 2
(1 thread)

BCALM 2
(4 threads)

ProphAsm
(1 thread)

0

20

40

60

10 15 20 25 30

0.3

0.6

0.9

1.2

10 15 20 25 30

BCALM 2
(1 thread)

BCALM 2
(4 threads)

ProphAsm
(1 thread)

0

1

2

3

10 15 20 25 30

0

10

20

10 15 20 25 30

BCALM 2
(1 thread)

BCALM 2
(4 threads)

ProphAsm
(1 thread)

0

100

200

10 15 20 25 30

0.3

0.6

0.9

1.2

10 15 20 25 30

BCALM 2
(1 thread)

BCALM 2
(4 threads)

ProphAsm
(1 thread)

0

2

4

6

8

10 15 20 25 30

0

25

50

75

100

10 15 20 25 30

BCALM 2
(1 thread)

BCALM 2
(4 threads)

ProphAsm
(1 thread)

0

500

1000

1500

10 15 20 25 30

k-mer length

S. pneumoniae E. coli S. cerevisiae

C. elegans B. mori H. sapiens

M
em

 [G
B]

C
PU

 [m
in

s]
C

PU
 [m

in
s]

M
em

 [G
B]

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

1

2

3

4

5

2 4 6 8 10

gc18
gc31

sp18
sp31

1.0

1.2

1.4

1.6

1.8

2 4 6 8 10

1

2

3

4

5

0 300 600 900

1.0

1.2

1.4

1.6

1.8

0 300 600 900

0

50

100

150

2.0 2.5 3.0 3.5 4.0

unit
simpl

lobound

0.0

2.5

5.0

7.5

10.0

2.0 2.5 3.0 3.5 4.0

0

50

100

150

0 300 600 900

0.0

2.5

5.0

7.5

10.0

0 300 600 900

a gc31
C

L
[M

bp
]

N
S

[k
]

nb. of k-mers [M]

b

nb. of genomesnb. of genomes
pan-genome size pan-genome size

C
L

re
du

ct
io

n
ra

tio
N

S
re

ud
ct

io
n

ra
tio

nb. of k-mers [M]

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

0

25

50
2000
3500

19 23 27 31

Unitigs

Simplitigs

Assemblies

0
20
40

9000
12000

19 23 27 31

0
50

100
150
200
250

19 23 27 31

Unitigs

Simplitigs

Assemblies

0
5

10

2000
2500

19 23 27 31

a
N

S
[k

]
C

L
[M

bp
]

b

k-mer length k-mer length

M
em

or
y

[M
bp

]
M

at
ch

in
g

[s
ec

s]

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

0
100
200
300

19 23 27 31

Unitigs

Simplitigs

0.0
2.5
5.0
7.5

10.0

19 23 27 31

0
10
20
30
40
50

19 23 27 31

Unitigs

Simplitigs

0
50

100
150
200
250

19 23 27 31

0
50

100
150
200
250

19 23 27 31

a
Lo

ad
in

g
[s

ec
s]

M
em

or
y

[G
bp

]
M

at
ch

in
g

[s
ec

s]

N
S

[M
]

C
L

[G
bp

]

0
10
20
30
40
50

19 23 27 31

Unitigs

Simplitigs

0
50

100
150
200
250

19 23 27 31

0
50

100
150
200
250

19 23 27 31

0
25
50
75

100
125

19 23 27 31

Unitigs

Simplitigs

0

500

1000

1500

19 23 27 31

0

250

500

750

1000

19 23 27 31

0
25
50
75

100
125

19 23 27 31

Unitigs

Simplitigs

0

500

1000

1500

19 23 27 31

0

250

500

750

1000

19 23 27 31

0
200
400
600

19 23 27 31

Unitigs

Simplitigs

0
10
20
30

19 23 27 31

k-mer length

Solid – desktop Solid – cluster All – clusterAll – desktopb

k-mer length

All pan-genomes
(n=3,179)

Solid pan-genomes
(n=112)

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

