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Abstract

A residual network may be regarded as a discretization of an ordinary differential
equation (ODE) which, in the limit of time discretization, defines a continuous-depth
network. Although important steps have been taken to realize the advantages of such
continuous formulations, most current techniques assume identical layers. Indeed, existing
works throw into relief the myriad difficulties of learning an infinite-dimensional parameter
in a continuous-depth neural network. To this end, we introduce a shooting formulation
which shifts the perspective from parameterizing a network layer-by-layer to parameterizing
over optimal networks described only by a set of initial conditions. For scalability, we
propose a novel particle-ensemble parameterization which fully specifies the optimal
weight trajectory of the continuous-depth neural network. Our experiments show that
our particle-ensemble shooting formulation can achieve competitive performance. Finally,
though the current work is inspired by continuous-depth neural networks, the particle-
ensemble shooting formulation also applies to discrete-time networks and may lead to a
new fertile area of research in deep learning parameterization.

1 Introduction

Deep neural networks (DNNs) are closely related to optimal control (OC) where the sought-for
control variable corresponds to the parameters of the DNN [25, 24, 20]. To be able to
talk about an optimal control requires the definition of a control cost, i.e., a norm on the
control variable. We explore the ramifications of such a control cost in the context of DNN
parameterization. For simplicity, we focus on continuous formulations in the spirit of neural
ODEs [14]. However, both discrete and continuous OC formulations exist [13, 5, 38]; our
approach could be developed for both.

Initial work on continuous DNN formulations was motivated by the realization that a
ResNet [21, 22] resembles Euler forward time-integration [20, 24]. Specifically, the forward
pass of some input vector x̃ ∈ Rd through a network with L layers, specified as x(0) = x̃
and x(j + 1) = x(j) + f(x(j), θ(j)), j = 0, 1, . . . , L, closely relates to an explicit Euler [37]
discretization of the ODE

ẋ(t) = f(t,x(t), θ(t)), x(0) = x̃, 0 ≤ t ≤ T . (1.1)

In the continuous DNN formulation, we seek an optimal θ such that the terminal prediction
given by x(T ), i.e., the solution to Eq. (1.1) at time T , minimizes `(x(T )) for a task-specific
loss function `.
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ṗi = −∂xf(xi(t), θ(t))
>(pi)
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Figure 1: Optimization in the neural ODE (NODE) framework [14] (left) amounts to a forward pass
with the gradient computed via backpropagation ( ). Optimization under the shooting principle
(middle) turns the forward-backward system into a forward second-order system, where we essentially
run the backpropagation equation forward. We use a Hamiltonian particle ensemble (right) consisting
of K (position, momentum) pairs (qj ,pj) to make shooting efficient. Note that we write θ =
θ({(qj ,pj)}Kj=1) since θ satisfies a compatibility equation which involves all K particles. In shooting
θ is time-dependent, in standard NODE θ(t) = θ ∀t.

Although Eq. (1.1) with time-varying parameter θ(t) can be considered as a neural network
with an infinite number of layers, current implementations of ODE-inspired networks largely
assume the parameters θ are fixed in time, i.e., ∀t : θ(t) = θ [14, 15], or follow some prescribed
dynamics [44]. Instead, we explore time-varying θ(t) by employing regularization (i.e., a
control cost) to render the estimation well-posed and to assure regularity of the resulting flow.
Specifically, (for a single data point) we propose minimizing over θ the regularized loss

E(θ) =

∫ T

0
R(θ(t)) dt+ γ `(x(T )), γ ∈ R+, subject to Eq. (1.1) , (1.2)

where R is a real-valued complexity measure of θ corresponding to the control cost. We will
mostly work with the Frobenius norm but R(θ(t)) can be more general (see Appendix B).

Instead of directly optimizing over the set of time-dependent θ(t) as in standard ResNets,
we restrict the optimization set to those θ which are critical points of E(θ), thereby dramatically
reducing the number of parameters. In doing so, one can describe the optimization task as
an initial value problem. Namely, we show that we can rewrite the loss in Eq. (1.2) solely
in terms of the input x(0) and a corresponding finite-dimensional momentum variable, p(0).
Such an approach, just like optimizing the initial speed of a mass particle to reach a given
point, is called a shooting method in numerical analysis [31] and control [11], giving its name
to our new formulation.

The first two panels of Fig. 1 illustrate the difference between the optimization of a neural
ODE (NODE) via [14] and our shooting formulation. Since in practice, we have multiple
inputs x̃i, i = 1, . . . , n, there is an initial momentum vector pi corresponding to each of them.
If the shooting formulation is to scale up to a large sample size n, we must take care that
the parameterization does not grow linearly with n. To this end, we propose what we call
the Hamiltonian particle-ensemble parameterization. It is a finite set of particles, where
each particle is a (position, momentum) pair. The initial conditions of these particle pairs
{(qj ,pj)}Kj=1 (where K � n) completely determine θ(t). This is illustrated in the rightmost
panel of Fig. 1. Once the optimized set of particles has been computed, the computational
efficiency of the forward model, similarly to NODE [14], is retained for vector fields f that
are linear in their parameters θ(t).

Our contributions are as follows: 1) We introduce a shooting formulation for DNNs,
amounting to an initial-value formulation for neural network parameterization. This allows
for optimization over the original network parameter space via optimizing over the initial
conditions of critical networks only; 2) We propose an efficient implementation of the shooting
approach based on a novel particle-ensemble parameterization in which a set of initial particles
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(the (position, momentum) pairs) describe the space of putative optimal network parameters;
3) We propose the UpDown model which gives rise to explicit shooting equations; 4) We prove
universality for the flows of the UpDown vector field and demonstrate in experiments its good
performance on several prediction tasks.

2 Related work

We draw inspiration from two separate branches of research: 1) continuous formulations of
neural networks [14] and 2) shooting approaches for deformable image registration [2, 28, 30].

Continuous-depth neural networks. Continuous equivalents of ResNets [21, 22]
have been developed in [33, 20], but naïve implementations are memory-demanding since
backpropagation requires differentiating through the numerical integrator. Two approaches
can address this unfavorable memory footprint. NODE [14] does not store intermediate values
in the forward pass, but recomputes them by integrating the forward model backward. This
is easily possible only if the forward model is numerically invertible and the formulation is
time-continuous [18]1. Instead, checkpointing [18] is a general approach to reduce memory
requirements by selectively recomputing parts of the forward solution [19]. Our work can
easily be combined with these numerical approaches.

Solving implicit equations. A recent line of works, including deep equilibrium models [7]
and implicit residual networks [32], has shown that it may not always be necessary to freely
parameterize all the layers in the network. Specifically, in [7] and [32], the parameters of
each layer are defined via an implicit equation motivated by weight tying thus improving
expressiveness and reducing the number of parameters while decreasing the memory footprint
via implicit differentiation. Instead, our work increases expressiveness and reduces the number
of parameters via particle-based shooting.

Invertibility and expressiveness. Based on similarity with continuous time integration,
constraining the norm of a layer in a ResNet will result in an invertible network such as in
[9, 23]. Invertibility is also explored in [42], where it is enforced (as in our setting) via a penalty
of the norm. These works show that standard learning tasks can be performed on top of a
one-to-one transformation. Recent theoretical developments [43] show that indeed capping a
NODE or i-ResNet [9] with a single linear layer gives universal approximation for non-invertible
continuous functions. Further, expressiveness can be increased by moving to more complex
models, e.g., by introducing additional dimensions as explored in augmented NODE [15]. In
[44] (AnodeV2), Zhang et al. treat time-dependent θ(t). Weights are evolved jointly with the
state of the continuous DNN. While this weight evolution could, in principle, also be captured
by a learned weight network, the authors argue that this would result in a large increase
in parameters and therefore opt for explicitly parameterizing these evolutions (e.g., via a
reaction diffusion equation). In contrast, our method does not rely on learning a separate
weight-network or on explicitly specifying a weight evolution. Instead, our evolving weights
are a direct consequence of the shooting equations which, in turn, are a direct consequence of
penalizing network parameters (the control cost) over time; a large increase in parameters
does not occur.

Hamiltonian approaches. Toth et al. [36] proposed Hamiltonian generative networks
to learn the Hamiltonian governing the evolution of a physical system. Specifically, they
learn Hamiltonian vector fields in the latent space of an image encoder-decoder architecture.
Sæmundsson et al. [34] also learn the underlying dynamics of a system from time-dependent

1In a discrete setting, resolving the forward model in the backward direction generally requires costly
solving of implicit equations. This can be done (it is, e.g., done for invertible ResNets [9]). In general, an
explicit numerical solution for forward time-integration becomes implicit in the backward direction and vice
versa.
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data, starting from a discrete Lagrangian combined with a variational integrator. This
motivates particular network structures; e.g., Newtonian networks where the potential energy
is learned via a neural network. Although sharing common tools, our work completely
differs from this line of research in the sense that we exploit Hamiltonian mechanics to
parameterize general continuous neural networks. In principle, our work applies to most
network architectures and is not specific to physical data.

Finally, we mention that shooting approaches have been applied successfully in other areas
such as diffeomorphic image matching [28, 2, 30]. However, the decisive difference here is in
the dimensionality of the underlying space: in diffeomorphic image registration, the data are
points in a 3D volume i.e., d = 3; for DNNs applications, data points usually lie in a much
higher-dimensional space, i.e., d is very large.

3 Shooting formulation of ODE-inspired neural networks

We consider, for simplicity, a supervised learning task where the input and target spaces are
X ⊂ Rd and Y , resp., and sampled data are denoted by {(x̃i, ỹi)}ni=1 ⊂ X ×Y . The goal is to
learn the weight θ(t) in the following flow equation

ẋi(t) = f(xi(t), θ(t)), xi(0) = x̃i, 0 ≤ t ≤ T, i = 1, . . . , n (3.1)

such that it minimizes the loss
∑n

i=1 `(xi(T ), ỹi) for some loss function `. In existing works,
the weight is chosen independent of time, i.e., θ(t) = θ [14], or specific evolution equations
are postulated for it [26, 44]. Such strategies show the difficulty of addressing infinite
dimensional parameterizations of time-dependent θ and the need for regularization for well-
posedness [17, 26, 20]. Instead of parameterizing θ(t) directly, we aim at penalizing θ(t)
according to the regularity of f(·, θ(t)) to arrive at a well-posed problem. Specifically, we
consider a regularization term R(θ(t)) (discussed in §3.1) and propose to minimize over θ

En(θ) =

∫ T

0
R(θ(t)) dt+ γ

n∑
i=1

`(xi(T ), ỹi), γ ∈ R+, subject to Eq. (3.1) . (3.2)

Note that upon discretizing the time t (i.e., having a number of parameters proportional
to the number of timesteps) this is similar to a ResNet with weight decay. For a ResNet or
a NODE, optimization is based on computing the parameter gradient via a forward pass
followed by backpropagation (see left panel of Fig. 1).

Optimality equations. The optimality conditions for Eq. (3.2) in continuous time are:
ẋi(t)− f(xi(t), θ(t)) = 0, xi(0) = x̃i, Data evolution
ṗi(t) + ∂xf(xi(t), θ(t))

>(pi) = 0, pi(T ) = −γ∇`(xi(T ), ỹi), Adjoint evolution
∂θR(θ(t))−

∑n
i=1 ∂θf(xi(t), θ(t))

>(pi(t)) = 0 . Compatibility
(3.3)

The first equation describes evolution of the input data and the second equation is the
adjoint equation solved backward in time in order to compute the gradient with respect to the
parameters. At convergence, the third equation is also satisfied. This last equation encodes
the optimality of the layer at timestep t, as it is the case for an argmin layer or weight tying [3].
Its left hand side corresponds to the gradient with respect to the parameter θ, but as we shall
see it will allow us to compute θ directly via our (position, momentum) pairs in our particle
shooting formulation. The shooting approach simply replaces the optimization set by the
set of critical points of Eq. (3.2) expressed in these optimality conditions. That is, we only
optimize over solutions fulfilling Eq. (3.3).
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Shooting principle. The shooting method is standard in optimal control [11] and can
be formulated as follows: since, at optimality, the system in Eq. (3.3) is satisfied, one can
turn this system into a forward model defined only by its initial conditions {(xi(0),pi(0))}ni=1

which specify the entire trajectory of optimal parameters. We evolve both the data and adjoint
evolution equations forward in time and compute at each time, t, θ(t) from the compatibility
Eq. (3.3) via the current values of {(xi(t),pi(t))}ni=1. We refer to the forward model defined by
Eq. (3.3) as the shooting equations. Unfortunately, this initial-condition parameterization still
requires all initial conditions xi(0) and their corresponding momenta pi(0) for i = 1, . . . , n.
Since this does not scale to very large datasets, we propose an approximation using a collection
of particles, as described next.

Hamiltonian particle ensemble. In the limit and ideal case where the data distribution
is known, the optimality equations can be approximated using a collection of particles which
follow the Hamiltonian system (see Appendix A). We thus consider a collection of particles
{(qj ,pj)}Kj=1 ∈ Rd × Rd that drive the evolution of the entire population {xi}ni=1 ⊂ Rd
through the following forward model

ẋi(t)− f(xi(t), θ(t)) = 0, xi(0) = x̃i Data evolution
q̇j(t)− f(qj(t), θ(t)) = 0,

ṗj(t) + ∂qf(qj(t), θ(t))
>(pj(t)) = 0,

∂θR(θ(t))−
K∑
j=1

∂θf(qj(t), θ(t))
>(pj(t)) = 0 ,

 Hamiltonian equations
(3.4)

with initial conditions {(qj(0),pj(0))}Kj=1, where the gradient with respect to this new
parameterization is computed via backpropagation, and typically K � n. This set of
(position, momentum) pairs is termed the Hamiltonian particle ensemble. As the number of
particles is reduced, so are the number of free parameters, see Appendix C. Indeed, varying
the Hamiltonian particle ensemble allows for controlling the tradeoff between reconstruction
and network complexity. Note that the main difference to the shooting formulation of Eq. (3.3)
is that the parameterization, θ(t), is now retrieved from the shooting equations as specified
by the particle collection. The original data samples, x̃i, are simply propagated via these
parameters.

3.1 Choices of regularization, parameterization and conserved quantities

The main computational bottleneck in the forward model of Eq. (3.4) is the implicit parameter-
ization of θ by the last equation. Making it explicit is key to render shooting computationally
tractable.

Linear in parameter2 - quadratic penalty. In the simplest case, the space of functions
f is a linear space parameterized by θ(t). In this case, a quadratic penalty amounts to a
kinetic penalty. Specifically, as a motivating example, consider the forward model

f(x(t), θ(t)) = A(t)σ(x(t)) + b(t), (3.5)

where σ is a component-wise activation function, A ∈ L2([0, 1],Rd2), b ∈ L2([0, 1],Rd)
and θ(t) = [A(t), b(t)]. With the quadratic regularizer R(θ(t)) = 1

2 Tr
(
A(t)>MAA(t)

)
+

1
2b(t)

>Mbb(t), where MA, Mb are positive definite matrices, the particle shooting equations
are {

q̇j(t) = A(t)σ(qj(t)) + b(t),

ṗj(t) = −dσ(qj(t))
>A(t)>pj(t),

{
A(t) = MA

−1(−
∑K

j=1 pj(t)σ(qj(t))
>)

b(t) = Mb
−1(−

∑K
j=1 pj(t)) ,

(3.6)

2Obviously, an affine function of the parameters also works similarly.
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with given initial conditions (pj(0),qj(0)). We emphasize that θ(t) is explicitly defined by
{(pj(t),qj(t))}Kj=1 and the computational cost is reduced to matrix multiplications.

As is well-known [4], the Hamiltonian flow preserves the Hamiltonian function. In the
“linear in parameter - quadratic penalty” case, this preserved quantity, denoted

H(p(t),q(t)) = R(θ(t)),

corresponds to a (kinetic) energy of the system of particles. As a first consequence, the
objective functional can be rewritten as

H(p(0),q(0))) + γ
n∑
i=1

`(xi(T ), ỹi) .

This clearly allows for direct optimization on (p(0),q(0)), i.e., shooting. As a second conse-
quence, since the vector field has constant norm (its squared norm is the Hamiltonian), it
gives a quantitative bound on the regularity of the flow map at time t = T explicit in terms
of H(p(0),q(0)). In addition (Appendix A), the Rademacher complexity of the generated
flows with bounded H(p(0),q(0))) can also be controlled.

Nonlinear in parameter and non-quadratic penalty. A standard ResNet structure
uses vector fields of the type (in convolutional form or not)

f(x(t), θ(t)) = θ1(t)σ(θ2(t)x(t) + b2(t)) + b1(t) , (3.7)

where θ1(t) ∈ L(Rd′ ,Rd) and θ2(t) ∈ L(Rd,Rd′). We will refer to Eq. (3.7) as the single-
hidden-layer vector field. This model can also be handled in our shooting approach since
the shooting equations in Eq. (3.3) are completely specified by the Hamiltonian

H(p,q, θ) = R(θ)− p>f(q, θ).

Automatic differentiation can be used (see Appendix D) to implement the forward model

q̇(t) =
∂H

∂p
(p(t),q(t), θ(t)), ṗ(t) = −∂H

∂q
(p(t),q(t), θ(t)), θ(t) ∈ arg minH(p(t),q(t), θ(t)).

(3.8)
Note that a necessary condition for solving the third equation above is in fact the compatibility
equation in Eq. (3.4). Important bottlenecks appear since the third equation is nonlinear
and potentially associated with a non-convex optimization problem. This could be addressed
by unrolling the optimization corresponding to the last equation, resulting in increased
computational cost. In addition, in this nonlinear case, the Hamiltonian function is no longer
(in general) equal to R(θ(t)) even in the quadratic regularization setting. Therefore, results
on the smoothness or Rademacher complexity would no longer be guaranteed as for the linear
- quadratic penalty case. Last, quadratic regularization has no known theoretical results for
the Rademacher complexity of functions generated by Eq. (3.7) with bounded norm. Norms
for which the Rademacher complexity of this class of functions is known [16] to be bounded
are called Barron norms, which are non-smooth and non-convex, and which would add to the
difficulty. To circumvent these issues while retaining expressiveness and theoretical guarantees
in the linear parameterization setting, we next introduce the UpDown model.

3.2 The UpDown model

The key idea is to transform the vector field of Eq. (3.7) into a model which is linear in
parameters on which the quadratic regularization can be applied. To this end, we introduce
the additional state

v(t) = θ2(t)x(t) + b2(t)
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which we differentiate with respect to time to obtain

v̇(t) = θ̇2(t)x(t) + ḃ2(t) + θ2(t)ẋ(t) .

Replacing ẋ(t) by its formula, we get

v̇(t) = θ̇2(t)x(t) + ḃ2(t) + θ2(t)(θ1(t)σ(v(t)) + b1(t)) .

Now overloading on notation slightly, we use the additional state variable v(t) to propose the
following ODE system, denoted the UpDown model:

ẋ(t) = θ1(t)σ(v(t)) + b1(t), v̇(t) = θ2(t)x(t) + b2(t) + θ3(t)σ(v(t)) , (3.9)

with x(t) ∈ Rd, v(t) ∈ Rαd and introducing the (integer-valued) inflation factor α ≥ 1. For
the data evolution, xi(0) are given by the data {x̃i}. We parameterize the vi(0) using an
affine map gΘ, i.e.,

vi(0) = gΘ(xi(0)) = Θ12(xi(0)) + b12,

where Θ12 ∈ L(Rd,Rαd) and b12 ∈ L(Rαd). In Appendix E, we prove the following theorem:

Theorem 1. Given a time-dependent vector field defined on a compact domain C of Rd, which
is time continuous and Lipschitz, we denote by ϕ(T,x(0)) its flow at time T from starting
value x(0). Then, there exists a parameterization of the UpDown model for which its solution
is ε-close to the flow, supx(0)∈C ‖ϕ(T,x(0))− x(T )‖ ≤ ε.

Notably, in the proof, the dimension of the hidden state v is used twice: first, for having a
sufficient number of neurons in Eq. (3.7) to approximate a stationary vector field (standard
universality property of multilayer perceptron) and, second, for approximating time-dependent
vector fields. Therefore, at the cost of introducing a possibly large number of dimensions, the
UpDown model is universal in the class of time-dependent NODEs. As shown in Appendix E,
this universality result transfers to our shooting formulation. Due to its additional dimensions,
it is also likely to be universal in the space of functions (i.e., not necessarily injective). We
focus on the UpDown model in our experiments. Note also that while we derived our theory
for vector-valued evolutions for simplicity, similar linear in parameter evolution equations can
for example be derived for convolutional neural networks.

4 Experiments

Our goal is to demonstrate that it is possible to learn DNNs by optimizing only over the initial
conditions of critical networks. This is made possible via shooting and efficient via our particle
parameterization. A key difference to prior work is that our approach allows to capture
time-dependent (i.e., layer-dependent in the discrete setting) parameters without discretizing
these parameters at every time-point. Comparisons to other NODE like methods are not
straightforward due to hyper-parameters and different implementations. For consistency, we
therefore provide four different formulations (based on the UpDown model of §3.2).

• The static direct model forgoes the Hamiltonian particle ensemble, and instead directly
optimizes over time-constant parameters: θ(t) = θ for all t. Everything else, including the
UpDown model, stays unchanged. This model is most closely related to NODE [14] and
augmented NODE [15].

• We call our proposed shooting model dynamic with particles. It is parameterized via a
set of initial conditions of (position, momentum) pairs, which evolve over time and fully
specify θ(t).
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• The static with particles model is similar to the static direct model. However, instead
of directly optimizing over a time-constant θ, it uses a set of (position, momentum) pairs
(i.e., particles, as in our dynamic with particles model above) to parameterize θ indirectly.

• Finally, we consider the dynamic direct model which uses a piece-wise time-constant
θ(t). It essentially chains together multiple static direct models and is closely related to
a discrete ResNet in the sense that multiple blocks (we use five) are used in succession.
However, each block involves time-integrating the UpDown model. While the dynamic with
particles model captures θ(t) indirectly via particles and shooting, the dynamic direct
model requires many more parameters as it represents θ(t) directly. We show results for
the dynamic direct model for a subset of the experiments.

All experiments use the UpDown model with quadratic penalty function R. Detailed
experimental settings, including weights for the quadratic penalty function, can be found in
Appendix F.

Simple 1D function regression. We approximate a simple quadratic-like function
y = x2 + 3/(1 + x2) which is non-invertible. We use 15 particles for our experiments. Fig. 2
shows the test loss and the network complexity, as measured by the log Frobenius norm
integrated over time [29], for the different models as a function of the inflation factor α (cf.
§3.2). On average, the dynamic with particles model shows the best fits with the lowest
complexity measures, indicating the simplest network parameterization. Note that the static
with particles approach results in the lowest complexity measures only because it cannot
properly fit the function as indicated by the high test loss. Additional results for a cubic
function y = x3 are in Appendix G.

Spiral. Next, we revisit the spiral ODE example of [14] following the nonlinear dynamics
ẋ = Ax3, x ∈ R2 (where the power is component-wise). We fix x(0) = [2, 0]T , use A =
[−0.1, 2.0;−2,−0.1] and evolve the dynamics for time T = 10. The training data consists of
snippets from this trajectory, all of the same length. We use an L2 norm loss (calculated on
all intermediate time-points) and 25 particles. Our goal is to show that we can obtain the
best fit to the training data due to our dynamic model. Fig. 3 (top) shows that we can indeed
obtain similar or better fits (lower losses) for a similar number of parameters while achieving
the lowest network complexity measures. Fig. 3 (bottom) shows the corresponding results for
the validation data consisting of the original long trajectory starting from initial value x(0).
Interestingly, by pasting together short-range solutions we are successful in predicting the
long-range trajectory despite training on short-range trajectory snippets.

Concentric circles. To study the impact of the inflation factor α in a clas-
sification regime, we replicate the concentric circles setting of [15]. The task is
learning to separate points, sampled from two disjoint annuli in R2. While we are
less interested in the learned flow (as in [15]), we study how often the proposed
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Figure 3: Fit for spiral (short- and long-range). Losses for the different models as well as the
time-integral of log2 of the Frobenius norm complexity measure. Lower is better for both measures.
The * symbol indicates how many outliers were removed and α denotes the inflation factor.

UpDown (dynamic with particles) model perfectly fits the training data as a function
of α. To the right, we show the success rate over 50 training runs for three choices
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]

α = 5 α = 10 α = 20
of α and 20 particles. Notably, the effect of α is only visible if the
classification loss is down-weighted so that the regularization, R,
dominates. Otherwise, for the tested α, the model always fits the
data. The experiment is consistent with [15], where it is shown
that increasing the space on which an ODE is solved allows for
easy separation of the data and leads to less complex flows. The
latter is also observed for our model.

Rotating MNIST. Here, we are given sequences of a rotating MNIST digit (along 16
angles, linearly spaced in [0, 2π]). The task is learning to synthesize the digit at any rotation
angle, given only the first image of a sequence. We replicate the setup of [40] and consider
rotated versions of the digit “3”. We identify each rotation angle as a time point ti and randomly
drop four time points of each sequence during training. One fixed time point is consistently
left-out and later evaluated during testing. We use the same convolutional autoencoder of
[40] with the UpDown model operating in the internal representation space after the encoder.

Static direct

Static with particles

Dynamic with particles

During training, the encoder receives the first image of a sequence
(always at angle 0◦), the UpDown model integrates forward to the
desired time points, and the decoder decodes these representations.
As loss, we measure the mean-squared-error (MSE) of the decoder
outputs. Fig. 4 lists the MSE (at the left-out angle), averaged over all
testing sequences and shows two example sequences with predictions
for all time points (100 particles, α = 10).

While all UpDown variants substantially lower the MSE previ-
ously reported in the literature, they exhibit comparable performance.
To better understand the differences, we visualize the internal rep-
resentation space of the autoencoder by projecting all 16 internal
representations (i.e., the output of the UpDown models after receiving
the output of the encoder) of each testing image onto the two largest
principal components, shown to the right (different colors indicate
the different rotation angles). This qualitative result shows that allowing for a time-dependent
parameterization leads to a more structured latent space of the autoencoder.

Bouncing balls. Finally, we replicate the “bouncing balls” experiment of [40]. This is

9



MSE ± σ

†GPPVAE-DIS 0.0309 ± 0.00002
†GPPVAE-JOINT 0.0288 ± 0.00005
†ODE2VAE 0.0194 ± 0.00006
†ODE2VAE-KL 0.0184 ± 0.0003

Ours (stat. direct) 0.0126 ± 0.0064
Ours (stat. w particles) 0.0125 ± 0.0063
Ours (dyn. w particles) 0.0122 ± 0.0064

↔ Test time point

Figure 4: Left : Image (per-pixel) MSE (measured at the marked time point) averaged over all testing
sequences of the rotated MNIST dataset. Right : Two testing sequences and predictions (marked blue)
for all 16 time points when the image at t = 0 is given as input (marked red). Results marked with †

are taken from [40].
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†ODE2VAE (� 0.0093)

†DDPAE (� 0.0242)

†DTSBN-S (� 0.0732)

Ours (� 0.0148)

Figure 5: Left : Image (per-pixel) MSE for predicting 10 time points ahead (after receiving the first
three inputs of a sequence), averaged over all testing sequences (numbers in parentheses indicate the
MSE when additionally averaged over all prediction time points). Results marked with † are taken
from [40]. Right : Two testing sequences with predictions (marked blue).

similar to the rotating MNIST experiment, but the underlying dynamics are more complex.
In particular, we are given 10,000 (training) image sequences of bouncing balls at 20 different
time points [35]. The task is learning to predict, after seeing the first three images of a
sequence, future time points. We use the same convolutional autoencoder of [40] and minimize
image (per-pixel) MSE (using all 20 time points for training). Our UpDown model operates in
the internal representation space of the encoder (50-dimensional in our experiments3). In test
mode, the network receives the first three image of a sequence and predicts 10 time points
ahead. We measure the image (per-pixel) MSE and average the results (per time point) over
all 500 testing sequences. For model selection, we rely on the provided validation set. Our
UpDown (dynamic with particles) model uses 100 particles. Fig. 5 (left) lists the averaged
MSE per time point, plotted against the approaches listed in [40]. Fig. 5 (right) shows two
testing sequences with predictions (the three input time points are not shown). Results for
the UpDown static and static with particles model are � 0.0154 and � 0.0150, respectively.

Computational cost. The computational cost of the UpDown model consists in storing
the particles and running forward the model for the collection of particles and the data.
Hence, computational cost scales linearly in the number of particles. To get rid of this linear
relationship (in case only a forward pass is needed), the ODE can be discretized in time and
the ResNet with its weights is obtained.

3We did not further experiment with this hyperparameter, so potentially better results can be obtained.
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5 Discussion and Conclusions

We demonstrated that it is possible to parameterize DNNs via initial conditions of (position,
momentum) pairs. While our experiments are admittedly still simple, results are encouraging
as they show that 1) the particle-based approach can achieve competitive performance over
direct parameterizations and that 2) time-dependent parameterizations are useful for obtaining
simpler networks and can be realized with significantly fewer parameters using particle-based
shooting.

Our work opens up many different follow-up questions and formulations. For example,
we presented our approach for a model with continuous dynamics, but the particle and the
shooting formalism can also be applied to discrete-time models. Further, we focused, for
simplicity, on continuous variants of multi-layer perceptrons, but similar linear-in-parameter
models can be formulated for convolutional neural networks. Models that are nonlinear in
their parameters hold the promise for connections with optimal mass transport theory and
to theoretical complexity results, which we touched upon for our UpDown model. Indeed,
this change of paradigm in the parameterization may result in new quantitative results on
network generalization properties. Lastly, how well the approach generalizes to more complex
problems, how many particles are needed to switch from a standard deep network to its
shooting formulation, and how optimizing over critical points of the original optimization
problem via shooting relates to network generalization will be fascinating to explore.

Source code is available at: https://github.com/uncbiag/neuro_shooting

Broader Impact

One goal of this work is to enrich the understanding of continuous depth neural networks
and to open a different (or alternative) perspective on its parameterization. Specifically, we
shift the parameterization of deep neural networks from a layer-by-layer perspective to an
initial-value perspective and Hamiltonian dynamics. At this point, our work is conceptual
and theoretical in nature; broader impact emerges most likely as a consequence of better
understanding the role of neural network parameterizations.
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Supplementary material

The following sections discuss in more detail the theoretical guarantees of our approach. §A
presents the optimality conditions underlying our shooting formulation and it is shown how
these optimality equations can be approximated via a collection of particles. §B proposes
different regularizations, whose choice is key for practical and theoretical results. We show that,
under some conditions, the Rademacher complexity of the set of flows can be bounded and
apply our results in §B.5 to the UpDown model. §C discusses the number of free parameters of
our shooting approach in relation to the number of free parameters for direct optimization. §D
explains how the shooting equations can be automatically derived via automatic differentiation.
§E shows the universality of our UpDown model. §F provides details on our experimental setup.
Lastly, §G shows some additional experimental results.

A Expectation approximation of optimality equations

We first discuss a general variational setup of supervised learning including regularization.

A.1 Variational setup

Suppose the data consists of input X ∈ Rd. Let f(·, θ(t)) be a vector field on Rd, e.g. the
single hidden layer of Eq. (3.7) or a linear (in parameter) layer. Consider the flow ϕ := ϕ(T, ·)
generated by f according to {

d
dtϕ(t,x) = f(ϕ(t,x), θ(t)) ,

ϕ(0,x) = x .
(A.1)

We consider the general task of minimizing,

Reg(ϕ) + γE[`(ϕ(X))] , (A.2)

where γ is a positive regularization parameter.
We now consider the particular case of a ResNet model where each layer is given by an

UpDown model Eq. (3.9) or even a single hidden layer Eq. (3.7).
Without loss of generality, set the terminal time to T = 1. Letting ρ0 denote the probability

density of X, minimizing Eq. (A.2) is equivalent to minimizing

inf
ϕ

[
Reg(ϕ) + γ

∫
Rd

`(ϕ(x))ρ0(x) dx

]
.

This can be rewritten as

inf
ϕ

[
Reg(ϕ) + γ

∫
Rd

`(x′)ρ1(x′) dx′
]
,

where ρ1(x) := ρ(1,x) is the flow of the continuity equation

∂tρ(t,x) + div(ρ(t,x)f(x, θ)) = 0 , ρ(0,x) = ρ0(x) ,

where div is the divergence operator on vector fields. Note that ρ1 can be regarded as the
density representing the data at time 1. In the following, we deal with a general regularization
term Reg(ϕ) =

∫ 1
0 R(θ(t), ρ(t)) dt, where the R term can depend on the density of data at

time t. A particular though important case is when the regularization R does not depend on
ρ,
∫ 1

0 R(θ(t)) dt.
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A.2 Optimality equations and Hamiltonian ensemble approximation

We detail the optimality equations when data points are represented by a probability measure.
As mentioned above, the regularity of the map is enforced via a penalty on the weights at each
timepoint and is the integral

∫ 1
0 R(θ(t)) dt or even more generally

∫ 1
0 R(θ(t), ρ(t)) dt. Using

Lagrange multipliers, this constraint can be enforced and minimizers of the energy should be
saddlepoints of the energy

L(ρ, θ, p) := γ

∫
Rd

`(x)ρ1(x) dx +

∫ 1

0
R(θ(t), ρ(t)) dt

+

∫ 1

0

∫
Rd

p(t,x)(∂tρ(t,x) + div(ρ(t,x)f(x, θ(t)))) dxdt ,

where p(t,x) is a time and space dependent function. The optimality equations are then
∂tρ(t,x) + div(ρ(t,x)f(t,x, θ(t))) = 0 ,

∂tp(t,x) +∇p(t,x) · f(t,x, θ(t)) = δR
δρ (θ(t), ρ(t)) ,

∂θR(θ(t), ρ(t))−
∫
Rd ∂θf(x, θ(t))>(∇p(t,x)ρ(t,x)) = 0 ,

(A.3)

where ∇p is the gradient w.r.t. x of p(t,x) and δ denotes differentiation w.r.t. the indicated
parameter. The notation δR

δρ means the Fréchet derivative of the penalty w.r.t. the density
ρ. Note that in our current work, R is independent of ρ. However, this more general setup
encompasses optimal transport models, see Section B.2.

In practice, one does not have access to the full distribution and the variational setup
needs to be approximated. As proposed in the main text, we approximate it using a collection
of particles that follow the optimality equations which are Hamiltonian evolution equations for
this collection of particles. The collection of particles {(qj ,pj)} are defined by their state and
costate. We estimate ρ using the empirical measure 1

K

∑K
j=1 δqj(t)(·). Writing the optimality

equation for this particular empirical measure leads to the equation Eq. (3.4). When the
number of particles tends to infinity, we can hope to recover the optimal trajectory. However,
we do not explore this question formally here. We simply remark that this question is directly
connected to expressiveness and generalization properties of the constructed neural network
and is also probably data dependent.

B Choice of regularization

The simplest regularization on the flow ϕ is given by

Reg(ϕ) =

∫ 1

0
R(θ(t)) dt , (B.1)

where R does not depend on ρ(t, ·). The first possibility is a quadratic penalty for the
single-hidden-layer vector field of Eq. (3.7), where R(θ(t)) = 1

2‖θ(t)‖
2
2 is the Frobenius norm

of the parameter θ. Since the space of vector fields is a finite dimensional linear space, it can
be endowed with a scalar product, which turns this space into a Reproducing Kernel Hilbert
Space (RKHS). Therefore, the linear in parameter - quadratic penalty setting of §3.1 is a
particular case of vector fields encoded by f(·, θ(t)) ∈ H, with H a RKHS embedded in W 1,∞

vector fields. This setting leverages strong analytical and geometrical foundations [41, 12]:
1) When the activation function is smooth, the resulting vector field is smooth4, and

consequently the associated flow map ϕ is guaranteed to be a one-to-one smooth map (i.e.,
4I.e smoothness asks for Lipschitz regularity vector field, which ensures existence and uniqueness of the

flow.
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a diffeomorphism). For instance, with the UpDown model, it is a homeomorphism in (x,v).
Moreover, the quadratic penalty induces a right-invariant distance on the set of flows generated
by Eq. (A.1) and the distance to identity of the resulting flow can be bounded by Reg(ϕ)
(see [41, 12] for more details in a Sobolev setting). 2) When the activation function is of
ReLU type, the resulting map is still a W 1,∞ one-to-one map (i.e., a homeomorphism) and has
Lipschitz regularity.

Another type of regularization for the single-hidden-layer vector field of Eq. (3.7) we
discuss is based on the Barron norm [16]:

‖θ‖2B :=
1

d′

d′∑
j=1

‖θj1‖
2
2(‖[θ2]j‖1 + ‖bj2‖1)2 ,

where θj1 denotes the jth column of θ1 and [θ2]j denotes the jth row of θ2. As discussed in the
main text, the reason we might consider a Barron norm penalty for the single-hidden-layer
vector field in Eq. (3.7) rather than the quadratic penalty is because of its theoretical results.
Indeed, the Rademacher complexity is bounded for the combination of a single-hidden-layer
vector field with a Barron norm penalty, but not when combined with a quadratic penalty.

B.1 Linear in parameters - quadratic energy

Now let us examine in detail models that are linear in parameters and have quadratic energy
on parameters: this case is the simplest to be studied, and computationally not as demanding
as the nonlinear case. As mentioned above, the set of possible vector fields f(·, θ(t)) is a
finite dimensional linear space, which is a reproducing kernel Hilbert space when endowed
with an L2 norm. Since all Hilbert norms in finite dimensions are equivalent, this choice of
regularization is universal in this class of quadratic penalties.

1. The vector field is f(·, θ(t)) = θ · σ, where σ is a vector of maps. In this case, the
optimality equation reads

∂θf(x, θ(t))>(∇p(t,x)ρ(t,x)) =

∫
Rd

σ(x)>(∇p(t,x)ρ(t,x)) dx .

2. If the penalty R only depends on θ and is quadratic: R(θ(t)) = 1
2

∫ 1
0 ‖θ(t)‖

2 dt, then
one has δR

δθ (θ(t), ρ(t)) = θ(t).

Thus, under these two conditions, the parameters are explicit in terms of p, ρ and σ:

θ(t) =

∫
Rd

σ(x)>(∇p(t,x)ρ(t,x)) dx . (B.2)

Two observations are warranted. First, if, instead of quadratic regularization on the
parameters, we were to choose a RKHS norm (in the infinite dimensional case) as penalty,
it would result in the introduction of the kernel applied to the R.H.S. of Eq. (B.2). Second,
from Eq. (B.2), one could be tempted to derive an evolution equation for θ. This equation is
known as the EPDiff equation [41] and is unfortunately not a closed equation on the set of
parameters θ(t) themselves. Therefore, our approach is a possible way to approximate it.

An important property of this simple setting is that the norm of the vector field is
preserved by the forward model defined by the collection of Hamiltonian particles and it
also holds in the continuous setting. As stated in Section 3.1, the Hamiltonian is given by
R(θ(t)) = 1

2 Tr
(
A(t)>MAA(t)

)
+ 1

2b(t)
>Mbb(t) where A, b are the optimal parameters given

by {
A(t) = MA

−1(−
∑K

j=1 pj(t)σ(qj(t))
>)

b(t) = Mb
−1(−

∑K
j=1 pj(t)) .

(B.3)
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The Hamiltonian R(θ(t)) being constant gives a constant norm vector field.

B.2 Nonlinear in parameters - energy which depends on the distribution

For exposition purposes, we present two cases of interest which we have not well explored
numerically.

Example of the Barron norm. Obviously, the single-hidden-layer vector field in
Eq. (3.7) is not linear in parameters. We have already discussed that it is proper in this case
to endow the space with norms such as the Barron norm [16]. For simplicity, consider the
single-hidden-layer vector field in Eq. (3.7) without b1, i.e., f(x(t), θ(t)) = θ1σ(θ2(x) + b2). A
simple upper bound for the Barron norm5 is

‖f(·, θ)‖2B :=
1

d′

d′∑
j=1

‖θj1‖
2
2(‖[θ2]j‖1 + ‖[b2]j‖1)2 . (B.4)

Again, θj1 denotes the jth column of θ1 and [θ2]j denotes the jth row of θ2.
Let us consider the case of R(θ(t)) = 1

2‖f(·, θ)‖2B. In this case, one has the following
optimality equations to solve

θj1(‖[θ2]j‖1 + ‖|[b2]j‖1)2 =

∫
Rd

σ([θ2]jx + [b2]j)
>(∇p(t,x)ρ(t,x)) dx ,

‖θj1‖
2
2(‖[θ2]j‖1 + ‖[b2]j‖1)∂‖[θ2]kj ‖1 =

∫
Rd

[ dσ([θ2]jx + [b2]j)(xk)]
>(∇p(t, x)ρ(t,x)) dx ,

‖θj1‖
2
2(‖[θ2]j‖1 + ‖[b2]j‖1)∂‖[b2]jk‖1 =

∫
Rd

[ dσ([θ2]jx + [b2]j)(xk)]
>(∇p(t,x)ρ(t,x)) dx .

These equations involve the subdifferential of the L1 norm, and optimization of this type
of functions, which involves sparsity, is a well-explored field [6]. We leave experiments with
this norm for future work. Note that in this case the norm of the vector field is not equal to
the Hamiltonian and it is not a constant of the flow.

B.3 L2 regularization, optimal transport

Last, we briefly mention a model that is part of our framework which has the advantage of
not specifying the penalty on the space of parameters encoding the vector field. In case there
is no obvious norm to be used on the space of vector fields, it is possible to use an L2 type of
penalty on the vector fields themselves instead of on the parameters.

Indeed, one way to be rather independent of the choice of the parameterization of the map
consists in introducing a cost that represents the L2 norm of the map. However, L2 depends
on the choice of a measure and this measure can be chosen as the density of the data, ρ(t,x).
More precisely, one can use

R(f, ρ(t)) =
1

2

∫
Rd

‖f(x, θ)‖2ρ(t,x) dx . (B.5)

In such a case, this formulation resembles finding an optimal transport (OT) map between
ρ0 and ρ1. Specifically, optimal transport is an optimization problem which can be solved
via a fluid dynamic formulation [10] introducing the kinetic penalty above. However, the two
models (OT and the one defined by the regularization Eq. (B.5)) differ since the optimization

5The actual Barron norm is defined as the infimum of the r.h.s. in Eq. (B.4) on all the possible representations
of the function f(·, θ) as a single-hidden-layer.
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set for optimal transport is the set of L2 vector fields with respect to measure ρ and the above
formulation is a parameterized approximation of this set.

This parameterized approximation needs to retain generalization properties of the optimized
map. Note however, that in the limit where the number of neurons goes to infinity, optimal
transport will be well-approximated since the optimization is performed on a dense subset of
all vector fields. Obviously, fixing the choice to a single-hidden-layer design implies a choice for
d′ in θ1(t) ∈ L(Rd′ ,Rd) and θ2(t) ∈ L(Rd,Rd′) of Eq. (3.7), which thus gives a regularization
of the computed approximation of the optimal transport map.

Computational burden. In either case of the Barron norm or the optimal transport
type of penalty, the implicit equation corresponding to the third equation in Eq. (A.3) has
to be solved at each layer of the discretization. We experimented with a simple strategy
of unrolling the related minimization scheme. An efficient approach to solve such implicit
equations will be necessary for practical implementations.

B.4 Rademacher complexity of bounded energy flows.

In this section, given a set of vector fields with bounded Rademacher complexity, we show
that the resulting flows also have bounded Rademacher complexity. The flow of a vector field
f(·, θ(t)) is a vector valued map denoted by ϕ. Let us first treat the case of the Rademacher
complexity of a component of the flow map ϕk.

Theorem 2. Let F be a space of vector fields defined on a compact space C ⊂ Rd. Assume
that the Rademacher complexity on n points in C of each component of the vector fields fk(t, ·)
for k = 1, . . . , d is controlled by M(n, t) which depends on n, then the Rademacher complexity
of each component of the flows at time 1 is bounded by

∫ 1
0 M(n, t) dt.

Proof. Recall that Rademacher complexity, see [39], of a class of functions F is defined as, for
Z = (z1, . . . , zn) ∈ C,

RadZ(F)
def.
= E

[
sup
g∈F

n∑
i=1

εig(zi)

]
,

where the {εi}ni=1 are i.i.d. Rademacher random variables. Our hypothesis ensures RadZ(F) ≤
M(n). Apply the definition of the flow to get

ϕ(1,x) = x +

∫ 1

0
f(ϕ(t,x), θ(t)) dt .

Therefore,

E

[
sup
ϕ∈F

n∑
i=1

εiϕ
k(zi)

]
≤ RadZ({Id}) +

∫ 1

0
E

[
sup

f(·,θ(t))

n∑
i=1

εif
k(ϕ(t, zi), θ(t))

]
dt ,

≤ 0 +

∫ 1

0
M(n, t) dt .

In the previous formula, we used the fact that the Rademacher complexity of a set comprised
of a single map is zero.

Corollary 3. Let H be a RKHS of vector fields whose kernel k is bounded on the diagonal
‖k(x,x)k‖∞ < ∞ , then, the set of flows denoted by F at time 1 of time-dependent vector

fields in B(0, R), the ball of radius R centered at the origin satisfies RadZ(F) ≤ 2R
√
‖k(x,x)k‖∞√

n
,

where RadZ(F) is the Rademacher complexity for n points.
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Proof. The Rademacher complexity of the ball of radius R in the RKHS H [8, Lemma 22] is

upper bounded: RadZ(B(0, R)) ≤ 2R
√
‖k(x,x)k‖∞√

n
. We then directly apply Theorem 2.

A similar result also holds for vector fields generated by the single-hidden-layer vector
field in Eq. (3.7), see [16]. Last, we note that the result and its proof also hold if one uses the
following Rademacher complexity for vector valued functions [27],

RadZ(F)
def.
= E

sup
g∈F

n∑
i=1

d∑
j=1

εjεigj(zi)

 ,
for g = (gj)j=1,...,d ∈ F .

B.5 Consequences for the UpDown model

We put together the previous results on the UpDown model. First, the space of vector fields
endowed with the quadratic penalty on the parameters forms a RKHS. The variational
formulation implies that the norm of the velocity field generated by a given collection of
Hamiltonian particles {(qj(0),pj(0))} is preserved. In addition, this norm can be explicitly
computed since the parameters at time 0 can be computed in terms of {(qj(0),pj(0))}. Last,
the generated space of maps has a Rademacher complexity which is linearly bounded by this
norm. In order to be fully explicit on the constant for the Rademacher complexity, we need to
compute supx∈C ‖k(x, x)‖ where k is the kernel associated with the RKHS. Without making
this quantity explicit here, we simply mention that the bound degrades (i.e. increases) with
increasing inflation factor α, as it can be expected.

C Analysis of the number of free parameters

It is instructive to understand the number of parameters for a shooting approach in comparison
to the typical approach of optimizing a neural network (where the parameter-dependency at
optimality is only considered implicitly at convergence of the numerical solution rather than
explicitly during the shooting). We focus on the cases of affine and convolutional layers for
illustration.

Consider a DNN with a depth of L layers, where each hidden layer has P parameters. The
number of free parameters is then LP , compared to 2KS where K is the number of active
particles, each of them of size 2S6. Hence, solutions with less than LP/(2S) particles provide
benefits in the number of free parameters. Therefore, as the number of particles is reduced,
we may parameterize the DNN with a smaller number of parameters. Most remarkably, the
number of free parameters is always 2KS regardless of the number of parameters of a particular
layer as the layer parameters are obtained via the shooting equations based on the particle
states. This is a consequence of regularizing the parameters in our loss which couples them
across time at optimality. We make this clearer in what follows.

6For example, S for our UpDown model simply corresponds to the dimension of its state space: S = (α+1)d,
where α is the inflation factor and d the data dimension. Note that in our experiments with the UpDown model
we also learned an affine map from the initial conditions x(0) to the initial conditions v(0). Such a map has
αd(d+1) parameters. These parameters are included in the table of Fig. 3 and in Tables 1/2 summarizing the
number of mode parameters. However, we will not consider parameters in our discussion here, as they would
equally apply to both a shooting and a direct optimization approach and could also be avoided by simply
initializing v(0) to zero. A similar initialization to zero approach is, for example, commonly taken in ResNets
when increasing the number of feature channels [21].
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Affine layers. Recall that in our simple example of §3.1 the parameters θ(t) = [A(t), b(t)]
of our affine7 model are given as

A(t)= MA
−1

− K∑
j=1

pj(t)σ(qj(t))
>

 , b(t)= Mb
−1

− K∑
j=1

pj(t)

 . (C.1)

Here, A(t) and b(t) have d2 and d parameters, respectively; these parameters are indirectly
given by the set of particles {(qj(t),pj(t))} at any given time. Hence, for this model S = d and
P = d(d+1). If we assume we have K particles and compare to a discrete layer implementation
of this model then the particle-based approach will have less free parameters if

2Kd < Ld(d+ 1) .

Importantly, the state-space dimension, d, only enters the number of free parameters linearly
for the particle approach (2Kd), while there is a quadratic dependence for direct optimization
(Ld(d + 1)). This is a direct consequence of the optimality condition which couples the
parameters θ(t) across time. One can see this phenomenon in action in Eq. (C.1), where the
matrix A is expressed as the sum of matrices pj(t)σ(qj(t))

> with rank ≤ 1. Concretely, a
particle-based shooting approach uses less parameters if the number of particlesK < L(d+1)/2.
Another interesting observation based on this example is that even if we would have only
considered a linear model (i.e., without the bias term, b(t)) the number of parameters for the
particles would have still remained at 2KS. This is again a consequence of optimality and of
our parameter regularization. Note that this also means that even though our UpDown model

ẋ(t) = θ1(t)σ(v(t)) + b1(t), v̇(t) = θ2(t)x(t) + b2(t) + θ3(t)σ(v(t)) ,

has significantly more parameters θ(t) = [θ1(t), b1(t), θ2(t), b2(t), θ3(t)] when directly opti-
mized, this has no direct impact on the number of free parameters of its particle-based
parameterization. Only the state-space dimension matters. Concretely, if we were to instead
consider a model of the form

ẋ(t) = θ1(t)σ(v(t)), v̇(t) = θ2(t)x(t) ,

the particle-based parameterization would stay unchanged! Only the way how one infers θ(t)
from the particles changes.

Convolutional layers. Shooting approaches for convolutional models can also be derived.
We did not experiment with such models in this work. However, we show here that the
number of free parameters may also be decreased with a particle-based approach. This will
be interesting to explore in future work. Specifically, for convolutional layers a particle-based
parameterization could be particularly effective as one typically has quadratic complexity in
the number of filters between convolutional layers (i.e., if a layer with N feature channels
is followed by a layer with M feature channels, this will induce the estimation of N ×M
convolutional filters and hence will drastically influence the number of parameters for large
N or M). In contrast, a particle-based shooting approach does not increase the number of
parameters as it ties them together via the optimality conditions expressed by the shooting
equations. As a rough estimate for a standard convolutional ResNet for L = 50, P = 1002×16,
LP ≈ 8.106. Thus, if particles have size 40, we end up with at most 105 active particles.

General remarks. Nevertheless, all model parameters (e.g., [A(t), b(t)] or all convolu-
tional filters for a convolutional layer) are still instantiated during computation. It is important
to note that regardless of the chosen number of particles, a shooting neural network solution
is a possible optimal solution (for a given data set) at any given time, not only at convergence.
One optimizes over the family of possible neural network models with the goal of finding the
element within this family that best matches the observations.

7In this section, we mean affine with respect to (σ(qj(t)))j∈1,...,K .
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D Automatic shooting

The general shooting equations were presented in Eq. (3.3). We then proceeded to explicitly
derive the shooting equations for a continuous DNN with linear-in-parameter layers and UpDown
layers in §3.1 and §3.2, respectively. While this was instructive, it is somewhat cumbersome, in
particular, for more complex models or when moving to convolutional networks. Fortunately,
in practice these shooting equations do not need to be derived by hand. Indeed, they are
completely specified by the Hamiltonian

H(p,x, θ) = p>(ẋ− f(t,x, θ)) +R(θ) ,

in the sense that the shooting equations in Eq. (3.3) are computed via differentiation of H.
Specifically, the shooting equations in Eq. (3.3) are equivalently given by

ẋ = ∂H(p,x,θ)
∂p ,

ṗ = −∂H(p,x,θ)
∂x ,

θ ∈ arg minθH(p,x, θ) .

As discussed above, the last equation can be replaced by solving

∂θR(θ)−
N∑
i=1

∂θf(t,xi, θ)
T (pi) = 0 .

Automatic differentiation can be used to automatically obtain the shooting equations. As
fitting a shooting model requires differentiating the shooting equations, we in effect end up
with differentiating twice. This can be done seamlessly using modern deep learning libraries,
such as PyTorch.

E Universality of the UpDown model

In this section, we set out to demonstrate that the UpDown model is universal in the sense that
its associated flow can come ε-close to the flow of any well behaving time-dependent vector
field.

Recall the single-hidden-layer vector field in Eq. (3.7) with time-varying parameters
θ(t) = (θ1(t), θ2(t), b1(t), b2(t)). While shooting with the single hidden layer vector field is
theoretically appealing as it is universal [1], it would result in implicit shooting equations.
We first show that the UpDown model introduced in 3.2 can give the same flow as the single
hidden layer (Lemma 5) and then leverage this relationship to show that the UpDown model
inherits the universality of the single hidden layer (Proposition 6).

Lemma 4. Consider the single-hidden-layer vector field in Eq. (3.7) with θ2(t) and b2(t)
being piecewise C1 and θ1(t), b1(t) continuous. Then, there exists a parameterization of the
UpDown model that gives the same flow at a fixed time, T = 1.

Proof. We rewrite the differential equation

q̇(t) = θ1(t)σ(θ2(t)q + b2(t)) + b1(t) ,

by introducing the additional state variable v(t) = θ2(t)q(t) + b2(t) which we differentiate
w.r.t. time. We obtain v̇(t) = θ̇2(t)q(t) + ḃ2(t) + θ2(t)q̇(t) . Replacing q̇(t) by its formula, we
get

v̇(t) = θ̇2(t)q(t) + ḃ2(t) + θ2(t)θ1(t)(σ(v(t)) + b1(t)) .
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The system can be rewritten as{
q̇(t) = θ1(t)σ(v(t)) + b1(t) ,

v̇(t) = θ3(t)q(t) + θ4(t)σ(v(t)) + b3(t) .
(E.1)

Therefore, with the initial condition v(0) = θ2(0)q(0) and q(0) = q0, the two systems of
ordinary differential equations are equivalent.

Note that the key point in Lemma 4 is the loss of regularity in the evolution of θ2 since
we differentiated once in time. For that reason, we now show that adding more dimensions
using the inflation factor α alleviate this issue. It is likely possible that one could prove a
universality result using only α = 1 but we shall leave this question for future work8. However,
experimentally, the inflation factor has a crucial effect on the performance of the optimization,
as discussed in §4. Lemma 4 helps us establish the next result.

Lemma 5. Consider the single-hidden-layer vector field in Eq. (3.7) with θ(t) being piecewise
continuous. Then, there exists a parameterization of the UpDown model that gives the same
flow.

Proof. Without loss of generality, we only treat the case of one discontinuity in time of
the parameterization; We thus assume that θ(t) is continuous on [0, t1[ and [t1, 1]. We
consider q,v1,v2 ∈ Rd such that q,v1 are defined as in Lemma 4. We now define, up
to time t1, v2(t) = θ(t1)v1(t) + θ2(t1) which implies (differentiating w.r.t. time) that v2

follows an evolution equation similar to v1 and thus can be encoded in the general form
of Eq. (E.1). Now, q(t),v2(t) are defined on [t1, 1] by the evolution Eq. (E.1) in order to
coincide with the flow of single-hidden-layer vector field on [t1, 1], q̇(t) = θ1(t)σ(v2(t)) + b1(t)
and v̇2(t) = θ3(t)q(t) + θ4(t)σ(v2(t)) + b3(t) for well chosen parameters as in Lemma 4. Since
the value of v1(t) is not used in the evolution equation of q(t), we can simply extend it by
v1(t) = v1(t1) which is a valid evolution equation for Eq. (E.1).

In the general case, we decompose the time interval [0, 1] into k intervals [ti, ti+1[ on which
θ(t) is continuous and the proposed method can be directly extended using an inflation factor
α = k, introducing vk ∈ Rd.

Note that the result of this lemma gives an equality between the two flows defined on the
whole space Rd. The next result is an approximation result which holds on a compact domain
C ⊂ Rd. For a function f : Rd → R, we denote ‖f‖C,∞ = supx∈C |f(x)|.

Proposition 6. The UpDown model is universal in the class of time-dependent vector fields.
Let C ⊂ Rd be a compact domain. For every time-dependent vector field (such that it is time
continuous and is Lipschitz in space) w : [0, 1]×Rd 7→ Rd and its associated flow ϕ(t,x) there
exist time dependent parameters of the UpDown model such that{

q̇(t) = θ1(t)σ(v(t)) + b1(t) ,

v̇(t) = θ2(t)(q(t)) + b2 + θ3(t)σ(v(t)) ,

is ε-close to the solution ϕ(1,x), e.g. ‖ϕ(1,x)− q(1,x)‖C,∞ ≤ ε.

Proof. The proof is standard and we include it here for self-containedness. It is the consequence
of [1] and Lemma 5. Let B(0, r) a ball of radius r in Rd which contains ϕ(t,x) for all time
t ∈ [0, 1]. The flow associated with a given time-dependent vector field v(t, ·) can be
approximated by a vector field which is piecewise constant in time; i.e. let ε > 0 be a
positive real, (by continuity in time of v(t, ·)) there exists a decomposition of [0, 1] into k

8Note that the case α = 1 is similar in its formulation to a second-order model on q.
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intervals [ti, ti+1] and Lipschitz vector fields vi(x) = f(x, θi) where f is the single hidden
layer in Eq. (3.7) such that ‖vi(x) − v(t,x)‖B(0,r),∞ ≤ ε for t ∈ [ti, ti+1]. Denote by w(t, ·)
the time-dependent vector field defined by w(t, ·) = vi(·) for all t ∈ [ti, ti+1]. Thus, denoting
the flow of v(t, ·) by ϕv and the flow of w(t, ·) by ϕw, we get

‖ϕv(1,x)− ϕw(1,x)‖ ≤
∫ 1

0
‖v(t, ϕv(t,x))− v(t, ϕw(t,x))‖+ ‖v(t, ϕw(t,x))− w(t, ϕw(t,x))‖ dt

‖ϕv(1,x)− ϕw(1,x)‖C,∞ ≤
∫ 1

0
Lip(v)‖ϕv(t,x)− ϕw(t,x)‖C,∞ + ‖v(t, ·)− w(·)‖B(0,r),∞ dt

≤
∫ 1

0
Lip(v)‖ϕv(t,x)− ϕw(t,x)‖C,∞ dt+ ε ,

where Lip(v) denotes a bound on the Lipschitz constant of v(t,x) w.r.t. x ∈ B(0, r) for all
t ∈ [0, 1]. Then, the Grönwall lemma [41] gives

‖ϕv(1,x)− ϕw(1,x)‖C,∞ ≤ εeLip(v) . (E.2)

By Lemma 5, ϕw(1,x) can be approximated by the flow of the UpDown and the result is
obtained via the triangle inequality.

In this section, we focused on a universality result in the space of time-dependent vector
fields. Interestingly, due to the additional dimensions, it is likely that the model is universal
in the space of functions as well. This conjecture is supported by the quadratic 1D function
regression example which shows that the UpDown model is able to capture some maps which
are not homeomorphic. We leave this question for future work.

F Experimental settings

This section describes our experimental settings. We use our UpDown model for all experiments
and simply use a weighted Frobenius norm penalty for all parameters. Specifically, we
weigh this penalty for all parameters with 1 except for, θ3 which we penalize by 10. In our
experiments, we have observed better convergence properties for higher penalties on θ3. This
might be due to the special role that θ3 plays in the model as it subsumes a quadratic term in
the original derivation of the UpDown model (see §3.2). In all experiments, we also optimize
over the affine map from x(0) to v(0) for the data evolution.

Simple function regression. We use 500 epochs for all experiments. For all particle-
based experiments we freeze the positions of the particles for the first 50 epochs. We use a ReLU
activation function and the MSE loss. We weigh the MSE loss by 100 and the parameter norm
loss by 1. We use 500 training samples, 1,000 testing samples and 1,000 validation samples and
a batch size of 50. Note that for these simple examples there is, in practice, no real difference
between the training, testing, and validation data, as the number of samples is large and the
domain is [−1.5, 1.5]. We initialize the particle positions uniformly at random in [−1.5, 1.5]
and draw the momenta from a Gaussian distribution with zero mean and standard deviation
0.1. All time-integrations are done via a fourth-order Runge-Kutta integrator with time-step
0.1. For optimization, we use Adam with a learning rate of 0.01 and the ReduceLROnPlateau
learning rate scheduler of PyTorch with a learning rate reduction factor of 0.5.

Spiral. The spiral data is generated between time t = 0 and t = 10 with 200 uniformly
spaced timepoints. Training is only on small time snippets with an approximate length of
0.25 time-units. Evaluation is on these short time snippets as well as on the entire trajectory
by pasting together solutions for these short time snippets, i.e., an individual short solution
starts where the previous one ends. Settings for the spiral are the same as for the simple
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function regression with the following exceptions. We use 1,500 epochs and the step-size for
the fourth-order Runge-Kutta integrator is 0.05. The MSE loss is still weighted by 100, but the
parameter norm loss only by 0.01. We randomly draw 100 new training samples during each
epoch and use 100 evaluation samples and 1,000 short range samples and 1 long-range testing
sample. All samples are randomly drawn from the trajectory. However, as the trajectory
is traversed at highly nonuniform speed the samples are drawn from a uniform distribution
across the trace of the spiral. As for the simple function regression experiment, there is little
practical difference between the training, validation, and testing data as the problem is so
simple. However, this is not of concern in these experiments as the prime objective is to study
the fitting behavior of the different models. We use a batch size of 100.

Rotating MNIST. We use the data provided by the authors of [40] and follow the same
autoencoder architecture, except that our encoder maps into a 20-dimensional representation
space. The number of particles is set to 100 and the inflation factor α is set to 10. For
optimization, we use Adam with a learning rate of 0.001 and the CosineAnnealingLR learning
rate scheduler of PyTorch. We train for 500 epochs with a batch size of 25 and the parameter
norm loss set to 0.1.

Bouncing balls. As in the rotating MNIST experiment, we rely on the data provided by
the authors of [40], follow their autoencoder architecture and set the dimensionality of the
representation space of the encoder to 50. The first three images of each sequence are provided
to the encoder by concatenating the images along the channel dimension. The inflation factor
α is set to 20 and we use 100 particles. We optimize over 100 epoch using Adam with the
CosineAnnealingLR learning rate scheduler of PyTorch, the initial learning rate is set to 0.001
and the parameter norm loss is set to 0.0001.

G Additional results

Simple function regression. In Section 4, we considered approximating a quadratic-like
function. Here we show parallel results for approximating a cubic function y = x3. We will also
include some additional figures for the quadratic-like regression function. Note that whereas
the cubic function is invertible (but not diffeomorphic), the quadratic-like one considered
in Section 4 is a simple example of a non-invertible function. Tab. 1 shows the number of
parameters for the four different formulations for both regression functions. Fig. 6 shows for
the cubic regression the test loss and the network complexity, as measured by the Frobenius
norm [29], for the four formulations. On average the particle-based approaches show the best
fits with the lowest complexity measures, indicating the simplest network parameterization.
Note however that while the dynamic particle approach greatly outperformed the static
particle approach for the quadratic-like function (see Fig. 2) this is not the case here. In
fact, the static particle approach shows slightly better fits than the dynamic one. This might
be because the cubic function is significantly simpler to fit and hence may not benefit as
much from the dynamic approach. To illustrate that fitting the quadratic-like function is
indeed harder, Figs. 7 and 8 show function fits for different numbers of particles for the cubic
function and the quadratic-like function, respectively. All these fits are for the particle-based
dynamic UpDown model. Clearly, very few particles can achieve reasonable fits for a simple
function. As little as two particles already show a good fit for the cubic function, whereas the
quadratic-like function requires with more particles. This supports our hypothesis that fitting
more complex functions may require more particles.

Since our approach is based on the time-integration of the UpDown model it is interesting
to see 1) how the mapping is expressed across time and 2) how the parameters, θ(t), of
the UpDown model change over time. Fig. 9 shows example mappings for the cubic and the
quadratic-like function, respectively. The estimated mappings are highly regular. Lastly,
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Figs. 10 and 11 show the time-evolutions of the model parameters for the cubic and the
quadratic-like function for two different inflation factors. While different parameters show
different dynamics, clear changes over time can be observed. In particular, θ2(t) and b2(t) show
strong changes. These parameters mostly control the behavior of the hidden high-dimensional
state, v, as θ3(t) is penalized significantly more in our model (see Sec.F) and consequently
shows more moderate changes.

Table 1: Number of parameters for the simple function regression cubic and quadratic experiments.

Inflation factor
#Particles 4 8 16 32 64 128

static/dynamic w/ particles

2 28 52 100 196 388 772
5 58 106 202 394 778 1,546
15 158 286 542 1,054 2,078 4,126
25 258 466 882 1,714 3,378 6,706

dynamic direct n/a 153 461 1,557 5,669 21,573 84,101
static direct n/a 37 105 337 1,185 4,417 17,025
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Figure 6: Function fit (15 particles) for cubic y = x3 for 10 random initializations. Left : Test loss;
Right : time-integral of log2 of the Frobenius norm complexity. Lower is better for both measures.
* indicates number of removed outliers (outside the interquartile range (IQR) by ≥ 1.5× IQR); α
denotes the inflation factor.

Spiral. Tab. 2 shows the number of parameters in each of the four formulations for the
spiral experiment. This table complements the Table in Fig. 3 which only showed the number
of parameters when using 15 particles.

Table 2: Number of parameters for the spiral experiment.

Inflation factor
#Particles 16 32 64 128

static/dynamic w/ particles
15 1,116 2,172 4,284 8,508
25 1,796 3,492 6,884 13,668
50 3,496 6,792 13,384 26,568

static direct n/a 1,282 4,610 17,410 67,586
dynamic direct n/a 6,026 22,282 85,514 334,858
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Figure 7: Fits for the cubic function with inflation factor 16 and for different numbers of particles.
Vertical lines indicate particle positions after optimization. While subtle, the figures suggest that
using more particles allows for better approximation of the function. This is confirmed by the test
loss values in Fig. 6 (bottom left).

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

x

x x

x

3.0

2.75

2.50

2.25

3.0

2.75

2.50

2.25

y

y y

y

3.0

2.75

2.50

2.25

3.0

2.75

2.50

2.25

2 particles 5 particles

25 particles15 particles

Figure 8: Fits for the quadratic-like function for inflation factor 16 with different numbers of particles.
Vertical lines indicate particle positions after optimization. As this function is more complex than the
cubic function 2 and 5 particles is not sufficient for a fit. But 15 and 25 particles result in a well-fitting
approximation.
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seen, the mappings are highly regular.
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Figure 10: Weight evolution across time (i.e., continuous depth) for 15 particles when fitting the cubic
function using the UpDown model: ẋ(t) = θ1(t)σ(v(t)) + b1(t), v̇(t) = θ2(t)x(t) + b2(t) + θ3(t)σ(v(t)).
Results are for the dynamic with particles approach. Top: Inflation factor 16. Bottom: Inflation
factor 64. Changes in parameter values can clearly be observed.
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Figure 11: Weight evolution across time (i.e., continuous depth) for 15 particles when fitting the
quadratic-like function using the UpDown model: ẋ(t) = θ1(t)σ(v(t)) + b1(t), v̇(t) = θ2(t)x(t) + b2(t) +
θ3(t)σ(v(t)). Results are for the dynamic with particles approach. Top: Inflation factor 16. Bottom:
Inflation factor 64. Changes in parameter values can clearly be observed.
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