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Ahstract

The Fourier series method is used to solve the periodic homogenization problem for conductive materials containing voids.
The problems involving voids are special cases of infinite contrast whose full field solution is not unique. causing convergence
issues when iteration schemes ar used. In this paper, we reformulate the problem based on the temperature field in the skeleton
and derive an equation where the emperature fizld is connected to values on the pore boundary. Iteration schemes based on

the new equation show that the convergence is fast, yielding good results both in terms of local fields and effective conductive
properties.
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homogeneous medium, whose Fourier components are known explicitly. Other advantages are the use of a reduced
memory storage for computation and the ease of handling tomography images displayed on a wegular grid On the
other hand, the methods are also subject to several limitations including the convergence issues at extreme values
of contrast ratio, as seen thereafter.

In this paper, we address the case of porous materials where the contrast of physical parameters is infinite. The
present paper is devoted to conduction problems. However, numerous results of the literature were obtained either
for conduction or for elasticity. These problems are fundamentally of the same kind {elliptic second order operators).
The following discussion will refer to both types of problems. The first formulation of the FFT method [4] was
based in elasticity on the formulation of an integral equation of Lippmann-Schwinger—Dyson type (as in [3] for
conduction) whose kernel is the Green tensor in Fourier space computed from the properties of a reference medium.
The Green tensor acts on the local polarization computed from the local elastic properties and the ones of the
reference medium. In the first version of the method, the solution is obtained by building a Neumann series (o
solve this integral equation. The difficulty to deal with high contrasts when using such a formulation was early
recognized. In the case of the ilerative scheme based on Neumann series, compared with 3 other schemes, Michel
et al. [11] have shown that the eigenvalues of the iterative operator can be bounded with convenient values of the
physical parameters of the “reference medium™ used in the expression of the Lippmann—Schwinger equation. If the
upper bound of these eigenvalues is strictly inferior to 1, the convergence is ensured. For very small or very high
contrasts, the eigenvalues are nearer to 1. reducing the speed of convergence.

In the case of infinite contrast, such a bounding is no more possible: the eigenvalues of the continuous iterative
operator have eigenvalues very near (o 1 and its discrete version has eigenvalues whose upper bound increases
toward 1 with the discretization size. Several methods have been provided in order to improve the convergence of
the iterative process at high contrast [6,7.9]. However, if one requites for the local field to be physically consistent,
ie. complying with the expression of the conservation law in discrete Fourier space: {equilibrium in the case of
elasticity, or conservation of energy in the case of conduction, denoted thereafter CLF, Conservation Law in discrete
Fourier space), it was shown by Moulinec and Silva [12] that the convergence does not occur with the mostly used
schemes: basic scheme, accelerated schemes, lagrangian scheme, Eyre-Milton scheme. It is noticeable that the use
of CLF leads to satisfying solutions in the case of Anite contrast. However, its use in the most general case was
considered as unreliable by Schneider et al. [13] who stated that “from the point of view of functional analysis,
the divergence measured by this criterion does not imply the divergence of the solution”. Since the CLF criterion
is very demanding and provides satisfying solutions in the case of finite contrast, it is important to consider this
aspect in the present discussion.

In the same time, the numerical analysis of the solution procedure led to significant improvements. The estimation
of error produced by the iterative process for high contrasts has been studied [ 14,15], the solution of the cell problem
by the original method has been proved to be equivalent to a Galerkin discretization [16,17]. An important step was
to combine the FFT method with the conjugate gradient method [10,18] and with other efficient Newton—Krylov
solvers [ 19-21]. These methods improve significantly the convergence rate. However, it has been shown that the
conjugate gradient method does not converge at infinite contrast [18,22] when using the CLF criterion. This is not
the case for less demanding criteria, as for example in [10] which found a solution described as comparing well
with a finite element one. The Barzilai-Borwein basic scheme has been claimed to be able to provide convergence
even in the case of porous media [19] However, the example provided in this paper deals with a very small porosity
iaround 1%) in the case of a complex microstructure. From a fundamental point of view, the convergence of the
Barzilai-Borwein scheme is ensured only with coercive operators, which is not the case for porous materials. Further
work with a comparison of the solution obtained from Barzilai-Borwein scheme with exact solutions would be
necessary to conclude on this point.

Up to now, we have considered in this discussion the extensions of the basic scheme using the Green fensor in
Fourier space introduced in the original paper on the method, coming from the basic conservation equation. However,
several works were using a different path: they built a Lippmann—Schwinger equation using an “alternative Green
tensor” based on a different formulation [23-27], while being as valid as the vsual Green tensor It seems that
the convergence of the iterative process is improved, leading to convergence also in the case of porous media.
However, in this case, the expression of the conservation law is different from the one used for the basic scheme.
As a consequence, the convergence criterion is different from the one used in the methods based on the “classical”
Gieen tensor: the comparison may be biased by this fundamental difference. In this study, we shall keep the classical
Green fensor.



In the literature on FFT methods, a puzzling point has been noticed several times: the general resulis on the
comvergence in the case of voids show that the convergence criteria are not met [11]. However, it has been often
claimed that the convergence of the effective tensor can be achieved. An enlightening answer to this point has
been given in a recent paper [28]: the convergence of effective properties can be met even in the case of cells
containing voids if some additional information on the cell is available, even if the convergence of the local fizld
is not achieved. The authors studied the case of conduction in the case of a squared inclusion whose analytical
solution is known, both for the effective conductivity and the local field. Scrulinizing the expansion of the effective
conductivity as a series of terms containing the contrast of permeabilities, they have shown that a significant set of
coefficients of the expansion are estimated correctly by the numerical solutions, even in the case of void containing
materials. They have also shown that the convergence of different schemes, including the case of Willot [23] using
the “alternative Green tensor”, provide the effective conductivity with a relative error around 1072, even for voids.
However, the convergence criterion on the conservation equation was not achieved in the case of the conventional
Green tensor in the case of voids. Surprisingly, the convergence using the conservation equation was achieved using
the “alternative Green tensor”, but does not lead to a better convergence of the effective conductivity.

At the end of our discussion of the literature, one can see that numerous FFT methods have been introduced: they
differ by the kind of Green tensor, the criterion of convergence, the numerical solver, etc. They can also differ by
the kind of reconstruction of the solution from the values obtained at discretized points. This will not be considered
thereafter.

From the previous survey of the literature, the convergence of FFT methods in the case of materials containing
voids is still challenging. In the following, we shall address the case of conduction in porous materials. To
circumvent the difficulty when dealing with infinite contrasts, one can remark that the iterative operator is
fundamentally affected in the case of voids: the elasticity tensor within the cell is no more coercive within all
the cells. As a consequence, the full field solution is no longer unique: the solution is obtained up to the addition
of any field null outside the inclusions. Comparing the solution of that problem with FEM procedures, one can
see that the problem would not be solved uvsing finite elements with a discretization that would contain the voids,
On the contrary, excluding the void from the finite element mesh leads (0 a coercive elasticity tensor and a unique
solution. The main idea of the present work to circunvent the problem related to voids is to take as a main variable
the field outside the voids.

To formulate the problem, we start from a formulation based on emperature. To ensure the uniqueness of the
solution, we modify the formulation in order to solve the temperature field in the skeleton only. In the newly
derived equation, the temperature field is a function of the distribution of temperature on the pore boundary. The
iteration scheme is then formulated in Fourler space using form factors for elliptical or polygonal shapes [29-32]
of the pore. The local solution fields and the effective conductivity are finally compared with those coming from
the Finite Element Method and from closed form solutions. The details will be presented in the following sections.

2. Formulation and resolution method
2.1, Classical integral equarion for temperarure gradient
Before proceeding, ket us introduce the notations used in the paper. The bold characters A, s represent vectors

or tensors and the normal characters o are used for scalars. We shall denote the Fourier transform of a ¥V -periodic
function s(a) of cartesian coordinates xixy, x2, x3) as i)

1 ,
uE) = ir{-f wixie ™ dx, §i=a—1 (1
v
with Ei&, &, &) being the wave vector
E =2mng/Lg, mp=0,21,£2, ..., +o0, k=1,2,3 2)

and Ly, Ly. La being the dimensions of the period V along direction xq, x2, xa. The quantities standing next to
each other imply normal or contracted product, » for vector product and  for convolution product. We note that
in physical space, it can be expressed as

Aix)ywulx) = ZA[E]H[E}ijI (3)
3



and in Fourier space the convalution is discrete,

AlE) s uig) = EALE — Eu(E") 4
gl’

Let us consider a heterogeneous media where heat conductivity kix) is a periodic function of coordinates
x{xq, xz,x3) with period ¥, a rectangular box of dimension Ly » Lz = L. To find the effective properties of the
material, the usual method is to solve the conduction problem in a unit cell V' with periodicity boundary conditions.
The domain is free of heat source and the average temperature gradient E or average flux J is prescribed. In the
former case (E prescribed), a current method is to solve the following classical integral equation valid for amy
constant conductivity &g [3.8.33]

elx) = E — P (dkjkyle(x), Skix)=4kix)—ky i5)
where e is the (minus) gradient of temperature T or ¢ = —VT and # the convolution operator. In Fourier space,
P is a tensor function of wavevector £(&y, &, &) defined as follows

PE)=E®E VE£0, PE=01=0. (6)

with 8 = £/& and & = |Z|.
2.2, Imregral egquation for remperaiure
We reformulate now the above equation in terms of temperature. We remark that ¢ has a non zero average E
and cannot be derived from a periodic temperature field Tix). Instead, we use a periodic function #(x ) defined as
Tixi=—Ex —8x), o Véxi=ex)—FE (7

In this case, @ is the fluctuation of temperature. However, T will be no more used and & will be named “temperature™
in the following. In Fourier space, & is related to ¢ via the relation

e(E) = (VO E) =ik BiE) YE £ ()
We can obtain the integral equation for temperature
8= 64 R {8k kp)(V8 + E) (9
with @ the average temperature 8, i.e. @ = (@) and the newly derived operator R [21.34] given by:
o 16 _iE ~ (10)
RE) = —==—, R =M= (10}
=g =3 g

The above integral equation can be solved by using an iteration scheme with E as prescribed action. The constant
& can be set arbitrarily, for example & =0, without affecting e and the obtained effective conductivity.
There are some properties of R that we need to mention for later use. First, from the definition of R, we have
for any &:
Q&)= —RIEVIESE) VEZ£OD, or Ax)— {8 =—R+V8x) (11}

This is due to the fact that we have, from ( 10), Ri&WE = —I ¥E £ 0 where I is the second order identity tensor
Second. for all divergence free field jix), we have i& ji¥) = 0. or equivalently

R(EVjiEV=0 VE, or R« jix)=0 (12)

Another remark is that the solution #(x) exists uniquely if &ix) =0 ¥x € V or kix) = 0 ¥x £ V. In the case of a
porous material, ie., v so that kix) = 0, the solution is not unique. While the temperature in the skeleton may be
well defined and unique, the temperature in the void can be any continuation of the latter from the boundary. The
consequence is that there exists a non trivial solution 8ix) £ 0 at zero loading condition £ =0, or

ixy £ 0, # = R {8k k)VE) (13)
The eigen equation associated with the operator B & (8k /ko)( W) present in (9) reads:
A8 = R & (5k ko)W E) (143



We find therefore that there is an eigenvalue A = 1. As a result, using iterative schemes to solve 8ix) in (9) does
not ensure the convergence of the iterative process. This result has been found when studying all the previously
mentioned iterative processes,

To deal with the above issues, the main idea developed in the following is to avoid obtaining the full feld &ix)
and look instead for the part of this field related only to the skeleton.

2.3, Consideration of a porvous marerial

Let us assume that the cell ¥V is composed of voids occupying volume f2, with a characteristic function jy,(x)
and kix) = 0, the regular zone is homogeneous, occupying volume {4 with a characteristic function yy(x) and a
finite positive conductivity kix) =k, (see Fig. 1) Specifically, the conductivity distribution of the whole material
reads

Kix)=keyrix) ¥x, 0=k =00, (15
and

fuixy=11n 12, xixv)=0in 1}

yeix)i=1in £, pix)=0in 12 (16)
We continue to use the notations @, ¢ and j for the temperature, gradient and flux field of the whole domain V' while

denoting the same quantities in the sub-domains (8, e,) for voids, (&, e,) for regular domain. They are defined via
the mathematical ex pressions

BalX ) = o (x)F(x)  elix) = golx)elx), «=r, v (17)

We know that if the problem is well posed, the solution 8, in 2 exists uniquely while 8, in the void 2, is not unique.
The field 8, can be any continuation function of & into the void. This may cause issues when using the numerical
methods based on the governing equation. To overcome those difficulties, we shall reformulate the problem based
on temperature variable 8. in J2..

First our integral equation (9) can be decomposed into the following form

ki

ke —
8=684 R+ ’k 4 VO + E)— R+ 3,(V8 4+ E) (18)
0

Next, we examine the term e, = y,(V8 + E) in Fourier space, which vields the results

1 )
eglE) =yl E +VENEI = Ey €1+ ¥f Vo(xie Y dx
irs

o
—Eme?f

T

= E o (E) + [(nd)pr, B1(E) + iE6L(E) (19)

with m being the outward normal vector of the boundary I, of §2, and

. 1 .
Bixmixie Y ds + ik v f Blaxie ™ ¥ dy
b

| .
[(md)r 1) = ‘f_f Blximix e ¥ ds, (20)
Ta

Mote that we have integraked by parts and transformed the volume integral {2, into a surface integral on I, using
the Ganss theorem. In this relation, (n8)r, @ is the product of the continuous function &(x) and of the distribution
ind)r, (x) associated with interface I, The latter, viewed as swrface delta distribution & multiplied with the local
normal vector ., can be defined as
1 o 1 L . .
—rf[nﬁjrnl.rqu.rjd.r =—rf nixlpixids  Vix) (21
V v Vr,
for smooth test function gix ). Its Fourier transform admits a simple form

1 .
indir (E) = v mix e W dy = —iE g (8 (223
T



Fig. 1. Lefi: Porous matennl composed of pore 2y and skeleton (2. Right: Domain & o =r, v with boundary Fa and the outward normal
vector mix ).

Another formal proof of (19} is to consider the gradient in real space of &,

Voo = Vigat) =0V + 5aV0 = yule — E) = Bind)p,
= ey — Bindir, — ¥ E (23)

and apply the Fourier transform to the final result. A remark can be made here that e ix) £ V&, (x) due to the
discontinuity of 8, and of the characteristic function x, at I, Here, 8, =& and yx, = | inside 2, and both vanish
8, = 0 and yx, = 0 owside 12, The spatial derivative of the characteristic function y, results in a surface delta
term (nd)p, at the boundary I, as expected.

Now, applying operator R+ to the final result in ( 19) and using (1 1) yields the result

R joE+V = R4 Eyy — a4+ G+ Rindip, {24

where &, is the average temperature of &, or &, = {8, Due to the fact that 8, + & =& and &, + & = 6. we
can eliminate &, and obtain the expression for &,

k —k
b, = & + —’k Y[R & (E g + (nf)r, 8 + V&)
]
— R %iEx,+ (ndr, o 25)

Since the two phases r and v share the same boundary, i.e.. I, = I} but belong to two opposite sides, we have the
following properties:

(néir, = —(ndip, (26)
We can note from (25) and especially when & = ko, ie.
B =6 —R*(Ey,+ (nd)r. &) (27

that the internal temperature field & can be determined from the temperature on the boundary via the term
indyr, 6. This property renders the approach related to solutions of a Boundary Integral Equation in the periodic
selting.



To derive the equation for &, the next step is to express the remaining term (n&)pr, @ as a function of &, instzad
of & on the right hand side of Eq. (25). Different from €, & is continuous in £ and discontinuous at the boundary
Iy where 6 = ¢ inside while 8 = 0 outside. Starting from the expression (20) of [(n&)r, #1(&) in Fourier space,
we estimate the surface integral by using a volume integral over a layer of small thickness £ centered at I', as in
Fig. 1, or

if Bix P —igj T L P —ig_x ) g
- lxnix)e ds = lim — Alxinix)e dx (28]
V Ta =0 Ve s
When replacing € by &, the volume integral in the part outside 12, is null while the one within {2, is the same as
the one using #. As a resull, we obtain the relation

1 ; 1 )
lim — gix mix)e ¥ dy = 2 lim — A (xmix e 5 dx (29
=0 Ve Fywe =0 Ve Tyxe

which can be recast into the identity
(n8)r, 8 = 2nd)r, o (30

This result may be surprising. because & and & seem to be characterized by similar values at the boundary. However,
the second function is discontinuous at the boundary, explaining why the factor /2 appears in (30), similarly
to the same factor obtained when writing a boundary integral equation at a boundary point for a solution using
the Boundary Element Method [25] or to the factor 1/2 often used for defining the Heaviside function at the
discontinuity point. For further convincing of this result, Appendix A produces a mathematically rigorous proof in
Fourier space of this equality and a more physical proof in the case of circular inclusions, using known properties
of the scalar & function. Finally, substituting (30) into (25) yields an equation for &

ky — kg

8 =6, + [R*(Ex + 2(n8)5, 6 + V6]

— R#iEyx, + 2nd)r,&) (3D

In the particular case where the reference material is chosen equal to the matrix ko = A, (31) is reduced to the
very simple equation:

B =8, — Ra(Ey+ 2indip, o) (3

The two Eqs. (31) and (22) are equations for & only and can thus be solved by iterations. Again, the constant &;
can be set arbitrarily, for example &, = 0.

2.4, Numerical ireration schemes

We shall present the iteration schemes used to solve the temperature equations (9) and (31). We note that while
the scheme based on (9) is essentially the same as the basic scheme based on (5), the scheme for (21) is different
due to the decomposition of the domain and the appearance of the boundary term (nd)ré,.

To solve the original temperature equation (9) with & = 0, one can use the iteration scheme given by the
recurrence relation:

8" (x) = R # (8k/ ko) (VO™ (x) + E), (33)

Using the properties of R in( 1), we can rearrange the implementation of the recurrence relation by using Algorithm
| in Fourier space. Al convergence, when the difference |8t &) — 8™ &) — 0, we have |Ri&) ;™ &)/ kol = 0
and the fux field is also divergence free according fo (12). After convergence (step Roomy). the real field can be
recovered by the inverse Fourier transform. The macroscopic flux J can be used to extract the effective property
K*®. The reference material ky is chosen as the average of the minimum and maximum conductivities ki, Kmax
found in the system. Such a cholce guaranties the optimal convergence of the iteration scheme.



Algorithm 1 Temperature & iteration scheme

D = (& min + Kmax 1,2

80E) = RiENK ko) E)E

repeat
Mgy =iEe™E) EZD fME=D=E
JME =kig) kg
g tligy = 8™y + RiE) ™ &) ko
n«—n+l

until convergence criteria satisfied

j — j"n""'.'i{i — {I_,l, "[ — K:"E

It is possible to show that the above scheme in this form is equivalent to the scheme associated to (5)
My = E — P a8k kp)e™(x) (34
Algorithm 2 is the well-known original iteration scheme on E described in literature works. In this case, the
computation of temperatuse # can be avoided during the iteration process and can be recovered at comvergence
from e.

Algorithm 2 Gradient ¢ iteration scheme

Ko = (K min + Kmax )2
eMiEy=0 E£0, MME=0=E
re peat
JEY = kg ey
Mgy = e™iE) + P(E) ™) ko
n+—n+l
until convergence criteria satisfied
g'}lrMuJ[E] [ R'.E }Efﬂ.:ml I'.-E,.l
J= J-I.r-:funl "L-E =0, J= K°E

For comparison purpose, we also use the accelerated scheme based on polarization [6—8,29] detailed in Algorithm
3. Based on the polarization variable = with prescribed average T, the scheme is known for leading to faster con-
vergence rate than the original iteration scheme. However, like other schemes, it also has infinite contrast issnes due
to the problem of solution uniqueness discussed in the previous section. From Algorithim 3, we can find that at con-
vergence |t &) — ¢ £y, the gradient field is rotation free | @£ &) — O with @&y = I — P(E) and the
flux is divergence free | P(&) ;") — 0. Those conditions can be used to control the convergence of the scheme.

Algorithm 3 Polarization ¢ iteration scheme

.k.:. - "\."'km.il:rkmﬂ

g =0 ££0, tE=0=T

re peat
e™NE) = (k 4+ ko) EVRTE)  E) = KIE)# ™)
e = TE) + 2ko QUEI"E) — 2P(E) i)
n+—ntl

until convergence criteria satisfied

J=jmeomdig =), E=¢"™miE=0), J=KE

Finally, regarding Eq. (31) for materials containing voids, the associated iterative scheme with &, = 0 can be
reformulated in Algorithm 4 using (11). Once again, we can find that at convergence |8 T(E) —8"\(&)| — 0.
the flux field is also divergence fiee due to (12).



Algorithm 4 Temperature & iteration scheme for porous material

choose a eference conductivity kq
6°0E) = ELR(EE ) (§)]
repeat
(&) = iEOME) + Exp(£) 4 2nd)r, (8) # 6" (&)
J™MEY = ke ()
6 IE) = 67E) + R(E) ™)/ ko
n—n-+l
until convergence criteria satisfied
J = jelig =0y, J=KE

The formulations above are written for continuous variable x and an infinite number of wavevectors E.
MNumerically, we discretize V in voxels with resolution of 2N » 2N » 2N in physical space and limit the wavevectors
in the range —N = m; = N with 7 = 1,2, 3. Since the switching between physical space and Fourier space can be
done quickly by the Discrete Fourier Transform algorithm, mathematical operations like the discrete convolution
operators # can be affected without difficulties.

To achieve the best accuracy for the last @ scheme, we use a finer resolution for the Dirac term (nd)p (&) associated
with the interface I'. Specifically. to evaluate (nd) (&) + 8" (&), we adopt —eaN - n; = agN for the special term
ind)p and keeping —N - n; = N for 8" &) before carrying out the discrete convolution & in Fourier space. While
in most applications, the typical value of ey = 2 yields good results, we also investigate the influence of ay in
more detail

Finally, to control the convergence, three criteria will be considered for comparison: the criterion on the
divergence free flux

ml

i ™ e e /(ML) = e, (35)

the criierion on relative difference of temperature
10 an i 10 g B X
[ A T a3 P (36)

and the criterion on relative difference of gradient
10 ] 13 .
ley™ V&) — e Ele /e EF < (37)

with sufficiently small tolerance e. For the accelerated scheme based on polarization (see Algorithm 23, we shall
use both the divergence of the flux j simultaneously with the curl of the gradient e

L& j™E e /1i™0) =2, L& x ™E)F /1™ == (38)
and the criterion on relative difference
ey — e g e ™ < (39)

In this paper, the Frobenius norm ||.||p for complex tensor is used for the Fourier space, which is equivalent to L
norm in physical space. For example for a scalar function f

I f(Ee = v."z |fEF (40)
£

We note that the convergence rate depends on the choice of reference conductivity &y For systems where the
conductivity is bounded by 0 = Ky = kix) = &gax = 00, the best choice for the original temperature scheme is
ko = (kmin + Kmax)/2 and ko = o/ Kpinkmae f0r polarization scheme. However, for systems containing voids and the
new modified scheme, the question is still open and will be examined in the next section.

We also remark that for porous materials, there are special cases where the effective conductivity can vanish,
ie. j™0y — J =0 but the temperature field & can exist, for example in the case of parallel pores. Since j™(0)
appears in the denominator of (25), this issue would render the convergence criterion impossible to achieve. To



extend the present temperature scheme to those cases, we need to eplace j™(0) by k| E| where E is the driving
force specified from the beginning of the schemes. The convergence criteria (35) now become

& 5™ &) r /e ED) < e, 41

3. Applications to homogenization problems

3.1, General descriprion of systems, phase geomeiry and form facrors

To test the algorithm established previously, we shall study 2D systems in the plane | —2 constituted of a square
unit cell with dimensions V =Ly = Ly and Ly = Ly = L = 1. We will study cases where the geometries y,(x)
can be smooth (ellipse) and non-smooth (poly gons) and combinations (see Fig. 2). In those cases, the form factor
(€Y 15 explicit. For example, if the phase « is an ellipse of semi axes Ry, Ry centerad at ¢, we have [31,32]

28 Nimy _; [T —
xa§)= S = [SRE SR S =xRiRs 42)
with Jy is the first order Bessel function of first kind. For polygons with corner ¢4, €3, €3, ..., ¢y in counter clock

wise direction [29,30]

3 I
f_J,KE . (Cj —oj_q) w citei_g
Ful€) = W-;f@j — €j—1)sINC [E%} e izl

I
ls s
S=;'3~ch—1xcj~ o =¢y (43)
2o

where 3_.1 is the unit vector normal to the working plane [;:11 ?;_. ).
Another case of inierest is when the void phase is obtained from pixel images. The latter can be considered as

a group of identical squares of dimensions L /(2N ) x L /(2N ) with centers located at the grid points ¢y, 3, .. ., cr.
The exact expression of the form factor is given by
LA [&L BL]
- —_ 1 E L 3 —ik.r; A
FalE) = [ﬁ] Zj:smc [ﬁ] sinc [ﬁ] P (44)
‘[=
We note that this formula is different from the Discrete Fourier Transform of x
L]
LDFT e | & —iki; A&
Ko lEJ— |:2hri| jZ_l:E ! (45)

by the term sinc. On the other hand, the void phase can also be treated as a set of polygons with vertices being
the centers of the boundary cells and whose form factor is given by (42). All those three possibilities will be
investigated.

The problems are solved with the resolutions N = 128, 256, 512 and results will be compared with the solutions
using COMSOL, a standard Finite Element Method software and with closed form solutions. We shall examine both
the local field and the effective property obtained by the method. The latter is obtained from the relation between
J oand E.

3.2, Convergence issues af basic and accelerated schemes ar high conwras ravio

As mentioned earlier, the temperature scheme is directly derived from the gradient scheme and is expected to
have the same eigenvalues, spectral radius and convergence behaviors. Like the basic and polarization schemes, the
scheme is not guaranteed to converge for the infinite contrast case, i.e. Kkyax/kmin = 02, In this subsection, we shall
study briefly the accuracy and the convergence behavior of these schemes.

We consider the case of a circular inclusion of radius B = 0.3 located at the center of the uwnit square V and
embedded within the matrix. The matrix conductivity is fixed as &y = 1 and the inclusion conductivity k- is varied.
The reference conductivity is kg = iky+k2)/2 for the basic schemes and &y = /% 1k for the accelerated polarization
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scheme, The unit macroscopic loading value is applied along the horizontal direction E = i1 (hasic schemes) and
T =i (pelarization schemes). To achieve the best convergence behavior, we adopt the maximal resolution N = 512
and the tolerance ¢ = 0.001,

From Figs. 3, 4, we can find that the scheme is sensilive to the choice of criteria. Among the relative difference
criteria, the use of emperature results leads the program Lo lerminate much more earlier than for the gradient. On
the other hand, the relative difference eriterion does not guarantee the divergence free criterion, which is important
in the resolution of conduction problem and seems to be a very demanding criterion. At high contrast ratio, say
kafky = 10, the iteration curve of divergence free criteria increases linearly in the Log—Log plot. This behavior
agrees with previous works on this aspect (see e.g. [12]). Especially. in the case &; = 0 {void), numerical tesis show
that the schemes do not converge, The use of the accelerated scheme only improves the convergence for a finite
contrast {see Fig. 4) but cannot solve the case of mnfinite contrast. As seen later, this bad convergence behavior for
porous material is improved by the temperature scheme developed in this work.

3.3, Performuance of temperature scheme for porous marerial

To fest the new temperature scheme devoled 10 a porous material, we take as a first example the same system as
in the previous subsection but use the value kz = O for inclusion and & = k1 = 1 for the matrix and use Algorithm
4 to solve the problem. The resclution N = 128 and the tolerance £ = 0.001 are adoptled in this case.

In this section, with a chosen reference material kg = & = 1. the scheme converges very quickly. It takes
13 iterations to satisfy all the criteria. including the demanding condition on the flux divergence. From the first
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Fig 5 Filled contourplot of periodic temperature field @ (x} and the gradient field ¢(x) along dimction | in the mgular conductive zone,

qualitative inspection in Fig. 5, we can find that & vanishes in the pore. It is also symmetrical with espect o axis
1 and antisymmetrical with respect to axis 2. The gradient components along 1 of ¢ which vanish in the pore, also
possass the necessary symmelry properties with respect to axes | and 2.

Mext. we ook at the local fields and compare the results with those of FEM. From the contour plol in Fig. 6,
we find that the modified scheme compares well with FEM simulations. Some fluctuations are found near the void
boundary, which are common features of methods based on Fourier series (i.e. the Gibbs phenomenon). However,
the effective conductivity &, = 0.5589 is in excellent agreement with the value k, = 0.5585 by FEM.

We also do tests with a polygonal void, In this case. a diamond void with diagonals of length 0.8 and 0.4 is
located at the center of V. We find that the non-smooth inclusion form has a significant effect on the convergence
vate, It requires 18 ilerations to satisfy the relative difference criteria and 40 iterations for divergence free fux
criteria. The obtained results are also satisfactory both in terms of local feld (see Fig. 17) and effeclive property,
key = 0.7838 (FFT) vs ke = 07835 (FEM) along direction | isee Fig. 7).

34. Accuracy assessment of solunion fields

In Section 33, we have examined qualitatively the solution fields and the accuracy of the resulted effective
properties produced by the temperature scheme. The present section will be devoted 1o a more detailed comparison
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Fig. 7. Contourplot with 10 levels of temperature field & tx) by FFT method (left) and FEM (right) for dismond void, Due to the symmetry,
only a quarer of the model 15 shown,

of the whole field which is crucial for judging the quality of the method. We choose the cases of cylinder and
square pores whose benchmark solutions in lilzrature are available,

First. let us look into the same case of cylinder pore of radius 0.3 as before. The reference solution for temperature
field &, based on the classical Rayleigh's method [36] described in Appendix © for the case of voided inclusions,
is used for comparison purpose. As seen in Fig. 8, we find that the FFT solutions are in excellent agreement with
the Rayleigh solution. The temperature values & vanish inside the pore and match the values computed by the
Rayleigh method for the solid phase. Near the interface pore-solid, some undershoots and overshoots are observed,
which can be explained by the Gibbs phenocmenon. Bul globally, despite the localized fluctuation, the relative errors
between the two solution fields are small and decrease when increasing the resolution parameter N. We note that
although the solution &, computed by the present FFT method s very small in the void but still different from
the theoretical value 0. Different from the skeleton feld error |FFT — g™ eeh) & g Ravleigh & tha whole field
error |aFFT _ gloleish v g fRanesh Vg0 accounts for the non vanishing void field produced by the numerical
method. The nom in real space for a continuous function f

v L7 o 1 2
Il = _,_—,\,\IIEE IFE ™ = S Z | fixh)] {46)
eV el

is used in this case with x' being the (2W)* grid points.
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Using these criteria in the right part of Fig. & shows that the accuracy of the skeleton field is better than the
accuracy of the whole field. MNext, we consider a problem with square holes whose analytical solution has been
obtained by Obnosov [37] and described in Appendix B, In this example, the square hole has dimensions 0.5 = 0.5
and has the same center as the unit cell. The reference solutions are given for the gradient fields e,. We examine the
gradient profiles along the horizontal slice at x; = 0 and vertical slice at x4 = 1 /4. From Fig. 9, we find that the FFT
solution is in excellent agreement with the Obsonov solution. Again, some localized fuctuation near the inkerface
can be seen, but it does not affect the global accuracy of the FFT solution. We note that due to the singularity of e,
at the square corner and the discontinuity of e, on the square edges, we exclude the region of thickness ¢ = 0.01
centered at the square edges before evaluating the whole field error berween the FFT and Obsonov solution. As
seen in Fig. 10, the global error is small, confirming the performance of the method for this case. Like for the
cylinder case, the error within the skeleton phase is smaller. In addition, at high resolution, the difference between
the error within the skeleton field and the one for the whole field is small.

A5 Influence of reference conducriviry and microsmructure on the convergence

In the previous section, we have chosen the reference material conductivity equal to that of the matrix &y = k.
The choice yielded good convergence behavior and results in terms of local field and effective property. In this
section we shall address the question about the convergence condition. In addition to the two previous examples on
circular and diamond pores, to study the interaction of pores, we consider two more examples where the distribution
of circular pores and triangle, quadrilateral pores is welatively dense, i.e. the pores are close to each other. The first
sample is constituted of 4 triangles and 2 quadrilaterals with porosity 0.51 and the second sample is made of &
circular pores of different diameters with porosity 0.46 (see the inset figures of Fig. 12). The demanding criteria
on the flux divergence are usad to control the convergencs.

From Figs. 11 and 12, we find a common convergence behavior. The scheme converges very slowly when kg = &,
and even diverges at low ky/k, value. The optimal g/ k, ratio is around 1.2 but not at ky = k.. At higher ratios,
the required number of iterations increases again, but the computation still performs better than for small ratios.
When many pores are present, their interaction requires mose iterations to achieve the convergence and the system
of circular pores converges better than the system of polygonal pores. For example, for the pack of mixture of 6
circular pores, it requires a minimum of 27 iterations while for the mixture of & triangles and quadrilaterals, the
minimum value is 240. This effect suggests that the microstructure and the choice of the reference conductivity are
crucial for the optimal convergence of the problem.

3.6, Pixel images and resolurion study

In Section 3.1, the characteristic functions of the void phases are provided via their Fourier Transforms, i.e. the
analytical form factors. The polygon shape is also general and can be used to approximate most geome trical forms.
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For example. in the case of pixel images frequently used in tomography applications. an approximate palygon
can be constructed by connecting the centers of the boundary voxels, The boundary voxels can be detected by
standard image processing techniques and Fig 13 shows an example of a circular pore of radius B = 0.3, The
major advantage of using such a poly gonal approximation over the square boundary of the voxels is that the normal
vectors i on the boundary associated (o the surface Dirac term (nd)p vary less abrupily and minimize the singularity
effect at the corners,
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Let us recall that the present method is based on the surface Dirac distribution (n8)p which requires a finer
resolution in Fourier space, awgN versus the base resolution N for the skeleton phase x, and other unknowns j. e,
To study how those factors influence the scheme, different resolution parameters N = 8, 16, 32, 64, 128, 256 and
512 are used. The refining resolution coefficient wy corresponding to the delta term is also varied from 1 to 4.

As seen in Fig. 14, using analytical form factors for the circle and its approximate polygon yields already
comvergent results at @y = 2. While adopting the same base resolution ey = | is clearly not accurate enough,
the curves corresponding to @y = 2 and @y = 4 coincide perfectly and decrease smoothly to the FEM results.
The results associated to the polygonal approximation show the same behavior but converge more slowly and are
slightly less accurate than the results based on the circle form factor. However the difference between the results
related to two circle and polygon curves is very small, less than 1% for the resolution N = 128,

We find that using the poly gon approximation and the associated form factor performs much better than the pixel
form factors (exact or DFT). By fixing N = 128 and increasing the refining coefficient ey, the exact and DFT pixel
form factors converge very slowly (see Fig. 15). Even for very high value ey = 16, the difference from the exact
result i still considerable. The circle and the polygon smoothing curves converge at g = 2 and are both close
to the exact results. It suggests that the polygons capture better the variation of the void boundary than the square
arid.

As a final remark, the refining resolution factor gy associated o (n8)p erm does wequire an additional memory
storage and computation time when compared with other methods dealing with nonporous material. However, when
coupling with form factors, it yields superior results in both local fields and effective properties. It is known that
methods based on pixel description can predict the effective properties but generate artificially corners and associated
singularities and other undesirable effects. Those artificial corners have the same characteristic size as the basic grid
spacing. If we want to treat properly the local fields, it is also necessary to adopt a finer grid in addition to the
basic grid.

3.7, Connecred pores across the unir cell

Up to now, only compact pores were studied. However, the solution method being based on an interface operator,
it is important to check that the method can also be used with pores crossing the porous cell, when the interface
crosses the boundary of the periodic cell. In a first example, we study a pore of height & along direction x centered
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at our unit cell. The analytical solution for the above system is given below

For £1 £0, Ex =1k
For Eq1 =0, E; £

hix)=10%¥x

Heixy =0 Tor |xz| = h/2

Heix ) = Eail /2 signfxg) —xz) Tar b /2 < |xg] = |

Those results vield an effective conductivity corresponding with Voigt and Rewss bounds kg kg = (1 — A) and
kepfbo =10,

Tests on the case h = 0.2 show that, al convergence, the FFT resulls are in excellent agreement with anatyiical
results, When £y #£ 0, E; = 1, the lemperature field is small. When Eq = |, Ex # 0, the temperature is linear in
each range [h/2, 1/2] and [—#h/2, —1 /2] with the maximal and minimal values being 0.4 and —0.4 (see Fig. 16),
The code converges after | and 37 iterations for each case. The effective conductivity s exactly identical to the
analytical values &/ ko = 0.8 and ko /kp = 0.

In the second example, we study a zigzag pore of height & = 0.2 (see Fig. | 7). The center line connects six points
of coordinates (—0.5, —0.25), (—0.25, 0.25)_ (0,25, 0.25), (0.25, —0.25) and (0.5, —0.25), The effective conductivity
ket = 0L333 (26 lterations) can be compared with 0,328 by FEM and k. = 0 (134 {terations), Thus, the difference
in kg is less than 29 for the esolution N = 128 and is further improved for higher resolution.

The above two examples show the applicability of the method to a pore network crossing the periodic cell, which
is frequently encountered in practice,
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4. Conclusion

In this paper, we have developed a FFT basad numerical scheme to compute the effective conductivity of porous
materials, To avoid the convergence issues due to the nonuniqueness of the full field solution, we reformulate the
problem using the temperature field in the skeleton as an unknown variable. In the newly derived governing equation,
the internal temperature field can be computed from the value on the pore boundary. This feature gives the present
scheme some similarity with the methods based on Boundaty Integral Equations.

When employing iterative resolution schemes, examples show that the new scheme converges very quickly and
yields bath accurate effective conductivity and satisfying local fields. We also have carried out a convergence
study for different types of pore microstructures including circle and polygonal pores and their mixtures. Useful
information on the convergence behavior is obtained to help determining the optimal reference conduoctivity value
ensuring the best convergence of the scheme.
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Appendix A. Proof of identity (30}

ALl Proof in Fourier space

We shall demonstrate identity (300 by showing that
2nd ) ix ) yix ) = (mdp (x) (AL
From ¢22), it is equivalent to prove the identity in Fourier space
2[EEHr(ED] e (6} = & e (E) (A2)
Using the definition of the discrete convolution (4 and after some calculation, we have

[EEx- (8D % o (B) = ) (5 — B (E — EN)pe(8)
gi
=ik (& —EpiE) =Y xr (6 — ENNE (8"
gr gi

= (g WE) — sl % [E e (E)]
= i&xrE) — [EE xr(E)] * yr(E) (A3

which leads (0 (A 2} To arive at the last line of (A 3), we use the property of the characteristic function in real
space ye(x )y (x) = xe(x) and the fact that the convolution operator  commutes.



A.2. Proof in real space for circalar inclusion

Ag a complement to the previous demonstration, we examine the case of circular inclusions of radius R, and
show that in this case. (29) is a consequence of a classical property of scalar delta function. The polar coordinate
system { p. o) will be adopted. For any function g p, ), we have

{nf1rflp, ) @lp, el = Rf iR, o)l R, winie)de
P

=R j;_ (8o — R),Bip,alplo, amic)ide = {5(p— R), Tip) (A4
with T{g) being the integpral

Tipi=R j; Bip, ainloplp, ade. (A5
and &' being the scalar delta function. The latter can be classically defined as

§(p — Ry = lim e~ (p—Ri[da (A.6)

a—=0 2. /ma

Applving the above definilion of scalar delta function and making nse of the continuity of T, # and ¢ at vicinity
of p = K. we obtain

oD ] . oy
a8, @ = ;inz_lf ﬁe—l.l-—m—ﬁarnpm,p
= Jo 241

) I -
= T(R). lim f =R gp = T(R) (AT
0 2/ma

J—

We consider now the discontinuous function &, = x# with », being the characteristic function of the circular
inclusion. The latter is equivalent to a scalar Heaviside function x(p, w) = HiR — p). leading Lo

= 4
{m8yp 6. w) = ]imf e R T O H(R — pldp
o 2. ma

a—=i

: =1 B
= Ti(R) lim e TR R — pdp
a—0Jpn  2afma

= T(R) lim f? ﬁe—m—*”%p (A.8)
Taking into account the parity of ¢=#*/% produces
lim f ! 1 te-riiag, Ly f Tl enrieg, L (A.9)
a—0Jy 24 /ma 2as0jy 2./ma 2
and finally
{indyp L) = ;l (néy - 8, @) (AL LD

Appendix B. Obsonov analytical selution for square voids in a periodic setting

Obnosov [37] solved the problem of a rectangular inclusion located at the center of a periodic rectangular cell
For the comparison purpose, we consider the case where both the void and the cell are squared and the size of the
former is half the size of the latter. In this case, the effective conductivity of the material is

ke =ke /A3 &1

The Obnosov solution is based on a method wsing complex variables that produces, for a given overall flux of 1
along xy, the heat Aux inside the matrix represented by the complex Aux j© defned by

Jf=ji—ifp (B.2)



at each point of the complex plane identified by its complex affix z = x 4 ixz. j° 15 given by:
it =64 [f_i"*'lﬁx + fi"'rﬁ;{_l] (B.3)
where Jy is the macroscopic Aux. The two terms jx and & are:

P a 13
_ | etk 212y — 12 ¢
T dnf 2K z|1/2) — 1 4/ 2eimid

and
(562 /%)
gy T O
a4y
where dnjz|m) is the Jacobian elliptic function and I is the Gamma function. K is the value of the complete elliptic
integral Kim)at m = 0.5, so K = K{0.5) = |.854074677 301372 (for the special funclions K, I' and dn, see [38]),

Appendix C. Reference solution for circular holes

The reference solution for the homogeneous conduction properties of a medium containing a periodic array
of circular holes is based on a solution criginally provided by Lord Rayleigh for composites containing circular
inclusions [36]. This solution uses the expansion of the local temperature fGeld into cylindrical harmonics, which
can be written within the matrix, having taken into account the symmetries and the boundary conditions at the
circular voids of radius @ and periodicity | along both directions:

oo

e Z% [(_:—!)2”_] + (;]%_1}c05{2n — 18 (.1
r=1

In Rayleigh's method, taking into account the interaction between all inclusions of the periadic setting produces an
infinite system of linear equations for the coefficients By,—y. which is written by using the laltice sums:

54
5= rj+iyp™ (C.2)
=

where x;, v are the coordinates of the centers of the circles within the perindic lattice,
For a squared lattice, this sum is always real and is null except when ! = 2 or ! = 4p. Denoting X, =
Bay_z/(n — 1)l the values of X, are solutions of the linear systen:

[M]X]=[V] (C.3
where the components of the symmetric matrix [M] are given by:

; ' (28— 1)li2i — 2
J"-f.;j =X +2j— 3”.5'3;,‘.,._.:_11 + 5ijw (C.4)
and ¥; = &. where & 1s the Kronecker symbol. Since Rayleigh's work, a lot has been aeffected on the computation
of the lattice sums. The values of these lattice sums are fully described in [39]

Si=a (C.5)
rtat

5= &0 (C.6)
miAS

8 = =400 (C.7)

-1 2oosidpo)

i I+ = (C.8)

{
Sip=4[EpNl +

where A = 118034060, o = arccosi 2/ +'5) and £ 15 the Riemann zeta function [38],
The values of By,—; were obtained from a 7 » 7 mairix [M ], These values have been verified by comparison
with the ones obtained from a collocation method [401].
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