S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, vol.16, 2002.

D. Jeulin, Microstructure modeling by random textures, J. Microsc. Spectrosc. Electron, vol.12, pp.133-140, 1987.

D. Jeulin, Morphological modeling of images by sequential random functions. Signal Process, vol.16, pp.90033-90042, 1989.

D. Jeulin, Random texture models for material structures, Stat. Comput, vol.10, pp.121-132, 2000.

D. Jeulin, Random Structure Models for Homogenization and Fracture Statistics, Mechanics of Random and Multiscale Microstructures

D. Jeulin and M. Ostoja-starzewski, , pp.33-91, 2001.

D. Jeulin, Morphology and effective properties of multi-scale random sets: A review, Comptes Rendus Mec, vol.340, pp.219-229, 2012.

B. Pan, K. Qian, H. Xie, and A. Asundi, Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review, Meas. Sci. Technol, vol.20, p.62001, 2009.

M. A. Sutton, J. J. Orteu, and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01729219

F. Hild and S. Roux, Optical Methods for Solid Mechanics. A Full-Field Approach; Chapter Digital Image Correlation

-. Wiley and . Vch, , pp.183-228, 2012.

Z. L. Kahn-jetter, N. K. Jha, and H. Bhatia, Optimal image correlation in experimental mechanics, Opt. Eng, vol.33, pp.1099-1105, 1994.

G. Vendroux and W. G. Knauss, Submicron deformation field measurements: Part 1. Developing a digital scanning tunneling microscope, Exp. Mech, vol.38, pp.18-23, 1998.

G. Vendroux and W. G. Knauss, Submicron deformation field measurements: Part 2. Improved digital image correlation, Exp. Mech, vol.38, pp.86-92, 1998.

F. Hild and S. Roux, Digital Image Correlation: from Displacement Measurement to Identification of Elastic Properties-A Review, Strain, vol.42, pp.69-80, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00013816

S. Roux and F. Hild, Digital Image Mechanical Identification (DIMI), Exp. Mech, vol.48, pp.495-508, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00200974

J. Réthoré, J. P. Tinnes, S. Roux, J. Y. Buffière, and F. Hild, Extended three-dimensional digital image correlation (X3D-DIC), Comptes Rendus Mec, vol.336, pp.643-649, 2008.

M. Bornert, F. Valès, H. Gharbi, and D. Nguyen-minh, Multiscale Full-Field Strain Measurements for Micromechanical Investigations of the Hydromechanical Behaviour of Clayey Rocks, Strain, vol.46, pp.33-46, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00535703

A. Constantinescu, On the identification of elastic moduli from displacement-force boundary measurements, Inverse Probl. Eng, vol.1, pp.293-313, 1995.

S. C. Baxter and L. L. Graham, Characterization of Random Composites Using Moving-Window Technique, J. Eng. Mech, vol.126, pp.389-397, 2000.

G. Geymonat, F. Hild, and S. Pagano, Identification of elastic parameters by displacement field measurement, Comptes Rendus Mec, vol.330, pp.1476-1482, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00002934

G. Geymonat and S. Pagano, Identification of Mechanical Properties by Displacement Field Measurement: A Variational Approach, Meccanica, vol.38, pp.535-545, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00514565

L. Graham, K. Gurley, and F. Masters, Non-Gaussian simulation of local material properties based on a moving-window technique, Probabilistic Eng. Mech, vol.18, pp.223-234, 2003.

M. Bonnet and A. Constantinescu, Inverse problems in elasticity, Inverse Probl, vol.21, pp.1-50, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00111264

S. Avril and F. Pierron, General framework for the identification of constitutive parameters from full-field measurements in linear elasticity, Int. J. Solids Struct, vol.44, pp.4978-5002, 2007.
URL : https://hal.archives-ouvertes.fr/emse-00502477

S. Avril, M. Bonnet, A. S. Bretelle, M. Grédiac, F. Hild et al., Overview of Identification Methods of Mechanical Parameters Based on Full-field Measurements, Exp. Mech, vol.48, p.381, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00274639

B. P. Flannery, H. W. Deckman, W. G. Roberge, and K. L. , Three-Dimensional X-ray Microtomography, Science, vol.237, pp.1439-1444, 1987.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, 1988.

J. Baruchel, J. Y. Buffiere, E. Maire, and . Tomography, Material Science

S. R. Stock, Recent advances in X-ray microtomography applied to materials, Int. Mater. Rev, vol.53, pp.129-181, 2008.

J. Desrues, G. Viggiani, and P. Besuelle, Advances in X-ray Tomography for Geomaterials

J. Wiley, &. Sons:-hoboken, . Nj, and . Usa, , vol.118, 2010.

E. Maire, P. J. Withers, X. Quantitative, and . Tomography, Int. Mater. Rev, vol.59, pp.1-43, 2014.

P. A. Van-den-elsen, E. D. Pol, and M. A. Viergever, Medical image matching-a review with classification, IEEE Eng. Med. Biol. Mag, vol.12, pp.26-39, 1993.

J. Maintz and M. A. Viergever, A survey of medical image registration, Med. Image Anal, vol.2, pp.80026-80034, 1998.

Z. P. Liang and P. C. Lauterbur, Principles of Magnetic Resonance Imaging: A Signal Processing Perspective; IEEE Press series in biomedical engineering, 2000.

D. L. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, Medical image registration, Phys. Med. Biol, vol.46, pp.1-45, 2001.
URL : https://hal.archives-ouvertes.fr/inria-00615977

E. Beaurepaire, A. C. Boccara, M. Lebec, and L. Blanchot, Saint-Jalmes, H. Full-field optical coherence microscopy, Opt. Lett, vol.23, pp.244-246, 1998.

J. M. Schmitt, Optical coherence tomography (OCT): a review, IEEE J. Sel. Top. Quantum Electron, vol.5, pp.1205-1215, 1999.

A. F. Fercher, Optical coherence tomography -development, principles, applications, Z. Med. Phys, vol.20, pp.251-276, 2010.

T. Gambichler, V. Jaedicke, and S. Terras, Optical coherence tomography in dermatology: technical and clinical aspects, Arch. Dermatol. Res, vol.303, pp.457-473, 2011.

D. P. Popescu, L. P. Choo-smith, C. Flueraru, Y. Mao, S. Chang et al., Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications, Biophys. Rev, 2011.

B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, Digital volume correlation: Three-dimensional strain mapping using X-ray tomography, Exp. Mech, vol.39, pp.217-226, 1999.

E. Verhulp, B. Rietbergen, and R. Huiskes, A three-dimensional digital image correlation technique for strain measurements in microstructures, J. Biomech, vol.37, pp.1313-1320, 2004.

B. K. Bay, Methods and applications of digital volume correlation, J. Strain Anal. Eng. Des, vol.43, pp.745-760, 2008.

S. Roux, F. Hild, P. Viot, and D. Bernard, Three-dimensional image correlation from X-ray computed tomography of solid foam, Compos. Part Appl. Sci. Manuf, vol.39, pp.1253-1265, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00198126

J. Rannou, N. Limodin, J. Réthoré, A. Gravouil, W. Ludwig et al., Three dimensional experimental and numerical multiscale analysis of a fatigue crack, Comput. Methods Appl. Mech. Eng, vol.199, pp.1307-1325, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00430486

K. Madi, G. Tozzi, Q. Zhang, J. Tong, A. Cossey et al., Computation of full-field displacements in a scaffold implant using digital volume correlation and finite element analysis, Med. Eng. Phys, vol.35, pp.1298-1312, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00947398

B. C. Roberts, E. Perilli, and K. J. Reynolds, Application of the digital volume correlation technique for the measurement of displacement and strain fields in bone: A literature review, J. Biomech, vol.47, pp.923-934, 2014.

R. Fedele, A. Ciani, and F. Fiori, X-ray Microtomography under Loading and 3D-Volume Digital Image Correlation : A Review, Fundam. Inform, vol.135, pp.171-197, 2014.

F. Hild, A. Bouterf, L. Chamoin, H. Leclerc, F. Mathieu et al., Toward 4D Mechanical Correlation, Adv. Model. Simul. Eng. Sci, vol.3, p.17, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01310582

A. Bouterf, J. Adrien, E. Maire, X. Brajer, F. Hild et al., Identification of the crushing behavior of brittle foam: From indentation to oedometric tests, J. Mech. Phys. Solids, vol.98, pp.181-200, 2017.

A. Buljac, C. Jailin, A. Mendoza, J. Neggers, T. Taillandier-thomas et al., Digital Volume Correlation: Review of Progress and Challenges, Exp. Mech, vol.58, pp.661-708, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01744752

C. Desceliers, R. Ghanem, and C. Soize, Maximum likelihood estimation of stochastic chaos representations from experimental data, Int. J. Numer. Methods Eng, vol.66, pp.978-1001, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00686154

R. G. Ghanem and A. Doostan, On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data, J. Comput. Phys, vol.217, pp.63-81, 2006.

C. Desceliers, C. Soize, and R. Ghanem, Identification of Chaos Representations of Elastic Properties of Random Media Using Experimental Vibration Tests, Comput. Mech, vol.39, pp.831-838, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00686150

Y. M. Marzouk, H. N. Najm, and L. A. Rahn, Stochastic spectral methods for efficient Bayesian solution of inverse problems, J. Comput. Phys, vol.224, pp.560-586, 2007.

M. Arnst, D. Clouteau, and M. Bonnet, Inversion of probabilistic structural models using measured transfer functions, Comput. Methods Appl. Mech. Eng, vol.197, pp.589-608, 2008.

S. Das, R. Ghanem, and J. C. Spall, Asymptotic Sampling Distribution for Polynomial Chaos Representation of Data: A Maximum Entropy and Fisher information approach, Proceedings of the 45th IEEE Conference on Decision and Control, pp.4139-4144, 2006.

S. Das, R. Ghanem, and S. Finette, Polynomial chaos representation of spatio-temporal random fields from experimental measurements, J. Comput. Phys, vol.228, pp.8726-8751, 2009.

C. Desceliers, C. Soize, Q. Grimal, M. Talmant, and S. Naili, Determination of the random anisotropic elasticity layer using transient wave propagation in a fluid-solid multilayer: Model and experiments, J. Acoust. Soc. Am, vol.125, pp.2027-2034, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00684450

J. Guilleminot, C. Soize, and D. Kondo, Mesoscale probabilistic models for the elasticity tensor of fiber reinforced composites: Experimental identification and numerical aspects, Mech. Mater, vol.41, pp.1309-1322, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00424969

X. Ma and N. Zabaras, An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method, Inverse Probl, vol.25, p.35013, 2009.

Y. M. Marzouk and H. N. Najm, Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, J. Comput. Phys, vol.228, pp.1862-1902, 2009.

M. Arnst, R. Ghanem, and C. Soize, Identification of Bayesian posteriors for coefficients of chaos expansions, J. Comput. Phys, vol.229, pp.3134-3154, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00684317

S. Das, J. C. Spall, and R. Ghanem, Efficient Monte Carlo computation of Fisher information matrix using prior information, Comput. Stat. Data Anal, vol.54, pp.272-289, 2010.

Q. A. Ta, D. Clouteau, and R. Cottereau, Modeling of random anisotropic elastic media and impact on wave propagation, Eur. J. Comput. Mech, vol.19, pp.241-253, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00709537

C. Soize, Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data, Comput. Methods Appl. Mech. Eng, vol.199, pp.2150-2164, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00684324

C. Soize, A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension, Comput. Methods Appl. Mech. Eng, pp.3083-3099, 0200.
URL : https://hal.archives-ouvertes.fr/hal-00684294

C. Lawson and R. Hanson, Solving Least Squares Problems, Society for Industrial and Applied Mathematics, 1995.

C. Soize, Uncertainty Quantification: An Accelerated Course with Advanced Applications in Computational Engineering, Interdisciplinary Applied Mathematics, vol.47, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01498996

R. Serfling, Approximation Theorems of Mathematical Statistics, 1980.

A. Papoulis, S. U. Pillai, and . Probability, Random Variables, and Stochastic Processes, 2002.

J. C. Spall, Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control

, , vol.65, 2005.

E. T. Jaynes, Information Theory and Statistical Mechanics, Phys. Rev, vol.106, pp.620-630, 1957.

E. T. Jaynes, Information Theory and Statistical Mechanics, II. Phys. Rev, vol.108, pp.171-190, 1957.

K. Sobezyk and J. Tr?bicki, Maximum entropy principle in stochastic dynamics, Probab. Eng. Mech, vol.5, pp.102-110, 1990.

J. N. Kapur and H. K. Kesavan, Entropy Optimization Principles and Their Applications, In Entropy and Energy Dissipation in Water Resources

V. P. Singh and M. Fiorentino, , pp.3-20, 1992.

G. M. Jumarie and . Entropy, Information Without Probability and Complex Fractals: Classical and Quantum Approach, Fundamental Theories of Physics, vol.112, 2000.

E. T. Jaynes, Probability Theory: The Logic of Science, 2003.

T. M. Cover and J. A. Thomas, Elements of Information Theory, 2006.

A. W. Bowman and A. Azzalini, Applied Smoothing Techniques for Data Analysis, 1997.

J. L. Beck and L. S. Katafygiotis, Updating Models and Their Uncertainties. I: Bayesian Statistical Framework, J. Eng. Mech, vol.124, pp.455-461, 1998.

J. M. Bernardo, A. F. Smith, and . Bayesian-theory, Meas. Sci. Technol, vol.12, p.221, 2001.

P. Congdon, Bayesian Statistical Modelling, Wiley Series in Probability and Statistics

J. Wiley and L. Sons, , 2007.

B. P. Carlin and T. A. Louis, Bayesian Methods for Data Analysis, Statistical Science, 2009.

A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numer, vol.19, pp.451-559, 2010.

M. T. Tan, G. L. Tian, and K. W. Ng, Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation, Formerly CIP

&. Chapman, /. Hall, and . Crc-press, , 2010.

H. Rappel, L. A. Beex, J. S. Hale, L. Noels, and S. P. Bordas, A Tutorial on Bayesian Inference to Identify Material Parameters in Solid Mechanics, Arch. Comput. Methods Eng, vol.27, pp.361-385, 2020.

J. D. Collins, G. C. Hart, T. K. Haselman, and B. Kennedy, Statistical Identification of Structures, AIAA J, vol.12, pp.185-190, 1974.

E. Walter and L. Pronzato, Identification of Parametric Models: From Experimental Data, Communications and Control Engineering, 1997.

J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, vol.160, 2005.

A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, Society for Industrial and Applied Mathematics, 2005.

V. Isakov, Inverse Problems for Partial Differential Equations, vol.127, 2006.

D. Calvetti and E. Somersalo, Inverse problems: From regularization to Bayesian inference, WIREs Comput. Stat, vol.10, p.1427, 2018.

R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems, 2019.

K. Karhunen, Zur Spektraltheorie Stochastischer Prozesse; Series A, vol.1

, Annales Academiae Scientiarum Fennicae, vol.34, 1946.

M. Loève, Probability Theory I, Graduate Texts in Mathematics, vol.45, 1977.

M. Loève, Probability Theory II, Graduate Texts in Mathematics, vol.46, 1978.

R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, 1991.

R. Ghanem, Stochastic Finite Elements with Multiple Random Non-Gaussian Properties, J. Eng. Mech, vol.125, pp.26-40, 1999.

D. Xiu and G. Karniadakis, The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations, SIAM J. Sci. Comput, vol.24, pp.619-644, 2002.

C. Soize and R. Ghanem, Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure, SIAM J. Sci. Comput, vol.26, pp.395-410, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00686211

X. Wan and G. E. Karniadakis, Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures, SIAM J. Sci. Comput, vol.28, pp.901-928, 2006.

D. Xiu and J. Hesthaven, High-Order Collocation Methods for Differential Equations with Random Inputs, SIAM J. Sci. Comput, vol.27, pp.1118-1139, 2005.

I. Babu?ka, F. Nobile, and R. Tempone, A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data, SIAM J. Numer. Anal, vol.45, pp.1005-1034, 2007.

A. Nouy, Generalized spectral decomposition method for solving stochastic finite element equations: Invariant subspace problem and dedicated algorithms, Comput. Methods Appl. Mech. Eng, vol.197, pp.4718-4736, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00366613

L. Maître, O. P. Knio, and O. M. , Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics, 2010.

R. E. Caflisch, Monte Carlo and quasi-Monte Carlo methods. Acta Numer, vol.7, pp.1-49, 1998.

G. Schuëller and P. D. Spanos, Monte Carlo Simulation

A. A. Balkema, , 2001.

R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo method

, Wiley Series in Probability and Statistics

, , vol.10, 2016.

E. Sanchez-palencia, Non-Homogeneous Media and Vibration Theory, vol.127, 1986.

E. Sanchez-palencia and A. Zaoui, Homogenization Techniques for Composite Media, Lecture Notes in Physics

. Springer, , vol.272, p.IX, 1985.

G. A. Francfort and F. Murat, Homogenization and optimal bounds in linear elasticity, Arch. Ration. Mech. Anal, vol.94, pp.307-334, 1986.

P. M. Suquet and . Introduction, In Homogenization Techniques for Composite Media

E. Sanchez-palencia and A. Zaoui, , pp.193-198, 1987.

C. Huet, Application of variational concepts to size effects in elastic heterogeneous bodies, J. Mech. Phys. Solids, vol.38, pp.813-841, 1990.

K. Sab, On the homogenization and the simulation of random materials, Eur. J. Mech. Solids, vol.11, pp.585-607, 1992.

S. Nemat-nasser, M. Hori, and . Micromechanics, Overall Properties of Heterogeneous Materials; North-Holland Series in Applied Mathematics and Mechanics, vol.37, pp.3-687, 1993.

V. V. Jikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, 1994.

P. C. Suquet and . Micromechanics, CISM International Centre for Mechanical Sciences, vol.377, 1997.

K. T. Andrews and S. Wright, Stochastic homogenization of elliptic boundary-value problems with L p -data, Asymptot. Anal, vol.17, pp.165-184, 1998.

F. Pradel and K. Sab, Homogenization of discrete media, J. Phys. IV France, vol.8, 1998.
URL : https://hal.archives-ouvertes.fr/tel-01616818

S. Forest, F. Barbe, and G. Cailletaud, Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials, Int. J. Solids Struct, vol.37, pp.7105-7126, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02327420

M. Bornert, T. Bretheau, and P. Gilormini, Homogénéisation en Mécanique des Matériaux 1. Matériaux Aléatoires élastiques et Milieux Périodiques, 2001.

A. Zaoui and . Micromechanics, Survey. J. Eng. Mech, vol.128, pp.808-816, 2002.

T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the size of the representative volume element for random composites: Statistical and numerical approach, Int. J. Solids Struct, vol.40, pp.3647-3679, 2003.

A. Bourgeat and A. Piatnitski, Approximations of effective coefficients in stochastic homogenization, vol.40, pp.153-165, 2004.

K. Sab and B. Nedjar, Periodization of random media and representative volume element size for linear composites, Comptes Rendus Mec, vol.333, pp.187-195, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00121487

M. Ostoja-starzewski, Material spatial randomness: From statistical to representative volume element, Probabilistic Eng. Mech, vol.21, pp.112-132, 2006.

M. Ostoja-starzewski, . Chapman, /. Hall, &. Taylor, and . Francis, Microstructural Randomness and Scaling in Mechanics of Materials, 2007.

C. Soize, Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size, Probab. Eng. Mech, vol.23, pp.307-323, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00685154

X. F. Xu and X. Chen, Stochastic homogenization of random elastic multi-phase composites and size quantification of representative volume element, Mech. Mater, vol.41, pp.174-186, 2009.

M. Tootkaboni and L. Graham-brady, A multi-scale spectral stochastic method for homogenization of multi-phase periodic composites with random material properties, Int. J. Numer. Methods Eng, vol.83, pp.59-90, 2010.

J. Guilleminot, A. Noshadravan, C. Soize, and R. Ghanem, A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures, Comput. Methods Appl. Mech. Eng, 1637.
URL : https://hal.archives-ouvertes.fr/hal-00684305

K. Teferra and L. Graham-brady, A random field-based method to estimate convergence of apparent properties in computational homogenization, Comput. Methods Appl. Mech. Eng, vol.330, pp.253-270, 2018.

R. Cottereau, D. Clouteau, H. B. Dhia, and C. Zaccardi, A stochastic-deterministic coupling method for continuum mechanics, Comput. Methods Appl. Mech. Eng, pp.3280-3288, 0200.
URL : https://hal.archives-ouvertes.fr/hal-00709540

C. Desceliers, C. Soize, S. Naili, and G. Haiat, Probabilistic model of the human cortical bone with mechanical alterations in ultrasonic range; Uncertainties in Structural Dynamics, Mech. Syst. Signal Process, vol.32, pp.170-177, 2012.

D. Clouteau, R. Cottereau, and G. Lombaert, Dynamics of structures coupled with elastic media-A review of numerical models and methods, J. Sound Vib, vol.332, pp.2415-2436, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00795002

C. Soize, Stochastic Models of Uncertainties in Computational Mechanics, Lecture Notes in Mechanics, vol.2, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00749201

G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling, Identification of Polynomial Chaos Representations in High Dimension from a Set of Realizations
URL : https://hal.archives-ouvertes.fr/hal-00770006

, SIAM J. Sci. Comput, vol.34, pp.2917-2945, 2012.

G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling, Karhunen-Loève expansion revisited for vector-valued random fields: Scaling, errors and optimal basis, J. Comput. Phys, vol.242, pp.607-622, 2013.

A. Nouy and C. Soize, Random field representations for stochastic elliptic boundary value problems and statistical inverse problems, Eur. J. Appl. Math, vol.25, pp.339-373, 2014.

M. T. Nguyen, C. Desceliers, C. Soize, J. M. Allain, and H. Gharbi, Multiscale identification of the random elasticity field at mesoscale of a heterogeneous microstructure using multiscale experimental observations, Int. J. Multiscale Comput. Eng, vol.13, pp.281-295, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01162147

C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J, vol.27, pp.379-423, 1948.

C. E. Shannon, A Mathematical Theory of Communication, SIGMOBILE Mob. Comput. Commun. Rev, vol.5, pp.3-55, 2001.

R. Balian, Random matrices and information theory, Il Nuovo Cimento B, vol.57, pp.183-193, 1965.

C. Soize, Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators, Comput. Methods Appl. Mech. Eng, vol.195, pp.26-64, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00686157

M. T. Nguyen, J. M. Allain, H. Gharbi, C. Desceliers, and C. Soize, Experimental multiscale measurements for the mechanical identification of a cortical bone by digital image correlation, J. Mech. Behav. Biomed. Mater, vol.63, pp.125-133, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01337358

N. D. Cunha and E. Polak, Constrained minimization under vector-valued criteria in finite dimensional spaces, J. Math. Anal. Appl, vol.19, pp.103-124, 1967.

Y. Censor, Pareto optimality in multiobjective problems, Appl. Math. Optim, vol.4, pp.41-59, 1977.

P. L. Yu and . Multiple, Criteria Decision Making: Concepts, Techniques, and Extensions, 1985.

J. P. Dauer and W. Stadler, A survey of vector optimization in infinite-dimensional spaces, part 2, J. Optim. Theory Appl, vol.51, pp.205-241, 1986.

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1989.

K. Deb, Multi-Objective Optimization using Evolutionary Algorithms

R. Marler and J. Arora, Survey of multi-objective optimization methods for engineering, Struct. Multidiscip. Optim, vol.26, pp.369-395, 2004.

A. Konak, D. W. Coit, and A. E. Smith, Multi-objective optimization using genetic algorithms: A tutorial. Special Issue-Genetic Algorithms and Reliability, Reliab. Eng. Syst. Saf, vol.91, pp.992-1007, 2006.

C. Coello and C. A. , Evolutionary multi-objective optimization: a historical view of the field, IEEE Comput. Intell. Mag, vol.1, pp.28-36, 2006.

C. A. Coello, G. B. Lamont, and D. A. Van-veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, vol.5, 2007.

K. Deb, Multi-objective Optimization, Search Methodologies: Introductory Tutorials in Optimization and Decision

E. K. Burke and G. Kendall, , pp.403-449, 2014.

T. J. Hughes, The Finite Element Method : Linear Static and Dynamic Finite Element Analysis

P. Hall, , 1987.

O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, 2005.

M. H. Kalos and P. A. Whitlock, Monte Carlo Methods, vol.1

. Wiley-interscience, , 1986.

G. S. Fishman and . Carlo, Concepts, Algorithms, and Applications, 1996.

J. A. Nelder and R. Mead, A Simplex Method for Function Minimization, Comput. J, vol.7, pp.308-313, 1965.

F. H. Walters, L. R. Parker, S. L. Morgan, and S. N. Deming, Sequential Simplex Optimization, 1991.

J. Lagarias, J. Reeds, M. Wright, and P. Wright, Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions, SIAM J. Optim, vol.9, pp.112-147, 1998.

K. Mckinnon, Convergence of the Nelder-Mead Simplex Method to a Nonstationary Point, SIAM J. Optim, vol.9, pp.148-158, 1998.

T. Kolda, R. Lewis, and V. Torczon, Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods. SIAM Rev, vol.45, pp.385-482, 2003.

L. Zadeh, Optimality and non-scalar-valued performance criteria, IEEE Trans. Autom. Control, vol.8, pp.59-60, 1963.

K. Deb, K. Sindhya, J. Hakanen, R. N. Sengupta, A. Gupta et al., MultiObjective Optimization, Decision Sciences: Theory and Practice, 2017.

J. Guilleminot and C. Soize, On the Statistical Dependence for the Components of Random Elasticity Tensors Exhibiting Material Symmetry Properties, J. Elast, vol.111, pp.109-130, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00724048