C. Soize, Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.1-3, pp.26-64, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00686157

C. Soize, Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size, Probabilistic Engineering Mechanics, vol.23, issue.2-3, pp.307-323, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00685154

M. T. Nguyen, C. Desceliers, C. Soize, J. M. Allain, and H. Gharbi, MULTISCALE IDENTIFICATION OF THE RANDOM ELASTICITY FIELD AT MESOSCALE OF A HETEROGENEOUS MICROSTRUCTURE USING MULTISCALE EXPERIMENTAL OBSERVATIONS, International Journal for Multiscale Computational Engineering, vol.13, issue.4, pp.281-295, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01162147

T. Zhang, F. Pled, and C. Desceliers, Robust Multiscale Identification of Apparent Elastic Properties at Mesoscale for Random Heterogeneous Materials with Multiscale Field Measurements, Materials, vol.13, issue.12, p.2826, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02879369

C. Desceliers, R. Ghanem, and C. Soize, Maximum likelihood estimation of stochastic chaos representations from experimental data, International Journal for Numerical Methods in Engineering, vol.66, issue.6, pp.978-1001, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00686154

R. G. Ghanem and A. Doostan, On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data, Journal of Computational Physics, vol.217, issue.1, pp.63-81, 2006.

C. Desceliers, C. Soize, and R. Ghanem, Identification of Chaos Representations of Elastic Properties of Random Media Using Experimental Vibration Tests, Computational Mechanics, vol.39, issue.6, pp.831-838, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00686150

M. Youssef, . Marzouk, N. Habib, L. A. Najm, and . Rahn, Stochastic spectral methods for efficient bayesian solution of inverse problems, Journal of Computational Physics, vol.224, issue.2, pp.560-586, 2007.

M. Arnst, D. Clouteau, and M. Bonnet, Inversion of probabilistic structural models using measured transfer functions, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.6-8, pp.589-608, 2008.

S. Das, R. Ghanem, and J. C. Spall, Asymptotic Sampling Distribution for Polynomial Chaos Representation of Data: A Maximum Entropy and Fisher information approach, Proceedings of the 45th IEEE Conference on Decision and Control, pp.4139-4144, 2006.

S. Das, R. Ghanem, and S. Finette, Polynomial chaos representation of spatio-temporal random fields from experimental measurements, Journal of Computational Physics, vol.228, issue.23, pp.8726-8751, 2009.

C. Desceliers, C. Soize, Q. Grimal, M. Talmant, and S. Naili, Determination of the random anisotropic elasticity layer using transient wave propagation in a fluid-solid multilayer: Model and experiments, The Journal of the Acoustical Society of America, vol.125, issue.4, pp.2027-2034, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00684450

J. Guilleminot, C. Soize, and D. Kondo, Mesoscale probabilistic models for the elasticity tensor of fiber reinforced composites: Experimental identification and numerical aspects, Mechanics of Materials, vol.41, issue.12, pp.1309-1322, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00424969

X. Ma and N. Zabaras, An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method, Inverse Problems, vol.25, issue.3, p.035013, 2009.

Y. M. Marzouk and H. N. Najm, Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, Journal of Computational Physics, vol.228, issue.6, pp.1862-1902, 2009.

M. Arnst, R. Ghanem, and C. Soize, Identification of Bayesian posteriors for coefficients of chaos expansions, Journal of Computational Physics, vol.229, issue.9, pp.3134-3154, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00684317

S. Das, J. C. Spall, and R. Ghanem, Efficient Monte Carlo computation of Fisher information matrix using prior information, Computational Statistics & Data Analysis, vol.54, issue.2, pp.272-289, 2010.

Q. Ta, D. Clouteau, and R. Cottereau, Modeling of random anisotropic elastic media and impact on wave propagation, European Journal of Computational Mechanics, vol.19, issue.1-3, pp.241-253, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00709537

C. Soize, Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.33-36, pp.2150-2164, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00684324

C. Soize, A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.45-46, pp.3083-3099, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00684294

R. Cottereau, D. Clouteau, H. Ben-dhia, and C. Zaccardi, A stochastic-deterministic coupling method for continuum mechanics, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.47-48, pp.3280-3288, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00709540

C. Desceliers, C. Soize, S. Naili, and G. Haiat, Probabilistic model of the human cortical bone with mechanical alterations in ultrasonic range, Mechanical Systems and Signal Processing, vol.32, pp.170-177, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00692871

G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling, Identification of Polynomial Chaos Representations in High Dimension from a Set of Realizations, SIAM Journal on Scientific Computing, vol.34, issue.6, pp.A2917-A2945, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00770006

D. Clouteau, R. Cottereau, and G. Lombaert, Dynamics of structures coupled with elastic media?A review of numerical models and methods, Journal of Sound and Vibration, vol.332, issue.10, pp.2415-2436, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00795002

S. Haykin, Neural Networks: A Comprehensive Foundation, 1994.

M. T. Hagan, H. B. Demuth, and M. H. Beale, Neural Network Design, 1996.

H. B. Demuth, M. H. Beale, O. Jess, and M. T. Hagan, Neural Network Design, 2014.

A. W. Bowman and A. Azzalini, Applied Smoothing Techniques for Data Analysis, 1997.

I. Horová, J. Kolá?ek, and J. Zelinka, Kernel Smoothing in MATLAB: Theory and Practice of Kernel Smoothing, 2012.

G. H. Givens and J. A. Hoeting, Computational Statistics, 2013.

D. W. Scott, Multivariate Density Estimation, Multivariate Density Estimation: Theory, Practice, and Visualization, 2015.

C. Soize, Uncertainty Quantification, Uncertainty Quantification: An Accelerated Course with Advanced Applications in Computational Engineering, vol.47, 2017.
URL : https://hal.archives-ouvertes.fr/hal-00826082

E. T. Jaynes, Information Theory and Statistical Mechanics, Physical Review, vol.106, issue.4, pp.620-630, 1957.

E. T. Jaynes, Information Theory and Statistical Mechanics. II, Physical Review, vol.108, issue.2, pp.171-190, 1957.

K. Sobezyk and J. Tr?bicki, Maximum entropy principle in stochastic dynamics, Probabilistic Engineering Mechanics, vol.5, issue.3, pp.102-110, 1990.

J. N. Kapur and H. K. Kesavan, Entropy Optimization Principles and Their Applications, Entropy and Energy Dissipation in Water Resources, pp.3-20, 1992.

G. Jumarie, Maximum Entropy, Information Without Probability and Complex Fractals, Maximum Entropy, Information Without Probability and Complex Fractals: Classical and Quantum Approach, vol.112, 2000.

E. T. Jaynes, Probability Theory, Probability Theory: The Logic of Science, 2003.

T. M. Cover and J. A. Thomas, Elements of Information Theory, Elements of Information Theory, A Wiley-Interscience publication, 1991.

T. J. Hughes, The finite element method : linear static and dynamic finite element analysis, 1987.

O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, 2005.

T. Zhang, Multiscale statistical inverse problem for the identification of random fields of elastic properties, 2019.
URL : https://hal.archives-ouvertes.fr/tel-02506242

S. Nemat-nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials, vol.37, 1993.

M. Bornert, T. Bretheau, and P. Gilormini, Homogénéisation en mécanique des matériaux 1. Matériaux aléatoiresélastiques et milieux périodiques, Hermès Science publications, 2001.

S. Torquato, Random Heterogeneous Materials, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, vol.16, 2002.

A. Zaoui, Continuum Micromechanics: Survey, Journal of Engineering Mechanics, vol.128, issue.8, pp.808-816, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00111366

A. Zaoui, Continuum Micromechanics: Survey, Journal of Engineering Mechanics, vol.128, issue.8, pp.808-816, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00111366

A. Bourgeat and A. Piatnitski, Approximations of effective coefficients in stochastic homogenization, Annales de l?Institut Henri Poincare (B) Probability and Statistics, vol.40, issue.2, pp.153-165, 2004.

M. Nguyen, J. Allain, H. Gharbi, C. Desceliers, and C. Soize, Experimental multiscale measurements for the mechanical identification of a cortical bone by digital image correlation, Journal of the Mechanical Behavior of Biomedical Materials, vol.63, pp.125-133, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01337358

M. Shinozuka, Simulation of Multivariate and Multidimensional Random Processes, The Journal of the Acoustical Society of America, vol.49, issue.1B, pp.357-368, 1971.

M. Shinozuka and Y. K. Wen, Monte Carlo Solution of Nonlinear Vibrations, AIAA Journal, vol.10, issue.1, pp.37-40, 1972.

M. Shinozuka and C. Jan, Digital simulation of random processes and its applications, Journal of Sound and Vibration, vol.25, issue.1, pp.111-128, 1972.

F. Poirion and C. Soize, Numerical simulation of homogeneous and inhomogeneous Gaussian stochastic vector fields, La Recherche Aerospatiale (English edition), vol.1, pp.41-61, 1989.
URL : https://hal.archives-ouvertes.fr/hal-00770316

F. Poirion and C. Soize, Numerical methods and mathematical aspects for simulation of homogeneous and non homogeneous gaussian vector fields, Probabilistic Methods in Applied Physics, pp.17-53
URL : https://hal.archives-ouvertes.fr/hal-00770416

B. W. Silverman, Density Estimation for Statistics and Data Analysis, 1986.

C. P. Robert and G. Casella, Monte Carlo Statistical Methods, Springer Texts in Statistics, 2004.

J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Statistical and Computational Inverse Problems, vol.160, 2005.

J. C. Spall, Introduction to Stochastic Search and Optimization, Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control, vol.65, 2003.

G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals, and Systems, vol.2, issue.4, pp.303-314, 1989.

K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators, Neural Networks, vol.2, issue.5, pp.359-366, 1989.

K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks, vol.4, issue.2, pp.251-257, 1991.

M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, Multilayer feedforward networks with a nonpolynomial activation function can approximate any function, Neural Networks, vol.6, issue.6, pp.861-867, 1993.

A. R. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Transactions on Information Theory, vol.39, issue.3, pp.930-945, 1993.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, issue.7553, pp.436-444, 2015.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 2016.

T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon, Accelerating the convergence of the back-propagation method, Biological Cybernetics, vol.59, issue.4-5, pp.257-263, 1988.

D. Nguyen and B. Widrow, Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights, 1990 IJCNN International Joint Conference on Neural Networks, vol.3, pp.21-26, 1990.

M. H. Beale, M. T. Hagan, and H. B. Demuth, Neural network toolbox user's guide, 1992.

C. Soize, Random matrix theory for modeling uncertainties in computational mechanics, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.12-16, pp.1333-1366, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00686187

C. Soize, Random Matrix Models and Nonparametric Method for Uncertainty Quantification, Handbook of Uncertainty Quantification, pp.1-69, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01284669

C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Society for Industrial and Applied Mathematics, 1995.

R. Serfling, Approximation Theorems of Mathematical Statistics, Approximation Theorems of Mathematical Statistics, 1980.

A. Papoulis and H. Saunders, Probability, Random Variables and Stochastic Processes (2nd Edition), Journal of Vibration and Acoustics, vol.111, issue.1, pp.123-125, 1989.