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Abstract  

De   Bruijn   graphs   play   an   essential   role   in   computational   biology.   However,   despite   their   widespread   use,   they   lack   a  

universal   scalable   representation   suitable   for   different   types   of   genomic   data   sets.   Here,   we   introduce   simplitigs   as   a  

compact,   efficient   and   scalable   representation   and   present   a   fast   algorithm   for   their   computation.   On   examples   of  

several   model   organisms   and   two   bacterial   pan-genomes,   we   show   that,   compared   to   the   best   existing  

representation,   simplitigs   provide   a   substantial   improvement   in   the   cumulative   sequence   length   and   their   number,  

especially   for   graphs   with   many   branching   nodes.   We   demonstrate   that   this   improvement   is   amplified   with   more  

data   available.    Combined   with   the   commonly   used   Burrows-Wheeler   Transform   index   of   genomic   sequences,  

simplitigs   substantially   reduce   both   memory   and   index   loading   and   query   times,   as   illustrated   with   large-scale  

examples   of   GenBank   bacterial   pan-genomes.  
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Background  

Advances   in   DNA   sequencing   started   the   golden   age   of   biology   when   previously   unobservable   phenomena   can   be  

studied   on   an   unprecedented   scale.   However,   sequencing   capacity   has   been   growing   faster   than   computer  

performance   and   memory,   and   also   faster   than   available   human   resources.   Today   large   amounts   of   sequence   data  

are   available.   Consequently,   traditional   sequence-based   representations   and   sequence   alignment-based   techniques  

[1–3]    have   become   less   suitable   for   real-life   scenarios   due   to   the   space-   and   time-complexities   they   impose   and  

their   inefficiency   in   handling   polymorphisms.  

 

De   Bruijn   graphs   provide   an   elegant   solution   for   genomic   data   representation.   They   build   on   top   of   the   concept   of   k

-mers,   which   are   substrings   of   a   fixed   length     of   the   genomic   strings   to   be   represented,   such   as   sequencing   reads, k  

genomes,   or   transcriptomes.   For   a   given   -mer   set,   the   corresponding   de   Bruijn   graph   is   a   directed   graph   with   the k  

-mers   being   vertices   and     long   overlaps   between   pairs   of   these   -mers   indicating   edges   (Methods).   There   is k  k ­ 1 k  

an   obvious   correspondence   between   -mer   sets   and   de   Bruijn   graphs,   and   we   can   use   both   terms   interchangeably. k  

If     is   chosen   appropriately,   de   Bruijn   graphs   capture   substantial   information   about   the   sequenced   molecules   as k  

these   correspond   to   some   walks   in   the   graph.  

 

The   use   of   de   Bruijn   graphs   is   ubiquitous   in   sequence   analysis.   Genome   assembly   uses   the   property   that   sequenced  

molecules   form   paths    [4–6] ,   which   is   exploited   in   numerous   modern   assemblers    [7–12] .   On   the   other   hand,  

alignment-free   sequence   comparison   follows   the   idea   that   similar   sequences   share   common   -mers,   and k  

comparing   de   Bruijn   graphs   provides   thus   a   good   measure   of   sequence   similarity    [13] .   This   involves   applications   of  

de   Bruijn   graphs   to   variant   calling   and   genotyping    [14–18] ,   transcript   abundance   estimation    [19] ,   and   metagenomic  

classification    [20–23] .   In   the   latter   application,   -mer-based   classifiers   perform   best   among   all   classifiers   in k  

inferring   abundance   profiles    [24] ,   which   suggests   that   de   Bruijn   graphs   truthfully   approximate   the   graph   structures  

of   bacterial   pan-genomes,   even   if   constructed   from   noisy   assemblies   from   incomplete   databases.   Even   if   more  

advanced   pan-genome   graph   representations   are   available,   such   as   variation   graphs    [25] ,   de   Bruijn   graphs   with  

large   -mer   lengths   are   still   useful   for   indexing    [26,27] . k  
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As   de   Bruijn   graphs   are   one   of   the   primary   data   structures   in   much   of   sequence   analysis,   the   efficiency   of   many  

algorithms   is   directly   tied   to   the   efficiency   of   computation   and   representation   of   the   graph.   De   Bruijn   graphs   can   be  

readily   computed   through   a   scan   of   the   datasets   including   the   raw   reads,   genomes   or   multiple   sequence   files.   In  

practice,   such   a   scan   often   consists   in   -mer   counting   as   this   allows   efficient   denoising   of   the   graph,   e.g.,   by k  

removing   low-frequency   -mers   corresponding   to   sequencing   errors   in   the   reads.   Algorithms   for   -mer   counting k k  

have   been   extensively   studied   and   many   well-engineered   software   solutions   are   available    [28–36] .  

 

On   the   other   hand,   de   Bruijn   graph   representations   have   received   much   less   attention.   The   most   commonly   used  

representation   are   unitigs,   which   are   strings   resulting   from   compaction   of   -mers   along   maximal   paths   with k  

non-branching   nodes    [37,38] .   Unitigs   have   many   advantages:   the   representation   is   “textual”,   in   the   form   of   a   set   of  

sequences   that   contain   each   -mer   exactly   once   while   preserving   graph   topology.   However,   unitigs   impose   large k  

resource   overhead   for   many   types   of   de   Bruijn   graphs   and   do   not   scale   well   when   a   lot   of   variation   is   included.  

Specifically,   with   a   high   proportion   of   branching   nodes,   unitigs   become   fragmented,   in   an   extreme   case   up   to   the  

level   of   individual   -mers.   Subsequently,   unitig   computation   and   storage   may   require   inappropriately   large k  

resources   and   become   prohibitive   in   variation-heavy   applications,   e.g.,   in   bacterial   pan-genomics.  

 

In   this   paper,   we   propose   simplitigs   as   a   compact,   efficient   and   scalable   representation   of   de   Bruijn   graphs.  

Simplitigs   generalize   the   unitig   representation   by   relaxing   the   restriction   of   stopping   at   branching   nodes.   We  

present   an   algorithm   for   rapid   simplitig   computation   from   a   -mer   set   and   implement   it   in   a   tool   called   ProphAsm. k  

ProphAsm   proceeds   by   loading   a   -mer   set   into   memory   and   a   greedy   enumeration   of   maximal   vertex-disjoint k  

paths   in   the   associated   de   Bruijn   graph.   We   use   ProphAsm   to   evaluate   the   improvement   of   simplitigs   over   unitigs,  

in   terms   of   two   main   characteristics:   the   cumulative   sequence   length   (CL)   and   the   number   of   sequences   (NS).   We  

demonstrate   that   greedily   computed   simplitigs   are   close   to   theoretical   bounds   in   practical   applications   and   provide,  

compared   to   unitigs,   a   substantial   improvement   in   memory   requirements   and   speed   in   applications   such   as   -mer k  

matching.    
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Results  

The   concept   of   simplitigs  

We   developed   the   concept   of   simplitigs   to   efficiently   represent   de   Bruijn   graphs   of   sequence   data   ( Fig.   1 ).  

Simplitigs   are   a   generalization   of   unitigs   and   correspond   to   spellings   of   vertex-disjoint   paths   covering   a   given   de  

Bruijn   graph   ( Fig.   1a ,   Methods).   Consequently,   maximal   simplitigs   are   such   simplitigs   where   no   two   simplitigs   can  

be   merged   by   a     overlap   (Methods).   Note   that   unitigs   and   -mers   are   also   simplitigs,   but   not   maximal   in k )  ( ­ 1 k  

general   ( Fig.   1b ).   The   main   conceptual   difference   between   maximal   simplitigs   and   maximal   unitigs   is   that  

simplitigs   are   not   limited   by   branching   nodes,   which   allows   for   further   compaction,   with   a   benefit   increasing  

proportionally   to   the   amount   of   branching   nodes   in   the   graph.  

 

To   compare   simplitig   and   unitig   representations,   we   created   a   benchmarking   procedure   based   on   the   two  

characteristics:   the   number   of   sequences   (NS)   and   their   cumulative   length   (CL)   (Methods,   example   in    Fig.   2 ).  

While   NS   determines   the   number   of   records   to   be   kept   in   memory,   CL   largely   determines   the   total   memory   needed.  

NS   and   CL   are   readily   bounded   from   below   by   one   and   by   the   number   of   -mers,   respectively,   and   they   are   also k  

tightly   connected   ((eq   1)   in   Methods).   As   every   step   of   compaction   decreases   both   NS   and   CL   ( Fig.   1b ,   Methods),  

we   can   optimize   them   jointly.   However,   finding   an   optimal   simplitig   representation   translates   to   the   vertex   disjoint  

path   coverage   problem.   While   NP-hard   for   general   graphs   (by   reduction   from   the   well-known   NP-hard   problem   of  

computing   a   Hamiltonian   path),   the   problem   may   be   tractable   for   observed   de   Bruijn   graphs   (Methods).  

 

Since   practical   applications   do   not   require   optimal   simplitigs,   we   prioritized   speed   and   designed   a   greedy   algorithm  

for   their   rapid   computation   ( Alg.   1 ,   Methods).   In   an   iterative   fashion,   the   algorithm   selects   an   arbitrary   -mer   as   a k  

seed   of   a   new   simplitig   and   keeps   extending   it   forwards   and   then   backwards   as   long   as   possible,   while   removing   the  

already   used   -mers   from   the   set.   This   process   is   repeated   until   all   -mers   are   covered.   Loading   -mers   into k k k  

memory   and   simplitig   computation   are   linear   in   the   length   of   the   input   and   the   number   of   -mers,   respectively, k  
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and   the   memory   footprint   is   linear   in   the   number   of   -mers.   We   implemented    Alg.   1    in   a   program   called k  

ProphAsm,   available   at    https://github.com/prophyle/prophasm .  

 

Fig.   1    Overview   of   the   simplitig   approach.    a    Textual   representations   of   -mer   sets   ordered   by   the   degree   of k  

compaction:   individual   -mers,   maximal   unitigs,   and   maximal   simplitigs.   Every   component   of   a   simplitig   subgraph k  

(black   arrows)   of   the   de   Bruijn   graph   (all   arrows)   corresponds   to   a   path,   and   its   spelling   constitutes   a   simplitig  

(Methods).    b  Scheme   of   all   possible   simplitig   representations   according   to   the   degree   of   compaction.   While   unitigs  

(dark   gray   area)   correspond   to   compaction   along   non-branching   nodes   in   the   associated   de   Bruijn   graph,   simplitigs  

(gray   area)   can   also   contain   branching   nodes.   Every   step   of   compaction   decreases   the   number   of   sequences   (NS)  

and   their   cumulative   length   (CL)   by     and   by   ,   respectively.   Maximal   simplitigs   may   not   be   determined 1  k ­ 1  

uniquely;   the   simplitig   representation   can   have   multiple   local   optima,   depending   on   which   edges   were   selected   at  

the   branching   nodes.    c    The   workflow   of   simplitigs.   Simplitigs   represent   de   Bruijn   graphs   and   carry   implicitly   the  

same   information   as   unitigs.   De   Bruijn   graphs   are   usually   computed   from   either   assemblies   or   weighted   de   Bruijn  

graphs.   Weighted   de   Bruijn   graphs   are   typically   obtained   by   -mer   counting   and   allow   removing   noise,   e.g., k  
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low-frequency   -mers,   which   frequently   originate   in   sequencing   errors. k  

 

Alg.   1    Greedy   computation   of   maximal   simplitigs   for   a   -mer   set   or   a   de   Bruijn   graph.   In   an   iterative   fashion,   the k  

algorithm   draws   a   -mer   from   the   set   of   canonical   -mers   ,   uses   it   as   a   seed   of   a   new   simplitig,   and   then   keeps k k K  

extending   the   simplitig   forwards   as   long   as   possible,   and   then   backwards,   while   removing   the   already   used  

canonical   -mers   from   . k K  

Function    extend_simplitig_forwards   (K,   simplitig):  

extending   =    True  

while    extending:  

extending   =    False  

q   =   suffix   (simplitig,   k-1),  

for    x    in    [‘A’,   ‘C’,   ‘G’,   ‘T’]:  

canon_kmer   =   canonical   (q   +   x)  

if    canon_kmer    in    K:  

extending   =    True  

simplitig   =   simplitig   +   x  

K.remove   (canon_kmer)  

break  

return    K,   simplitig  

  

Function    compute_maximal_simplitig_from_kmer   (K,   seeding_kmer):  

simplitig   =   initial_kmer  

K,   simplitig   =   extend_simplitig_forwards   (K,   simplitig)  

simplitig   =   reverse_completent   (simplitig)  

K,   simplitig   =   extend_simplitig_forwards   (K,   simplitig)  

return    K,   simplitig  

  

Function    compute_simplitigs   (input_kmers):  

K   =   {}  

for    kmer    in    input_kmers:  

K.add   (canonical   (kmer))  

maximal_simplitigs   =   {}  

while    |K|   >   0:  

seeding_kmer   =   K.pop   ()  

K,   simplitig   =   compute_maximal_simplitig_from_kmer   (K,   seeding_kmer)  

maximal_simplitigs.add   (simplitig)  

return    maximal_simplitigs    
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Simplitigs   of   model   organisms  

We   first   evaluated   simplitig   and   unitig   representations   on   assemblies   of   six   model   organisms   ( Fig.   2 ).   As   different  

applications   of   de   Bruijn   graphs   call   for   different   -mer   lengths,   we   sought   to   characterize   the   NS   and   CL   scaling k  

for   both   representations   with     growing,   as   well   as   the   effect   of   the   species’   genome   size.   Therefore,   selected   model k  

organisms   were   evaluated   in   an   increasing   order   of   the   genome   size   and   benchmarked   for   both   representations   on   a  

range   of   -mer   lengths   corresponding   to   common   alignment-free-based   applications    [19,20,39] . k  

 

We   observe   that   simplitigs   always   provide   substantially   better   performance   than   unitigs   ( Fig.   2 ).   In   particular,   they  

quickly   approach   the   theoretical   lower   bounds   for   both   characteristics   tested.   Every   data   set   has   a   range   of   -mer k  

lengths   where   the   difference   between   simplitigs   and   unitigs   is   very   large,   and   after   a   certain   threshold,   the  

difference   almost   vanishes.   While   for   short   genomes   this   threshold   is   located   at   smaller   -mer   lengths   than   those k  

typically   used   in   alignment-free   applications   (e.g.,     for    E.   coli ),   for   bigger   genomes   this   threshold   has   not 7  k ≈ 1  

been   attained   on   the   tested   range   and   seems   to   be   substantially   shifted   towards   large   -mers   (e.g.,    B.   mori ). k  

 

Interestingly,   maxima   of   the   NS   and   CL   values   for   both   representations   occur   very   close   to   the   value   , Gk = log4  

where     is   the   genome   size   ( Fig.   2 ).   This   is   readily   explained   by   edge   saturation:   for   values   of     up   to   ,   an G k Glog4  

overwhelming   fraction   of   all   -mers   belong   to   the   genome,   which   makes   the   de   Bruijn   graph   branch   at   nearly 4k k  

every   node.   As   a   consequence,   unitigs   are   then   essentially   reduced   to   individual   -mers   and   their   number   grows k  

exponentially   whereas   simplitigs   stay   compact   on   the   whole   range   of   -mer   lengths.   Starting   from     the k Gk = log4  

graph   starts   to   form   longer   non-branching   paths,   which   drives   down   the   NS   and   CL   of   unitigs,   and   they   approach  

those   of   simplitigs.   However,   the   difference   between   simplitigs   and   unitigs   in   their   count   and   length   may   stay  

considerable   even   for   larger   values   of   ,   especially   in   case   of   large   eukaryotic   genomes. k  
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Fig.   2    Comparison   of   the   simplitig   and   unitig   representations   for   selected   model   organisms   and   a   range   of   -mers. k  

The   number   of   sequences   (NS,   millions)   and   their   cumulative   length   (CL,   megabase   pairs)   for   both   representations  

of   six   model   organisms   ordered   by   their   genome   size:    a     Streptococcus   pneumoniae ,   2.22   Mbp;    b   Escherichia   coli ,  

4.64   Mbp;    c   Saccharomyces   cerevisiae ,   12.2   Mbp;    d     Caenorhabditis   elegans ,   100 Mbp;    e   Bombyx   mori ,   482   Mbp;  

and    f     Homo   sapiens ,   3.21   Gbp.   The   CL   lower   bound   corresponds   to   the   number   of   -mers.   Full   results   are   available k  

in    Additional   File   1 .    
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Performance   assessment  

We   then   analyzed   the   computational   resources   that   had   been   used   to   compute   the   simplitigs   using   ProphAsm   and  

the   unitigs   using   BCALM   ( Fig.   3 ).   Both   representations   were   computed   in   the   environment   of   a   computational  

cluster,   with   individual   experiments   deployed   as   parallel   jobs   using   SLURM   (Methods).   Even   though   we   primarily  

focused   on   the   total   CPU   time,   we   also   tested   BCALM   using   4   threads   to   evaluate   the   effect   of   parallelization.  

 

We   observe   that   throughout   our   experiments   ProphAsm   outcompeted   BCALM,   both   in   terms   of   the   memory  

consumption   and   the   CPU   time,   even   if   BCALM   was   run   with   4   threads   ( Fig.   3 ).   The   only   exception   was   the  

memory   consumption   for    H.   sapiens ,   suggesting   that   BCALM   may   be   more   memory-efficient   for   large   genomes.  

Importantly,   ProphAsm   used   a   consistent   amount   of   resources:   memory   38–51   bytes   of   RAM   per   -mer   in   the k  

dataset,   a   limited   CPU   time   and   no   additional   disk   space.   On   the   other   hand,   BCALM’s   resource   usage   was   less  

predictable   and   less   consistent   across   experiments   and   required   frequent   trial-and-error   resource   adjustments   and  

re-running   (Methods).  

 

Besides   the   comparatively   high   memory   and   CPU   time   requirements,   the   most   challenging   resource   was   the   disk  

space.   In   order   to   fit   within   the   available   disk   capacity,   we   reduced   the   BCALM   consumption   using   the   ‘-maxdisk’  

parameter.   However,   despite   that   we   requested   BCALM   to   use   no   more   than   30   GB   per   experiment,   a   random  

manual   inspection   revealed   a   substantially   higher   use   –   for   instance,   116 GB   of   disk   space   for    H. sapiens    with  

  and   4   threads.   The   extensive   disk   space   consumption   also   disabled   a   similar   comparison   on   a   desktop 7k = 1  

computer.  

 

Overall,   the   better   performance   of   ProphAsm   can   be   explained   by   simplitigs   being   fundamentally   easier   to   compute  

than   unitigs   and   by   BCALM   being   optimized   for   a   particular   class   of   de   Bruijn   graphs   that   emerge   in   assembly-like  

applications.   As   the   ProphAsm   resource   usage   is   highly   predictable,   it   appears   to   be   more   suitable   for   the   use   on  

clusters   in   many   parallel   instances,   unless   the   number   of   -mers   in   the   dataset   exceeds   a   critical   threshold k  

determined   by   the   available   RAM.    
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Fig.   3    Comparison   of   CPU   time   and   memory   consumption   of   ProphAsm   and   BCALM.   Resources   to   compute  

unitigs   using   BCALM   (using   one   and   four   threads)   and   simplitigs   using   ProphAsm   (using   one   thread)   of   the   six  

model   organisms.   Full   results   are   available   in    Additional   File   2 .    
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Simplitigs   of   bacterial   pan-genomes  

We   then   sought   to   evaluate   the   impact   of   additional   variation   in   a   de   Bruijn   graph   ( Fig. 4 ).   Such   variation   may  

originate   in   polymorphisms,   varying   gene   content   in   a   population   of   genomes   that   are   represented   jointly,   in  

haplotypes   of   viral   quasispecies,   or   in   sequencing   errors   in   case   of   graphs   constructed   directly   from   sequencing  

reads.   In   all   these   cases,   many   nodes   of   the   de   Bruijn   graph   become   branching   and   new   paths   emerge.   To   model  

gradually   increasing   variation,   we   used   bacterial   pan-genomes   with   different   levels   of   sampling.   Given   the   high  

diversity   and   variability   of   bacteria,   de   Bruijn   graphs   provide   a   convenient   option   for   computational  

pan-genomes  [40] .   Such   pan-genomes   can   be   constructed   from   draft   assemblies   or   even   directly   from   sequencing  

reads,   and   thanks   to   bacterial   genomes   being   short   and   haploid,   the   information   captured   by   the   graphs   is   sufficient  

for   many   analyses.  

 

We   first   constructed   a   pan-genome   of    N.   gonorrhoeae ,   and   characterized   unitigs   and   simplitigs   as   a   function   of  

pan-genome   size   ( Fig.   4a ).   We   used   1,102   draft   assemblies   of   clinical   isolates   from   the   Prevention’s   Gonococcal  

Isolate   Surveillance   Project    [41] ,   from   which   we   built   a   series   of   de   Bruijn   graphs   using   an   increasing   number   of  

genomes.   Consistent   with   previous   experiments   ( Fig   2ab ,    ),   both   representations   perform   comparably   well 1k = 3  

when   only   one   bacterial   genome   is   included   ( Fig. 4a ).   However,   as   the   number   of   genomes   or   -mers   grows,   the k  

NS   and   CL   grow   as   well,   but   with   an   increasing   gap   between   unitigs   and   simplitigs;   importantly,   the   latter   stay   close  

to   the   theoretical   lower   bounds.   When   the   pan-genome   size   is   measured   via   the   number   of   genomes   included,   the  

CL   and   NS   resemble   logarithmic   functions   for   both   unitigs   and   simplitigs   ( Fig.   4a ,   left-hand   column).   However,  

when   the   number   of   -mers   included   is   used   instead,   the   NS   and   CL   functions   act   as   affine   functions   ( Fig.   4a , k  

right-hand   column).   This   suggests   that   a   pan-genome   -mer   count   and   a   species-specific   slope   may   be   used   as   the k  

predictors   of   simplitig   performance   in   future   applications.  

 

To   analyze   the   relative   benefit   of   simplitigs   with   growing   de   Bruijn   graphs,   we   evaluated   the   NS   and   CL   reduction  

ratio   of   simplitigs   over   unitigs   in   different   configurations   ( Fig. 4b ).   We   used   the   same    N.   gonorrhoeae    dataset   and  

considered   also   another   dataset   of    S.   pneumoniae ,   consisting   of   616   draft   Illumina   assemblies   of   isolates   from   a  

11  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint 

https://paperpile.com/c/48fmZz/SGxm
https://paperpile.com/c/48fmZz/LiPb
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/


 

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

carriage   study   of   children   in   Massachusetts,   USA    [42,43] .   For   both   species   and    for   ,   we   constructed   a 8, 1k = 1 3  

series   of   de   Bruijn   graphs   as   previously,   but   this   time   we   visualized   the   NS   and   CL   reduction   ratios.   In   all   cases,   the  

NS   reduction   ratios   eventually   stabilized   at   values   close   to   3,   following   an   L-shape   ( )   or   being   almost   constant 8k = 1  

( ).   The   CL   reduction   ratio   admitted   approximately   a   logarithmic   dependence   on   the   number   of   genomes   and 1k = 3  

still   resembled   a   linear   dependence   on   the   number   of   -mers.   Overall,   these   experiments   provided   further   evidence k  

that   the   benefit   of   simplitigs   over   unitigs   grows   with   the   increased   proportion   of   branching   nodes   in   a   de   Bruijn  

graph   or   with   increasing   data   in   case   of   pan-genome   reference   structures.  

 

 

Fig.   4    Scaling   of   simplitigs   and   unitigs   of   bacterial   pan-genomes   as   the   pan-genome   size   grows   with   a   better  

sampling   and   more   within-species   variation.    a  Number   of   sequences   (NS,   thousands)   and   their   cumulative   length  

(CL,   megabase   pairs)   for   simplitigs   (simpl)   and   unitigs   (unit)   and   the   lower   bound   (lobound)   of    N.   gonorrhoeae  

and   ,   as   a   function    of   the   number   of   genomes   (left)   and   -mers   (right,   millions)   included.    b    Reduction   ratio 1k = 3 k  

of   simplitigs   over   unitigs   for    S.   pneumoniae    (sp)   and    N. gonorrhoeae    (gc)   and   ,   as   a   function   of   the 8, 1k = 1 3  

number   of   genomes   (left)   and   -mers   (right,   millions)   included.   Full   results   are   available   in    Additional   File   3 . k  
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Application   of   simplitigs   for    k -mer   search  

Finally,   we   sought   to   demonstrate   the   benefit   of   simplitigs   in   a   real   application.   A   major   use   of   de   Bruijn   graphs  

consists   in   -mer   matching,   which   requires   the   graphs   to   act   as   a   membership   data   structure.   As   both   simplitigs k  

and   unitigs   are   text-based   representations,   -mer   queries   can   be   implemented   using   an   arbitrary   full-text k  

index  [44] ,   notably   a   Burrows-Wheeler   Transform   index    [45]    (sometimes   referred   to   as   an   FM-index).   Here,   we  

used   the   index   of   BWA    [46] ,   as   one   of   the   best-engineered   solutions   available,   to   analyze   the   impact   of   unitig  

replacement   by   simplitigs.  

Single   pan-genome  

We   first   evaluated   the   simplitig   improvement   on   the   same    N.   gonorrhoeae    pan-genome   ( Fig. 5 ).   We   considered  

four   different   -mer   lengths   and   for   each   of   them,   we   built   three   pan-genome   representations   from k 9, 3, 7, 1k = 1 2 2 3  

the   original   draft   genome   assemblies:   first,   we   merged   the   assemblies   as   the   most   straightforward   approach   to  

collect   all   -mers;   then   we   computed   pan-genome   representations   by   unitigs   and   simplitigs.   As   all   the   three k  

representations   carry   the   same   -mer   set,   a   full-text   index   built   upon   them   should   provide   the   same   results,   but k  

with   a   performance   reflecting   the   differences   in   NS   and   CL.  

 

We   analysed   the   NS   and   CL   characteristics   of   the   computed   representations   ( Fig.   5a ).   Simplitigs   improved   NS   and  

CL   over   unitigs   by   factors   of   3.1×–3.2×   and   1.5×–1.6×,   respectively,   consistent   with    Fig.   4 .   This   suggests   that  

memory   required   for   unitigs   would   be   approximately   by   50%   higher   than   for   unitigs   across   all   the   values   of   k  

considered.   We   also   compared   simplitigs   and   unitigs   to   assemblies;   both   improved   the   CL   by   two   orders   of  

magnitude   while   the   NS   stayed   comparable   for   simplitigs   and   increased   twofold   for   unitigs.   

 

We   then   evaluated   -mer   query   performance   and   memory   footprint   ( Fig. 5b ).   For   each   representation,   we k  

constructed   a   standard   BWA   index   and   matched   10   million   random   -mers   from   the   pan-genome   using   BWA k  

fastmap    [47] ,   with   no   restriction   on   maximum   size   of   the   suffix-array   interval   to   ensure   evaluation   correctness  

(Methods).   Surprisingly,   simplitigs   improved   memory   by   factors   of   2.7×   –   3.0×   ( Fig.   5b ),   thus   twice   as   much   as   we  
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previously   anticipated.   This   is   explained   by   the   fact   that   the   underlying   full-text   engine   has   to   keep   information  

about   individual   sequences   in   memory   as   separate   records.   As   NS   grows,   it   has   a   negative   impact   on   both   the  

memory   footprint   and   query   speed.   Nevertheless,   since   simplitigs   provided   a   substantial   reduction   in   NS   over  

unitigs,   this   overhead   has   been   reduced.   Therefore,   the   excessive   number   of   unitigs   observed   throughout   our  

experiments   ( Fig.   1    and    Fig.   2 )   provides   a   further   argument   for   replacing   unitigs   by   simplitigs   when   possible.  

 

 

 

Fig.   5    -mer   queries   for   the    N.   gonorrhoeae    pan-genome   on   top   of   the   draft   assemblies,   unitigs,   and   simplitigs. K  

a  Characteristics   of   the   obtained   unitigs   and   simplitigs:   number   of   sequences   (NS,   thousands)   and   their   cumulative  

length   (CL,   megabase   pairs).   The   dot-dash   line   depicts   the   CL   lower   bound   corresponding   to   the   number   of   -mers. k  

b  Time   and   memory   footprint   of   BWA   -mer   queries   (10   million   -mers).   Full   results   including   relative k k  

improvements   are   available   in    Additional   File   4 .    
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Multiple   pan-genomes  

We   evaluated   the   performance   of   the   simplitig   representation   for   simultaneous   indexing   of   a   large   number   bacterial  

pan-genomes   ( Fig.   6 ).   We   downloaded   all   complete   bacterial   genomes   from   Genbank   that   had   not   been   excluded  

from   RefSeq   (as   of   May   2020;   9,869   records   out   of   which   9,032   had   genomic   sequences   available;   Methods).   We  

restricted   ourselves   to   complete   genomes   as   draft   genomes   in   Genbank   are   substantially   impacted   by   false   genetic  

variability    [48–50]    that   is   particularly   common   in   bacterial   studies,   mainly   due   to   the   contaminant   DNA    [51] .   By  

grouping   individual   genomes   per   species,   we   obtained   3,179   bacterial   pan-genomes   which   we   call   the   “All”     dataset.  

After   computing   simplitigs   and   unitigs   per   species,   we   merged   the   obtained   representations   and   constructed  

indexes   using   BWA;   all   this   was   done   for     to   evaluate   the   impact   of   the   -mer   length.   As   the   unitig 9, 3, 7, 1k = 1 2 2 3 k  

index   could   not   fit   into   RAM   of   our   desktop   computer   for   any   ,   we   also   created   the   “Solid”   dataset   by   omitting k  

pan-genomes   with   less   than   11   genomes;   this   resulted   in   112   pan-genomes   with   3,958   genomes.   We   provide   all   the  

constructed   pan-genomes   in   the   form   of   simplitigs   on   Zenodo   ( 10.5281/zenodo.3800713 ).  

 

First   we   analyzed   the   obtained   simplitig   and   unitig   representations   of   both   datasets   ( Fig. 6a ).   We   observe   that  

simplitigs   provide   substantial   improvement   in   both   test   characteristics.   In   the   Solid   dataset,   NS   and   CL   were  

reduced   by   simplitigs   by   factors   of   3.1–4.5   and   1.4–1.9,   respectively;   and   in   the   All   dataset,   NS   and   CL   were   reduced  

by   factors   of   3.0–4.3   and   1.2–1.4,   respectively;   all   consistent   with   the   scaling   observed   previously   ( Fig.   4 ,    Fig.   5 ).  

While   the   improvement   in   NS   was   almost   identical   in   both   datasets   (consistent   with   the   top-right   graph   in    Fig   4b ),  

the   improvement   in   CL   was   clearly   better   in   the   Solid   dataset.   Indeed,   as   the   vast   majority   of   pan-genomes   in   the  

All   dataset   contained   only   one   genome,   the   de   Bruijn   graphs   had   a   comparatively   low   number   of   branching   nodes,  

therefore   the   difference   between   simplitigs   and   unitigs   was   less   striking   (consistent   with   the   values   for   small  

pan-genome   sizes   in    Fig   4b ).   We   also   observe   that,   in   contrast   to   unitigs,   -mer   length   had   only   little   impact   on k  

the   CL   of   simplitigs   within   the   tested   range,   which   provides   better   guarantees   on   required   computational   resources  

in   future   applications.  

 

We   then   measured   the   performance   of   -mer   lookup   ( Fig.   6b ).   Both   on   a   desktop   and   on   a   cluster,   we   evaluated k  

memory   footprints,   index   loading   time   and   time   to   match   ten   million   random   -mers   from   the   index   using   BWA k  
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(Methods).   We   observed   that   simplitigs   substantially   improved   the   memory   footprint   and   index   loading   times.   For  

,   simplitigs   largely   improved   the   matching   times,   where   the   difference   is   caused   by   “ghost   -mers”   on   unitig 9k = 1 k  

borders;   these   were   more   common   in   this   experiment   due   to   the   short   -mer   length   and   the   high   number   of k  

unitigs.   For   higher   -mer   lengths,   simplitigs   still   provided   a   moderate   improvement   in   the   matching   rate.   We   note k  

that   the   query   time   with   BWT-based   -mer   indexes   is   dominated   by   high-frequency   -mers.   As   these   are   equally k k  

frequent   in   simplitigs   and   unitigs,   the   observed   performance   is   similar   unless   many   ghost   -mers   emerge   on k  

sequence   borders   as   seen   previously.   On   the   desktop,   the   unitig   All-index   could   not   be   evaluated   as   it   did   not   fit   into  

memory,   and   the   outlier   for     may   be   the   result   of   memory   swapping. 9k = 1    
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Fig.   6    -mer   queries   for   multiple   pan-genomes   indexed   simultaneously.   Bacterial   pan-genomes   were   computed K  

from   the   complete   Genbank   assemblies   per   individual   species.   While   the   All   dataset   comprises   all   pan-genomes  

with   no   restriction   on   their   size,   the   Solid   dataset   comprises   only   those   that   contain   at   least   11   genomes.  

a  Characteristics   of   the   obtained   unitigs   and   simplitigs:   number   of   sequences   (NS,   millions)   and   their   cumulative  

length   (CL,   gigabase   pairs).   The   dot-dash   line   depicts   the   lower   bound   corresponding   to   the   number   of   -mers. k  

b  Memory   footprint,   time   of   index   loading   and   time   of   matching   10   million   -mers   using   BWA.   The   bars k  

correspond   to   the   mean   of   three   measurements   (black   dots).   Full   results   including   relative   improvements   are  

available   in    Additional   File   5 .    
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Discussion  

We   introduced   the   concept   of   simplitigs,   a   generalization   of   unitigs,   and   demonstrated   that   simplitigs   constitute   a  

compact,   efficient   and   scalable   representation   of   de   Bruijn   graphs   for   various   types   of   genomic   datasets.   The   two  

representations   share   many   similarities:   they   are   text-based   and   individual   strings   correspond   to   spellings   of  

vertex-disjoint   paths.   Both   representations   can   be   seen   as   irreversible   transforms,   taking   a   set   of   input   strings   and  

producing   a   new   set   of   strings   preserving   the   -mer   sets.   In   both   cases,   the   resulting   files   can   easily   be   manipulated k  

using   common   Unix   tools,   compressed   using   standard   compression   techniques,   and   indexed   using   full-text   indexes.  

The   main   difference   consists   in   that   simplitigs   do   not   explicitly   carry   information   about   the   topology   of   the   de  

Bruijn   graph.   Also   simplitigs   are   not   expected   to   have   direct   biological   significance   –   neighboring   segments   of   the  

same   simplitig   may   correspond   to   distant   parts   of   the   same   nucleic   acid   or   even   to   different   ones.   Nevertheless,  

unitigs   can   always   be   recomputed   from   simplitigs,   but   this   step   is   not   required   for   many   common   applications.  

Furthermore,   a   concept   analogous   to   simplitigs,   called   disjointigs,   was   recently   introduced   in   the   context   of   genome  

assembly   using   A-Bruijn   graphs    [52,53] ,   suggesting   that   simplitigs   may   be   useful   beyond   the   context   of  

topology-oblivious   applications.  

 

We   provided   ProphAsm,   a   tool   implementing   a   greedy   heuristic   to   efficiently   compute   maximal   simplitigs   from   a   k

-mer   set.   ProphAsm   is   a   spin-off   of   the   ProPhyle   software   ( https://prophyle.github.io ,    [22,54] )   for   metagenomic  

classification,   allowing   efficient   indexing   of   -mers   propagated   to   individual   nodes   of   a   phylogenetic   tree. k  

ProphAsm   presents   a   “naive”   implementation   of   the   greedy   heuristic   ( Alg   1)    that   can   be   further   improved.   For  

instance,   a   hash   table   with   better   memory   management   may   reduce   the   memory   requirement   by   a   factor   of   2.5    [55] .  

Additional   memory   reduction   may   be   also   achieved   in   a   similar   fashion   as   previously   done   for   unitigs    [38,56,57] .  

Nevertheless,   on   the   studied   data,   ProphAsm   strikingly   outcompeted   BCALM   in   all   characteristics   measured,   with  

the   only   exception   of   memory   in   the   case   of    H.   sapiens .  

 

The   observed   lower   requirements   of   ProphAsm   can   be   attributed   to   two   major   differences   between   unitigs   and  

simplitigs.   First,   unitigs,   and   BCALM   as   one   of   the   reference   programs,   are   designed   for   assembly   applications,  
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where   only   a   small   proportion   of   nodes   is   usually   branching.   Moreover,   experiments   are   usually   run   on   a   cluster   in  

series,   with   multiple   threads   per   experiment,   rather   than   in   parallel,   and   the   tools   can   use   extensive   disk   space.  

However,   when   unitigs   are   tested   as   a   general   representation   with   restricted   disk   space,   the   required   resources  

grow   substantially.   Second,   simplitigs   are   likely   to   be,   from   a   computational   perspective,   fundamentally   easier   than  

unitigs.   

 

A   challenging   but   also   promising   feature   of   simplitig   representation   is   the   ambiguity   of   maximal   simplitigs.   This   is  

in   sharp   contrast   to   maximal   unitigs,   which   are   uniquely   defined   (up   to   the   order,   reverse   complementing,   and  

cycles).   In   practice,   every   algorithm   for   simplitig   computation   has   to   decide   which   edge   will   be   included   at   each  

branching   node.   Here,   we   prioritized   speed,   simplitigs   were   constructed   progressively   and   lexicographically  

minimal   edges   were   used   in   a   case   of   ambiguity.   Therefore,   the   final   maximal   simplitigs   were   only   dependent   on   the  

choice   of   seeding   -mers;   these   are   determined   by   the   specific   implementation   of   ‘std::unordered_set’   in   the   C++ k  

standard   library.   Nevertheless,   characteristics   other   than   speed   could   readily   be   prioritized   instead.   For   instance,   a  

more   sophisticated   heuristic   may   shift   the   CL   and   NS   closer   to   the   optimum.   One   could   also   aim   at   adding  

biological   meaning   to   simplitigs,   e.g.,   by   preferring   those   paths   that   are   better   supported   by   sequence   data.   On   the  

other   hand,   streaming   algorithms   for   operations   such   as   merging   or   intersecting   may   require   specific   prescribed  

forms   of   unitigs.   Finally,   simplitigs   may   be   optimized   for   entropy   in   order   to   maximize   their   compressibility.  

 

The   data   presented   in   this   paper   highlight   the   scaling   of   computational   resources   as   more   sequencing   data   become  

available.   The   studied    N.   gonorrhoeae    dataset   constitutes   a   relatively   complete   image   of   a   bacterial   population   in   a  

geographical   region   at   a   given   time   scale.   As   such,   it   can   be   used   to   model   the   “state   of   completion”   of   -mer-based k  

pan-genome   representations.   On   the   other   hand,   the   multiple   pan-genomes   experiment   shows   how   simplitigs  

perform   when   a   large   number   of   such   pan-genomes,   although   in   different   states   of   completion,   are   considered  

simultaneously   and   queried   using   a   single   BWT   index.   Overall,   the   presented   experiments   allow   us   to   predict   the  

resources   for   species   for   which   only   limited   sequence   data   are   available   at   present,   but   more   are   likely   to   be  

generated   in   the   future.   Importantly,   with   more   data   available,   comparative   benefits   of   simplitigs   over   unitigs   grow  

as   we   have   shown   throughout   the   paper.   As   the   growth   of   public   databases   negatively   impacts   the   accuracy   of   those  
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algorithms   that   operate   on   top   of   lossily   represented   de   Bruijn   graphs    [58] ,   simplitigs   provide   a   promising   solution  

offering   both   exactness   and   scalability.  

 

In   modern   bioinformatics   applications   multiple   de   Bruijn   graphs   are   often   considered   simultaneously;   the   resulting  

structure   is   usually   referred   to   as   a   colored   de   Bruijn   graph    [14]    and   the   associated   data   structures   have   been   widely  

studied    [59–70] .   Although   we   touched   upon   this   setting   in   the   Multiple   pan-genomes   section,   exploiting   the  

similarity   between   individual   de   Bruijn   graphs   for   further   compression   in   simplitig-based   approaches   is   to   be  

addressed   in   future   work.   In   many   applications,   including   some   of   the   traditional   alignment-free   methods    [13,71] ,   it  

is   also   desirable   to   consider   -mers   with   counts.   In   the   context   of   de   Bruijn   graphs,   this   leads   to   the   so-called k  

weighted   variant   of   the   problem    [72] .   The   fact   that   frequencies   of   overlapping   -mers   are   usually   similar   suggests k  

that   -mers   can   be   grouped   based   on   frequencies   and   simplitigs   constructed   per   group   . k  

 

Independently   and   simultaneously   with   the   work   we   present   here,   the   simplitig   representation   was   recently   studied  

in    [73]    under   the   name   “spectrum-preserving   string   sets”.   The   associated   UST   tool   follows   a   similar   greedy   strategy  

to   ProphAsm,   although   operating   on   unitigs   constructed   by   BCALM   rather   than   on   the   original   -mers.   As   we k  

demonstrated   throughout   this   paper,   unitigs   are   prohibitive   for   highly   branching   de   Bruijn   graphs,   where   a  

simplitig   construction   through   unitigs   may   create   a   burden   on   resources   and   easily   become   intractable.   The   paper  

presents   a   tighter   lower   bound   on   the   cumulative   length   of   the   representation   (CL),   termed   weight,   taking   into  

account   the   graph   topology   but   requiring   a   computational   overhead.   The   authors   also   studied   the   compression  

properties   of   simplitigs   when   combined   with   standard   compression   algorithms.   On   the   other   hand,   the   paper   does  

not   study   the   number   of   sequences   (NS)   and   continuous   scaling   for   parameters   such   as   -mer   length   or   amount   of k  

additional   variation   included.    
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Conclusions  

In   this   paper,   we   addressed   the   question   of   efficient   and   scalable   representation   of   de   Bruijn   graphs.   We   showed  

that   the   state-of-the-art   unitig   representation   may   require   adequately   large   computational   resources,   especially  

when   de   Bruijn   graphs   contain   many   branching   nodes.   We   introduced   simplitigs,   which   provide   a   more   compact  

replacement   in   applications   that   do   not   require   explicit   information   on   the   graph   topology,   such   as   alignment-free  

sequence   comparison   and   -mer   indexing.   We   introduced   a   heuristic   simplitig   computation   and   showed   on   the k  

examples   of   model   species   that   unless   the   genome   is   large,   even   a   naive   implementation   outperforms   BCALM,   the  

main   state-of-the-art   tool   for   unitigs.   We   then   studied   applications   to   bacterial   pan-genomics   and   showed   that   the  

utility   of   simplitigs   compared   to   unitigs   grows   as   more   data   are   available.   Finally,   we   demonstrated   on   the   example  

of   full-text   -mer   indexing   that   simplitigs   can   substantially   reduce   computational   resources   and   allow k  

computations   in   situations   where   unitigs   would   bring   unaffordable   costs   when   exactness   should   be   preserved.  

 

Our   work   opens   many   questions   and   future   directions.   The   presented   algorithm   for   simplitig   computation   can   be  

improved,   parallelized,   de-randomized   to   ensure   reproducibility.   We   anticipate   more   theoretical   advances   in   the  

analysis   of   the   minimum   vertex-disjoint   path   cover   problem   and   better   mapping   to   results   from   other   disciplines  

such   as   network   sciences.   We   also   anticipate   improvements   in   the   heuristic   approaches   that   could   simplify   and  

parallelize   simplitig   computation.   The   nature   of   the   algorithm   suggests   that   simplitigs   might   be   computed   online  

directly   from   a   stream   of   data   such   as   sequencing   reads.   We   anticipate   better   implementations   and   libraries   for  

simplitigs   that   can   be   plugged   into   standard   bioinformatics   libraries   for   various   programming   languages.   Another  

series   of   questions   is   related   to   low-memory   transformations   of   computed   simplitigs   that   would   allow  

precomputing   simplitigs   on   computer   clusters,   and   tailoring   to   specific   applications   on   standard   computers;   this  

includes   decreasing   ,   performing   set   operations   on   top   of   simplitig   sets   and   computing   maximal   unitigs   from k  

simplitigs.   A   substantial   body   of   work   can   be   anticipated   in   the   direction   of   text   indexing   –   we   showed   that  

simplitigs   can   be   combined   with   full-text   indexes;   however,   specialized   simplitig   indexes   exploiting   simplitig  

characteristics   are   yet   to   be   developed.   On   the   theoretical   side,   many   perspectives   are   open   in   the   direction   of  

orthogonal   algorithmic   techniques,   such   as   sketching    [74,75] ,   and   in   relation   to   other   stringology   concepts,   such   as  
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minimal   absent   words    [76]    and   shortest   superstrings    [77] .   Finally,   simplitigs   can   serve   as   components   in   design   of  

various   specialized   data   structures;   these   can   involve   membership   queries   of   classes   of   de   Bruijn   graphs   and   colored  

de   Bruijn   graphs,   where   simplitigs   may   encode   not   only   the   -mers   themselves,   but   also   additional   metadata   such k  

as   -mer   frequencies   or   colors.   Furthermore,   simplitigs   will   facilitate   new   full-text-based   data   structures   for k  

approximate   matching,   based   on   the   inclusion   of   the   proximity   variation,   that   would   be   completely   intractable   with  

unitigs.   Overall,   we   anticipate   that   the   simplitig   representation   will   become   a   generic   compact   representation   of   de  

Bruijn   graphs,   in   particular,   in   the   context   of   large-scale   sequence   data   search   engines    [69]    and   sequence   data  

repositories   such   as   those   of   NCBI   and   EBI.    
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Methods  

De   Bruijn   graphs  

All   strings   are   assumed   to   be   over   the   alphabet   .   A   -mer   is   a   string   of   length   .   For   a   string   , A, , , }{ C G T k k ...ss = s1 n  

we   define     and   .   For   two   strings     and     of   length   at   least   ,   we   define   the (s) ··  pref k = s1 · sk (s) ··  suf k = sn­k+1 · sn s t k  

binary   connectivity   relation     if   and   only   if   .   If   ,   we   define   the   -merging   operation   ⊙   as t  s→k (s) (t)suf k = pref k t  s→k k  

. ⊙ t   · suf (t)s k = s |t|­k  

 

Given   a   set     of   -mers,   the    de   Bruijn   graph    of     is   the   directed   graph     with     and K k K V , )G = ( E V = K  

.   For   every   path     in   ,   the   string     is   called   a    spelling    of (u, )  | u v}  E = { v ∈ K2
→k­1 v , .., )p = ( 1 . vp G ⊙ v ⊙ ...⊙ v  v1

k­1
2

k­1 k­1
p  

.   This   definition   of   de   Bruijn   graphs   is    node-centric ,   as   nodes   are   identified   with   -mers   and   edges   are   implicit. p k  

Therefore,   we   can   use   the   terms   “ -mer   set”   and   “de   Bruijn   graph”   interchangeably. k  

Simplitigs  

Consider   a   set     of   -mers   and   the   corresponding   de   Bruijn   graph   .   A    simplitig   graph      is   a K k K, )G = ( E K, )G′ = ( E′  

spanning   subgraph   of     that   is   acyclic   and   the   in-degree   and   out-degree   of   any   node   is   at   most   one.   It   follows   from G  

this   definition   that   a   simplitig   graph   is   a   vertex-disjoint   union   of   paths,   whose   spellings   we   call    simplitigs .   A  

simplitig   is   called    maximal    if   it   cannot   be   extended   forward   or   backward   without   breaking   the   definition   of  

simplitig   graph.   In   more   detail,   a   simplitig     is   maximal   if   the   following   conditions   hold u ... u  u1→k­1 2→k­1 →k­1 n  

● either     has   no   incoming   edges   in   ,   or   for   any   edge   ,     belongs   to   another   simplitig   and   it   is u1 G v, )  ( u1 ∈ E v  

not   its   last   vertex,  

● either     has   no   outgoing   edges   in   ,   or   for   any   edge   ,     belongs   to   another   simplitig   and   it   is un G u , )  ( n v ∈ E v  

not   its   first   vertex.  

A    unitig    is   a   simplitig     such   that   each   of   the   nodes   has   in-degree   1   and   each   of   the u ... u  u1→k­1 2→k­1 →k­1 n , ..,u2 . un  

nodes   has   out-degree   1   in   graph   .   A   maximal   unitig   is   defined   similarly. , ..,  u1 . un­1 G  
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Comparing   simplitig   and   unitig   representations  

Simplitigs   and   unitigs   representations   were   compared   in   terms   of   the   number   of   sequences   produced   (NS)   and   their  

cumulative   length   (CL).   For   any   set   of   simplitigs   (i.e.,   not   necessarily   maximal   ones),   NS   is   bounded   by   1   and  

,   CL   is   bounded   by     and   .   The   upper   bound   corresponds   to   the   state   of   maximal kmers# kmers#  ⋅ #kmers  k  

fragmentation,   where   every   -mer   forms   a   simplig.   The   lower   bound   corresponds   to   the   maximum   possible   degree k  

of   compaction,   i.e.,   a   single   simplitig   containing   all   -mers. k  

 

NS   and   CL   are   readily   connected   by   the   following   formula:  

L  #kmers  (k ) ⋅ NS  C =   +   ­ 1 (eq   1)  

As   an   important   consequence,   both   characteristics   are   optimized   simultaneously.  

Greedy   computation   of   simplitigs  

The   problem   of   computing   maximal   simplitigs   that   are   optimal   in   CL   (i.e.,   also   in   NS)   corresponds   to   the   minimum  

vertex-disjoint   path   cover   problem    [78] .   This   is   known   to   be   NP-hard   in   the   general   case,   reducing   from   the  

Hamiltonian   path   problem.   However,   the   complexity   for   de   Bruijn   graphs   remains   an   open   question.   A   greedy  

heuristic   to   compute   maximal   simplitigs   has   been   used   throughout   this   paper   ( Alg.   1 ).   Simplitigs   are   constructed  

iteratively,   starting   from   (arbitrary)   seeding   -mers   and   being   extended   greedily   forwards   and   backwards   as   long k  

as   possible.  

ProphAsm   implementation  

ProphAsm   is   written   in   C++   and   implements   the   greedy   approach   described   above   ( Alg.   1 ).   -mers   are   encoded K  

using   uint64_t   and   stored   in   an   std::unordered_map.   The   choice   of   extension   nucleotides   on   branching   nodes   is  

done   based   on   the   lexicographic   order.   Therefore,   the   only   source   of   randomness   is   the   choice   of   seeding   -mers   by k  

std::unordered_set::begin;   the   C++   standard   library   makes   no   guarantees   on   which   specific   element   is   considered  

the   first   element.   ProphAsm   does   not   require   any   disk   space   to   store   intermediate   data   and   its   memory  
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consumption   corresponded   to   38–51   bytes   per   a   unique   -mer   (in   dependence   on   the   allocation),   consistent   with k  

[55] .  

Uni-directed   and   bi-directed   models  

The   uni-directed   model,   as   presented   above,   is   useful   for   introducing   the   concepts   of   unitigs   and   simplitigs,   but   is  

not   directly   applicable   to   data   obtained   using   sequencing:   since   DNA   is   double-stranded,   every   string   may   come  

from   either   strand.   At   the   level   of   -mers,   double-strandedness   can   be   accounted   for   by   using   canonical   -mers, k k  

i.e.,   by   pairing-up   every   -mer   with   its   reverse   complement,   typically   done   by   taking   the   lexicographical   minimum k  

of   the   -mer   and   its   reverse   complement.   This   subsequently   requires   redefinining   de   Bruijn   graphs   to   bi-directed k  

de   Bruijn   graphs    [79] ,   which   requires   a   more   complex   formalism.  

Correctness   evaluation  

The   correctness   of   simplitig   computation   can   be   verified   using   an   arbitrary   -mer   counter.   Simplitigs   have   been k  

computed   correctly   if   and   only   if   every   -mer   is   present   exactly   once   and   the   number   of   distinct   -mers   is   the   same k k  

as   in   the   original   datasets.   The   correctness   of   ProphAsm   outputs   was   verified   using   JellyFish   2    [29] .  

Experimental   evaluation   –   model   organisms   and   performance  

Reference   sequences   for   six   selected   model   organisms   were   downloaded   from   RefSeq   and   UCSC   Genome   Browser:  

S.   pneumoniae    str.   ATCC   700669   (accession:   NC_011900.1,   length   2.22   Mbp),    E.   coli    str.   K-12   (accession:  

NC_000913.3,   length:   4.64   Mbp),    S.   cerevisiae    (accession:   NC_001133.9,   length:   12.2   Mbp),    C.   elegans    (accession:  

GCF_000002985.6,   length:   100   Mbp),    B.   mori    (accession:   GCF_000151625.1,   length:   482   Mbp),   and    H.   sapiens  

(HG38,    http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz ,   length:   3.21   Gbp).   For   each  

genome,   simplitigs   and   unitigs   were   computed   using   ProphAsm   and   BCALM,   respectively,   for   a   range   of   -mer k  

lengths   [11,31].  

 

Individual   experiments   were   run   in   parallel   on   the   Harvard   Medical   School   O2   cluster   using   Snakemake    [80]    and  

SLURM.   ProphAsm   and   BCALM   were   run   with   the   following   parameters,   respectively:   ‘-k   {kmer-length}’   and  
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‘-kmer-size    {kmer-length}   -abundance-min   1   -nb-cores   {cores}   -max-disk   30000’.   As   BCALM   requires   a   large  

undocumented   amount   of   disk   space,   we   used   the   -max-disk   parameter   to   make   a   parallel   execution   of   many  

BCALM   jobs   feasible.   The   SLURM   specifications   of   resource   allocation   for   individual   species   were   iteratively  

adjusted   until   all   jobs   would   finish;   the   final   required   resources   are   provided   in    Supplementary   Table 1 .   Time  

and   memory   consumption   of   jobs   were   measured   independently   using   GNU   Time.   Individual   jobs   were   deployed   to  

computational   nodes   with   different   hardware   configurations,   which   are   specified   in    Additional   File   2 .  

 

Supplementary   Table   1    SLURM   resource   allocation   for   ProphAsm   and   BCALM2   for   the   performance   evaluation.  

Species  ProphAsm    (1   core)   BCALM    (1   core)   BCALM    (4   cores)  

mem  
[GB]  

cpu  
[hours]  

mem  
[GB]  

cpu  
[hours]  

mem  
[GB]  

cpu  
[hours]  

S.   pneumoniae  10   1   10   1   10   1  
E.   coli  10   1   10   1   10   1  
S.   cerevisiae  10   1   10   1   10   1  
C.   elegans  10   1   10   2   10   2  
B.   mori  20   2   30   10   30   2  
H.   sapiens  120   4   100   48   100   18  
 

Experimental   evaluation   –   bacterial   pan-genomes  

First,   1,102   draft   assemblies   of    N.   gonorrhoeae    clinical   isolates   (collected   from   2000   to   2013   by   the   Centers   for  

Disease   Control   and   Prevention’s   Gonococcal   Isolate   Surveillance   Project    [41] ,   and   sequenced   using   Illumina  

HiSeq)   were   downloaded   from   Zenodo    [81] .   Second,   616   draft   assemblies   of    S.   pneumoniae    isolates   (collected   from  

2001   to   2007   for   a   carriage   study   of   children   in   Massachusetts,   USA    [42,43] ,   and   sequenced   using   Illumina   HiSeq)  

were   downloaded   from   the   SRA   FTP   server   using   the   accession   codes   provided   in   Table   1   in    [43] .   For   each   of   these  

datasets,   an   increasing   number   of   genomes   was   being   taken   and   merged,   and   simplitigs   and   unitigs   computed   using  

ProphAsm   and   BCALM,   respectively.   This   experiment   was   performed   for     and     To   avoid   excessive 8k = 1 1.k = 3  

resource   usage   the   functions   were   evaluated   at   selected   points   in   an   increasing   distance:   for   intervals   [10,   100]   and  

[100,+∞]   only   multiples   of   5   and   20   were   evaluated,   respectively.  
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Experimental   evaluation   –   full-text    k -mer   queries  

In   the   single   pan-genome   experiment,   the   same   1,102   assemblies   of    N.   gonorrhoeae    were   merged   into   a   single   file.  

ProphAsm   and   BCALM   were   then   used   to   compute   simplitigs   and   unitigs,   respectively,   from   this   file   for  

.   Each   of   the   three   obtained   FASTA   files   (assemblies,   simplitigs,   and   unitigs)   was   used   to 9, 23, 27, 31k = 1        

construct   a   BWA   index,   which   was   then   queried   for   -mers   using   ‘bwa   fastmap   -l   {kmer-length}’.   We   used   a k  

modified   version   of   BWA   fastmap   that   reports   both   the   time   of   index   loading   and   the   time   of   querying  

( http://github.com/karel-brinda/bwa ,   commit   e1f907c).   Query   -mers   were   generated   from   the   same   pan-genome k  

using   WGsim   (version   1.10,   with   the   parameters   ‘-h   0   -S   42   -r   0.0    -1   {kmer-length}   -N   10000000   -e   0’).  

 

For   the   multiple   pan-genome   experiment,   a   list   of   available   bacterial   assemblies   was   downloaded   from  

ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_summary.txt    (2020/05/05).   For   all   assemblies  

marked   as   complete   (i.e.,   the   “assembly_level”   column   equal   to   “Complete   genome”)   and   present   in   RefSeq   (i.e.,   an  

empty   value   in   the   column   “excluded_from_refseq”),   directory   urls   and   species   names   were   extracted   (n=9,869).  

These   were   then   used   to   download   the   genomes   of   the   isolates   using   RSync,   restricting   to   genomic   sequences   only  

(i.e.,   files   matching   ‘*v?_genomic.fna.gz’,   n=9,032).   The   downloaded   assemblies   were   then   merged   per   species   in  

order   to   collect   -mers   of   individual   pan-genomes   and   used   for   computing   simplitigs   and   unitigs   using   ProphAsm k  

and   BCALM,   respectively.   The   obtained   simplitig   and   unitig   files   were   then   merged   per   categories   (e.g.,   simplitigs  

for   k=19)   and   used   to   construct   a   BWA   index.   The   obtained   indexes   were   queried   for   1o   million   -mers   using   BWA k  

fastmap   as   previously.   The   -mers   were   generated   from   the   original   assemblies   of   randomly   selected   100   genomes k  

using   DWGsim    [82]    (version   0.1.11,   with   the   parameters   ‘-R   0   -e   0   -r   0   -X   0   -y   0   -H   -z   42   -m   /dev/null   -N  

10000000   -1   {k}   -2   0’);   the   randomization   was   performed   using   ‘sort   -R’.  

 

Computational   setup  

The   experiments   were   performed   on   the   HMS   O2   research   high-performance   cluster   and   on   an   iMac   4.2   GHz  

Quad-Core   Intel   Core   i7   with   40   GB   RAM.   The   reproducibility   of   computation   was   ensured   using   BioConda    [83] .  
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All   benchmarking   was   performed   using   ProphAsm   0.1.1   (commit   ea28b708)   and   BCALM   2.2.2   (commit   febf79a3).  

Time   and   memory   footprint   were   measured   using   GNU   Time.    
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simplitigs   as   a   function   of     for   the   6   species:    a     S.   pneumoniae ,    b     E.   coli ,    c    S.   cerevisiae ,    d     C.   elegans ,    e     B.   mori , k  

and    f     H.   sapiens .  

Additional   File   2.    Detailed   information   for   the   performance   comparison.    a    CPU   time   and   memory   consumption  

(both   measured   by   GNU   Time   and   Snakemake)   as   a   function   of   species,   method,   number   of   threads,   and   -mer k  

length,   including   the   used   computational   node.    b  Hardware   specifications   for   individual   computational   nodes.  

Additional   File   3.    Detailed   information   for   the   pan-genome   scaling   experiment:    a   N.   gonorrhoeae ,   ;  b     N. 8k = 1  

gonorrhoeae ,   ;    c     S.   pneumoniae ,   ;    d   S.   pneumoniae , . 1k = 3 8k = 1 1k = 3  

Additional   File   4.    Detailed   information   for   the   single   pan-genome   -mer   indexing   experiment.    a    Characteristics k  

of   the   resulting   simplitigs   and   unitigs   for   .    b    Memory   footprint,   index   loading   time   and   time   to 9, 3, 7, 1k = 1 2 2 3  

query   10   million   -mers   using   BWA. k  

Additional   File   5.    Detailed   information   for   the   multiple   pan-genomes   -mer   indexing   experiment.    a    List   of   all k  

genomes   used   for   building   the   pan-genomes   (accession   code,   version,   species,   filename,   number   of   sequences,  

genome   size   [bp]);    b    List   of   species   and   the   number   of   genomes   included.    c    Characteristics   of   the   resulting  

simplitigs   and   unitigs   of   individual   pan-genomes   for   .    d    Characteristics   of   the   resulting   simplitigs 9, 3, 7, 1k = 1 2 2 3  

and   unitigs   for   the   All-dataset   and   Solid-dataset   and   .    e    Memory   footprint,   index   loading   time   and 9, 3, 7, 1k = 1 2 2 3  

time   to   query   10   million   -mers   using   BWA   (individual   repetitions). k  
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Data  

All   data   generated   or   analysed   during   this   study   are   included   in   this   published   article   and   its   supplementary  

information   files.   The   simplitigs   of   the   Human   genome   (HG38,   for   )   and   the   obtained   Genbank 0, 1, .., 2k = 1 1 . 3  

pan-genomes   (for   )   are   provided   on   Zenodo   under   the   accessions    10.5281/zenodo.3770419    and 9, 3, 7, 1k = 1 2 2 3  

10.5281/zenodo.3800713 ,   respectively.   The   code   used   for   the   analyses   is   provided   on   Github  

( https://github.com/karel-brinda/simplitigs-supplementary ).  
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code   of   the   version   used   in   this   paper   was   deposited   in   Zenodo   ( 10.5281/zenodo.3887035 ).  
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