
HAL Id: hal-02652082
https://hal.science/hal-02652082v4

Submitted on 19 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A scalable causal broadcast that tolerates dynamics of
mobile networks

Daniel Wilhelm, Luciana Arantes, Pierre Sens

To cite this version:
Daniel Wilhelm, Luciana Arantes, Pierre Sens. A scalable causal broadcast that tolerates dynamics
of mobile networks. [Technical Report] Sorbonne University UPMC. 2020. �hal-02652082v4�

https://hal.science/hal-02652082v4
https://hal.archives-ouvertes.fr

A scalable causal broadcast that tolerates dynamics of mobile
networks

Daniel Wilhelm
Sorbonne Université, CNRS, Inria,

LIP6, France

Luciana Arantes
Sorbonne Université, CNRS, Inria,

LIP6, France

Pierre Sens
Sorbonne Université, CNRS, Inria,

LIP6, France

ABSTRACT
Causal broadcast is at the core of collaborative applications, dis-
tributed databases, conferencing, or social networks. Existing causal
broadcast algorithms are either not scalable or cannot be imple-
mented on mobile networks because they do not take into account
the features of these networks: limited capacities of nodes (compu-
tation, storage, energy), unreliable communication channels, and
the dynamics of connections due to node mobility, node failure,
and join/leave of nodes. This work presents a causal broadcast al-
gorithm for mobile networks. The algorithm is scalable: control
information piggybacked on messages and maintained on nodes is
of small size. Experiments conducted on OMNeT++, a realistic net-
work simulator, confirms the effectiveness of our causal broadcast
protocol, rendering causal broadcast affordable in mobile networks.

ACM Reference Format:
Daniel Wilhelm, Luciana Arantes, and Pierre Sens. 2021. A scalable causal
broadcast that tolerates dynamics of mobile networks. In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Causal broadcast is a fundamental group communication service
largely used by many applications such as distributed databases,
publish/subscribe systems, collaborative applications, or distributed
social networks. It ensures that messages are delivered to all nodes
exactly once, preserving causal relation between messages, i.e., the
delivery of a message respects Lamport’s happened-before relation-
ship [11]: if the broadcast of a message m precedes the broadcast
of a message m′, then no process delivers m′ before m.

Due to scalability issues, changes in network topology, and node
resource limitations [10], the implementation of a causal broad-
cast service for mobile networks composed of mobile hosts and
static support stations is a challenge. In such networks, stations
are connected through a wired network, while a station communi-
cates through the wireless network with hosts inside its geographic
coverage area, denoted cell. Hosts move between cells and only com-
municate with the station of their current cell. They have memory,
computational power, and battery life limitations [10][6][17][2] and
are subject to transient or permanent failures when, for instance,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

its battery becomes flat, or a hardware failure occurs. Interferences
cause message losses on the wireless network. To the best of our
knowledge, no causal broadcast solution handling those character-
istics has been proposed.

Existing implementations of causal broadcast either piggyback
information on messages [14][17][8][13] or organize nodes in logi-
cal topologies in which messages are disseminated through reliable
FIFO channels [9][16]. The first approach is not suitable for mobile
networks that contain many mobile hosts, due to scalability issues,
because the size of information piggybacked on messages either
grows with the number of nodes [8][13], or with the message load
[14][17]. The second approach [9] [16] ensures that messages are
implicitly causally ordered at reception. Therefore, no information
is piggybacked on messages, making that approach scalable. How-
ever, [9] considers a static network, and the dynamic model of [16]
is not applicable to mobile networks. Moreover, [9][16] require
reliable FIFO channels, which are not provided by mobile networks,
even with TCP, because a host moving to a new cell drops the
connection with its previous cell, and pending messages of that
connection are lost.

Several works address causal multicast in mobile networks [6]
[17][2][3][12]. However, they usually make unrealistic assumptions
such as reliable [6][17] and/or FIFO [3][12] channels, or reliable host
connection protocols. In addition, they do not address the problem
that hosts might fail to connect to a cell’s station before moving
to another cell, which might lead to many concurrent connection
initializations. Furthermore, they usually consider that hosts are
reliable, i.e., they never fail, and the proposed solutions do not scale.
Finally, causal multicast requires additional information to handle
multicast groups, not necessary for causal broadcast.

Stations handle interferences on the wireless network by caching
messages for retransmission. Discarding cached messages once
they become obsolete is an important issue to deal with. Some
existing implementations, such as [6][3], propose costly centralized
solutions since the source station that initially broadcast a message
coordinates the protocol for discarding it from all other stations,
inducing a high overhead ofmessage traffic (acknowledgemessages)
and memory storage (a message is cached at all stations even if
only one station requires it).

This work presents a scalable causal broadcast algorithm de-
signed for mobile networks. Hosts can join/leave the network and
fail, permanently or transiently, at any time. They move freely and
might be temporarily disconnected from the network when out of
range of all stations. We assume no reliable connection protocol,
and the algorithm handles multiple concurrent connections by the
same host. Resource limitations of hosts are handled by keeping
causal information at stations, while hosts only keep very little
control information. Messages piggyback only a few integers as
control information. Contrarily to existing centralized solutions [6]

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

[3], the discarding of obsolete messages cached at stations is decen-
tralized: a station discards a message once all hosts connected to it
acknowledged the message. Consequently, stations only cache nec-
essary messages, and no extra messages are exchanged for message
discarding.

Summing up, the proposed causal broadcast algorithm is scal-
able in both the number of hosts and stations, has a low message
traffic and storage overhead, while handling mobile network dy-
namics without the constraining assumptions of FIFO wireless links
[9][16][15] or causal multicast approaches [6][3].

Experiments were conducted over OMNeT++/INET [21]. The
proposed algorithm is compared to [6], a causal multicast algo-
rithm for mobile networks which we extended to causal broadcast.
Experiments confirm that our algorithm outperforms the latter.

The paper is organized as follows. Section 6 discusses related
work. Section 2 presents the background and Section 3 the model.
Section 4 describes the proposed causal broadcast algorithm. Section
5 presents the experimental results. Section 7 concludes the paper.

2 BACKGROUND
Causal order ensures that nodes deliver messages while respecting
the causal relation between them, as defined by the happened-
before relation [11] introduced by Leslie Lamport:

Happened-before relation: Considering two events e1 and e2, e1
causally precedes e2, or e1 → e2 iff: (a) e1 and e2 occur on the same
process and e1 precedes e2 or (b) for a message m e1=send(m) and
e2=deliver(m) or (c) there exists an event e3 such that e1 → e3 and
e3 → e2.

Causal broadcast is a group communication service that provides
the application processes with two primitives co-broadcast(m), that
broadcasts a messagem to all nodes, and co-deliver(m), that delivers
m to the application. Causal broadcast is defined by the following
properties [15]:

Causal broadcast: Validity. If a process co-delivers a message m
from a process q, q previously co-broadcasts m.
Integrity. A process co-delivers a message m at most once.
Causal order. The delivery order of messages follows the happened-
before relationship: co-broadcast(m) → co-broadcast(m’) ⇒ � pro-
cess q | co-deliver(m’) → co-deliver(m).
Termination. A message co-broadcasted by a correct process is co-
delivered by all correct processes.

The delivery of a message is delayed until all messages that
causally precede it are delivered. Usually, in mobile networks, sta-
tions discard messages once all hosts delivered them. Hosts that join
the network will, therefore, not receive and deliver these messages.

Our algorithm extends the FIFO dissemination approach pro-
posed in [9] to mobile networks. The algorithm of [9] ensures causal
order through FIFO dissemination in static networks where reliable
nodes are connected by reliable FIFO channels, thereby ensuring
that no path exists over which messages travel out of causal order.
For example, in Figure 1 A broadcasts m, which causally precedes

A B

C

m

m

(a) A broadcast(m)

A B

C

m

mm
(b) B receives, delivers,

and forwards m

A B

C

m,m’

m,
m’m

(c) B broadcast(m’)

A B

C

m,m’

m,
m’

m’,m

(d) A receives, delivers and forwards m’
C receives and delivers m, then m’

Figure 1: Causal broadcast by dissemination [9]

m’ broadcast by B. All nodes receive m before m’ since all nodes
forward m at reception on all their channels.

3 MODEL
Mobile networks are composed by mobile hosts, denoted host(s),
and static support stations, denoted station(s). Hosts and stations
communicate through message passing. Applications running on
hosts use a group communication service to join and leave the
network, as well as to broadcast messages to all hosts and deliver
them in causal order.
The characteristics of stations are the following:

• Each station is at the center of a cell, corresponding to the
area covered by its antenna’s transmission range.

• Stations are supposed reliable and do not move or leave
the network, because a failing station would disconnect the
area covered by it, and cell overlapping should be avoided
(even though it cannot be realistically completely prevented)
because of interferences on the wireless network. Hence, we
assume hardware replication for stations.

• Stations do not have energy limitations and have much more
storage and computational capacity than hosts.

The characteristics of hosts are the following:
• A host is connected to at most one station (generally the
closest one) at any given moment, and communicates with
the system through that station, by sending messages on the
wireless network.

• A host can join and leave the network at any moment. A host
that joins the network will not deliver those messages that
the station to which it connects has previously discarded.

• Hosts move freely inside and outside cells.
• Hosts might temporarily or permanently fail. For example, a
host is temporarily faulty until its battery is recharged, or
is permanently faulty if it has a hardware failure. A faulty
host stops sending, receiving, and processing messages, and
loses all variables stored in volatile memory.

• Hosts have computational, storage, and energy limitations.
The wireless network is unreliable, due to interferences that lead

to message losses while stations are connected by a high-speed
2

wired network, which is FIFO and reliable, and over which is built
a static logical tree-based overlay.

Hosts can be in the states up or down. A station controls the state
of hosts connected to it: it considers a connected host as down if
the host leaves the system, or if it receives no message from the
host for a given interval of time (assume a failure). Otherwise, the
station considers the host as up.

A host joining the system does not deliver thosemessages already
discarded by the station that acknowledges its system join. Hence,
we modify the termination condition of causal broadcast:
Termination. Note sj,k the station from which host k received the
system join acknowledgment. A message m co-broadcasted by an
up process is co-delivered by all up processes k for which sj,k did
not discarded m prior to k’s connection.

4 CAUSAL BROADCAST ALGORITHM
This section presents our causal broadcast algorithm, denotedWAS,
which extends the FIFO dissemination approach [9] to mobile net-
works, where hosts are not static, neither reliable, and communicate
through unreliable wireless channels with stations which, in their
turn, communicate among themselves through reliable channels.

The algorithm is divided into three parts: (1) dissemination of
application messages, (2) join/leave operations, and (3) handoff
procedure to handle hosts moving between cells.

4.1 Dissemination of application messages
Hosts are the source of application messages, and stations ensure
that all hosts deliver them causally. A host broadcasts an application
message by sending it to the station to which it is connected. The
station then forwards the message to the hosts of its cell through
the wireless network, as well as to other stations through the wired
network. Each station ensures that the hosts connected to it deliver
application messages in causal order.

On the wireless network, message loss and FIFO ordering are
handled by assigning sequence numbers to messages, and storing
them in buffers for retransmission until destination nodes acknowl-
edge them. A host uses variables seqh to order messages it sends,
and seqNC to order messages it receives. A station uses seqC to order
messages it broadcasts, and stores seqh and seqNC of each host con-
nected to it. In both stations and hosts, a local buffer, RBuffer, stores
received messages until they are FIFO ordered, and SBuffer stores
sent messages until they are acknowledged by all destination(s). A
host keeps a message in SBuffer until its cell’s station acknowledges
the message. A station keeps a message in SBuffer until all hosts
connected to it acknowledge the message.

Every application message is uniquely identified by (idh, seqh),
where seqh is the sequence number that host idh associated to the
message. Moreover, since cells may overlap, every message sent
over a wireless network cell also piggybacks the id of this cell (idC).
Upon reception of the message, hosts and stations verify idC and
only take into account messages sent inside their cell.

Nodes (hosts and stations) regularly send acknowledge messages,
containing ranges of sequence numbers to acknowledge applica-
tion messages whose sequence numbers are in these ranges. Hosts
do not send acknowledgments during handoffs, since they would

h1

s1

s2

h2

m1

m1

m
1 ,1

x

m
1,1

m1

m1

m
1 ,1

m1

m
1

d(m1)

m
1 ,1

m2

m1m2

m
2,1

d(m2)

m
2 ,2

m1m2

m
2

m1

m
2,2

m1m2

d(m1)d(m2)

m
1,1

∅∅∅

ack=2
∅∅∅

∅∅∅

ac
k=

1

m1m2

∅∅∅

ack=1

∅∅∅

ac
k=

2

Figure 2: Broadcast of m1 and m2

acknowledge application messages received from another station,
which might order messages differently.

Application messages which are delivered by all hosts are con-
sidered obsolete and should then be discarded by stations. Exist-
ing algorithms use a centralized deletion of obsolete messages [6],
which has an overhead both in terms of stored messages in station
SBuffer and the number of messages sent over the wired network:
each application message m is managed by a station called MSSinit,
and acknowledge messages for m from each host are forwarded
to MSSinit. Once MSSinit received an acknowledge message from
each host, it broadcasts a delete message to all stations in order to
discard m. To overcome such an overhead, we have introduced a
decentralized mechanism where stations discard messages using
only local information: a station discards a message as soon as all
hosts connected to it have acknowledged the message. Therefore,
our approach does not require message exchanges between stations
and a station only caches messages required by hosts of its cell.

Figure 2 shows the broadcast and delivery of two messages
causally related. h1 is connected to s1 and h2 to s2. Stations s1
and s2 are connected by a wired channel. Hosts (resp. stations)
piggyback seqh (resp. seqC) in application messages. SBuffers are
represented in bold. First, h1 broadcasts m1. Upon reception, s1
forwards m1 to s2 and broadcasts it in its cell, which contains h1.
Upon reception, s2 forwards m1 to h2. h2 receives and delivers
m1, then broadcasts m2 (co-broadcast(m1)→ co-broadcast(m2)). h2
(resp. s2) stops transmitting m1 (resp. m1 and m2) upon reception
of the acknowledge message regularly sent by s2 (resp. h2). Suppose
h1 did not receive neither m1 the first time s1 broadcast it due to
interferences, nor its acknowledgment. Hence, h1 retransmits m1.
s1 ignores the second reception of m1 since it already received m1.
Upon reception of m2, s1 broadcasts it. Then h1 receives and buffers
m2 because the sequence number that s1 attached to m2 is equal to
2, and h1 awaits a message with seq=1. Eventually, s1 broadcasts
m1 again and, upon reception, h1 delivers m1 then m2. Finally, h1
(resp. s1) acknowledges m1 and m2 (resp. m1). Hence, m1 and m2
are completely discarded from the network, i.e., removed from the
buffers of all nodes.

3

si si sihi hi hi

(a) Successful
connection

(b) join
is lost

(c) connectACKis lost

x x

Figure 3: Host connection scenarios

4.2 Join/leave the network
Joining the network. Hosts can join the network during execu-
tion. Host hi joins the network by sending a joinmessage to station
si which then replies with the corresponding connectACK message.
hi regularly retransmits join until receiving connectACK. Message
exchanges between hi and si can result in one of the three scenarios
presented in Figure 3: (a) both the join and connectACK message
are received; or due to interferences (b) the join message or, (c) the
connectACK message, is lost. Since hi cannot distinguish between
(b) and (c), it cannot determine if si has received join, or not, until
receiving the corresponding connectACK message. Hence, hi cannot
determine if si registered it before receiving connectACK.

Host hi might also move to another cell sj before receiving
connectACK from its previous station si. In this case, hi will send a
join message to sj, despite the fact that si might have also received
a join message, and therefore registered hi. However, a host should
be connected to only one station, which is the one that received
the latest join message sent by the host, in this case sj.

In order to handle its multiple registrations, hi keeps the list PS
which contains the stations that might have registered its connec-
tion attempts. It identifies each of these attempts with a connection
sequence number, denoted Ses, which it increments when changing
cells. Thus, when hi changes cells during the connection Ses, before
receiving a connectACK message from si, hi saves the tuple (si, Ses)
in PS. Host hi then attaches PS to the join message sent in the new
cell. Every station also keeps the Ses value corresponding to the
latest connection of every host connected to it.

Station sj replies to join with a connectACK message which con-
tains seqC, the sequence number of the oldest message sj caches
in SBuffer. It also registers hi and sends a Delete message for each
tuple (si, Ses) in PS. Upon receiving a Delete message, si unregisters
hi, if it has been registered in the connection Ses. Such a procedure
ensures that eventually hi is only registered at sj.

Upon reception of connectACK, hi completes the connection ini-
tialization by updating seqNC to seqC, and PS to (sj, Ses), since sj
will be the station that will control causal information related to it.
hi will then deliver messages based on seqNC sequence number.

Leaving the network. A host leaves the network by sending
a leave message containing PS, until a station, regardless of which
one, acknowledges it. The station which receives leave sends a
Delete message to each station s of the tuples (s, Ses) of PS, which
will unregister hi if registered.

4.3 Handoff procedure
A station maintains causal information related to those hosts con-
nected to it. Hence, when a host hi changes cell, its causal infor-
mation must be transferred from its previous cell’s station sp to its
new cell’s station sn. Existing handoff procedures [6][2][3] make

sp snhi hj

1 m1 1 m2
2 m1

2 m23 m1
m2 3m2

m1

Figure 4: Sequence number assignation by stations

several unrealistic assumptions, such as reliable wireless channels
or that a moving host always succeeds in connecting to its cell’s
station before moving to another cell.

Moreover, they usually identify messages on the wired network
by vector clocks, whose size is the number of stations. Hence, they
are not scalable in terms of stations. The handoff procedure of our
algorithm does not make such assumptions and its dissemination
approach scales. It handles message losses on the wireless network
as well as simultaneous connection attempts of the same host,
without doing assumptions about the success of those connection
attempts. Our dissemination approach scales, but requires an extra
control to compare the message ordering at stations. Finally, our
algorithm implements a decentralized discard approach of obsolete
messages at stations, removing the message and memory overhead
of centralized approaches, but also requiring an extra control when
hosts change cells.

We start the handoff section by discussing the problems that the
handoff procedure faces (handoff challenges), then we describe the
handoff procedure algorithm itself, and finally, we give a handoff
execution example.

4.3.1 Handoff challenges. We highlight the following points:
Host connections. In a real configuration, a moving host hi

cannot determine which station keeps its causal information, since
it cannot distinguish between cases (b) and (c) of Figure 3. Further-
more, it might connect to several stations in a short time interval,
which might lead to simultaneous hi’s handoff instances. Thus,
simultaneous handoff procedures of host hi must be handled, by en-
suring that the latest handoff procedure will correctly be executed
and that previous handoff procedures are ended/aborted.

Message ordering. In the dissemination phase, stations assign
local sequence numbers to messages as they are received. For exam-
ple, in Figure 4, at 1 , hi and h2 broadcast m1 and m2 respectively.
At 2 , sp receives m1 and forwards it to sn. Similarly, sn forwards
m2 to sp. At 3 , sp and sn respectively adopt [m1,m2] and [m2,m1]
orders. Consequently, if hi delivers m1 while connected to sp and
then connects itself to sn, sn cannot assign to hi the sequence num-
ber seqNC=1, because hi would then never deliver m2 and deliver
m1 twice. In fact, seqNC is only meaningful for the last initialized
connection of hi, which is identified by SesLC, the last connection
number in which hi initialized seqNC. To determine which messages
hi has delivered, sn must therefore exchange information with sp.

Decentralized discardmechanism of obsoletemessages.A
station discards a message once all hosts connected to it have ac-
knowledged the message. This local deletion approach may lead to
different SBuffer states of sn and sp: when hi connects to sn, sn might
have already discarded messages that sp still caches, and that hi did
not deliver yet. For instance, in Figure 4, suppose that hi connects
to sn before delivering m2, but that sn already discarded m2 when

4

hi connects to it. sn must then recover m2 from sp, and hi should
deliver m2 before delivering messages currently broadcasted by sn.

Task of hi :

Moving from sp’s cell to sn’s cell
1: if did not receive connectACK from sp then
2: PS ∪ = {sp, Ses}
3: Ses++
4: send(<connect,idh,seqNC,Ses,SesLC,PS>) to sn

receive <connectACK,seqhm ,seqCm ,Sesm>:
5: if Ses==Sesm then
6: seqNC=seqCm ;seqh=seqhm ;SesLC=Sesm;PS={sn,Sesm}

Task of sn :

receive <connect,idh,seqNC,Ses,SesLC,PS> from host hi:
1: if idh registered ∧ handoff over ∧ Ses ≥ Sesi then
2: if SesLC==Sesi then
3: use seqNC as acknowledgment
4: Sesi=Ses ; PSi = PS
5: seqCi= determine seqC attributed to hi
6: if no message discarded from SBuffer to deliver then
7: send(<connectACK,idh,seqCi ,Sesi>) to hi
8: else
9: Register(idh)
10: send(<Req1,idh,seqNC,SesLC,Ses>) to stations of PS
receive <Rsp1,idh,seqh,mnd,Ses> from station sp:
11: seqhi=seqh
12: msgreq=message of mnd that sn already discarded
13: send(<Req2,idh,msgreq,Ses>) to sp
receive <Rsp2,idh,msg,msgrcv,Ses> from station sp:
14: piggyback idh on messages hi has delivered at sp
15: send to hi messages already discarded by sn (∈ msg)
16: if msg == ∅ then
17: seqCi= min(m.seq, m ∈ sn.SBuffer not delivered by hi)
18: send(<connectACK,idh,seqCi ,Sesi>) to hi
19: send(<Delete,idh,PS[i].Ses>) to stations of PSi
20: rcv(Req1) for stored Req1 with highest Ses

Another point that makes the comparison of the SBuffer states
of sn and sp difficult, is that sp does not maintain information about
messages it has already discarded. For example, in Figure 4, if sp
deletes m1 once hi acknowledged it, then when hi moves to sn, sp
cannot inform sn that hi has already deliveredm1, since it caches no
information about m1. Moreover, since stations receive messages
at different times, sn might receive messages that sp only receives
later. sn must distinguish between messages that sp receives during
the handoff from messages that sp already discarded (i.e. m1).

4.3.2 Handoff procedure description. When hi moves to sn’s
cell, it sends a connect message to sn that contains: the connection
sequence number Ses, the connection sequence number SesLC of its
last acknowledged connection, the sequence number seqNC of the
last message hi delivered, and the list PS containing the stations
that might register hi.

Task of sp :

receive <Req1,idh,seqNC,SesLC,Ses>:
1: if current handoff and Ses>Sesi then
2: save Req1
3: else if Ses>Sesi then
4: if SesLC == Sesi then
5: use seqNC as acknowledgment
6: mnd={(idh,seqh) of messages hi has not delivered}
7: Sesi=Ses
8: send(<Rsp1,idh,seqhi ,mnd,Ses>) to sn

receive <Req2,idh,msgreq,Ses>:
9: msg= messages sn requests in msgreq
10: mrcv= messages sp received since receive(Req1)
11: unregister(idh)
12: send(<Rsp2,idh,msg,mrcv,Ses>) to sn

sp = s1

sn = s2

m2m2m2

m1m1m1

m3m3m3

m3m3m3

hi

co
nn
ec
t

co
nn
ec
t

co
nn
ec
t

Re
q 1

Re
q 1

Re
q 1

Rsp
1

Rsp
1

Rsp
1

Re
q 2

Re
q 2

Re
q 2

Rsp
2

Rsp
2

Rsp
2

hi

App=2
App=2
App=2 ac

k
ac
k

ac
k

hi

connectack

connectack

connectack

Figure 5: Handoff procedure

The pseudo-code of the handoff procedure is given by Tasks hi,
sn, and sp.

Upon reception of a connect message, sn verifies if it has already
registered hi (line sn.1) which happens if (1) hi was previously
connected to sn, then tried to connect to another station but the
connect messagewas lost (Figure 3.b), and then hi tried to re-connect
to sn; (2) sn already received the connect message but the connectACK
message was lost (Figure 3.c). Station sn distinguishes between (1)
and (2) with the help of Sesi, since in case (1), SesLC is equal to Sesi. In
this case, hi might have delivered messages without acknowledging
them and, therefore, sn takes seqNC of hi as an acknowledgment. In
both cases, if hi has no message to deliver which sn discarded from
its SBuffer, then sn sends a connectACK message to initialize the
connection on hi’s side (sn.7). On the other hand, sn registers hi if
not registered (lines sn.9 – sn.10) and starts the handoff procedure.

Figure 5 shows a handoff procedure, which is amessage exchange
composed of three phases:

• Phase 1: detection by sn of discarded messages that hi has not
delivered. Messages Req1 and Rsp1 are exchanged between
sp and sn in this phase.

• Phase 2: detection by sn of messages that hi has not delivered
among messages that sn caches. Messages Req2 and Rsp2 are
exchanged between sp and sn in this phase.

• Phase 3: initialization of the connection between sn and hi.
Phase 1: sn starts this phase by sending Req1 to the previous

stations included in PS that might register hi (line sn.10). Note that
5

(1) all messages not delivered by hi that sn discarded were received
by sn before send(Req1), because sn discards no message after the
reception of hi’s connect message unless hi acknowledged it; (2) the
FIFO dissemination approach on the wired network ensures that,
upon reception of Req1, sp receives all messages that sn received
before sending Req1. Upon reception of Req1, station sp uses seqNC
piggybacked onto Req1 to identify the messages that hi has not
delivered yet (line sp.8), and sends their respective id via Rsp1.

The FIFO dissemination approach on the wired network ensures
that, upon receiving Rsp1, sn received all messages that hi could have
delivered in previous connections. sn might have already discarded
some of those messages. sn identifies the messages it discarded
but that hi has not delivered (lines sn.12), and requests them in
Req2 message. Then, sp piggybacks these messages onto the Rsp2
message, keeping the same order as in its SBuffer (line sp.13).

Simultaneous handoff procedure instances for hi are handled
sequentially. If Req1 messages are received during a handoff execu-
tion, the one with the highest Ses value is kept pending provided
that it is newer than the current handoff’s Ses value. The station
will handle that Req1 at the end of the current handoff (line sp.20).
Req1 messages with lower Ses values concern handoffs of previous
connection attempts and are discarded. At the end of the handoff
sn sends a Delete message containing the handoff’s Ses value (line
sp.2) to the stations of PS so that those stations unregister hi.

Phase 2: The FIFO dissemination approach on wired channels
guarantees that messages that hi could deliver when connected to sp
are received by sn at latest at Rsp1, since Rsp1 was sent after that sn
sent connect, and hi delivers no message from sp after changing cell
(after sending connect). Messages not delivered by hi that sn receives
before sending Req1 are identified by sp in Rsp1. Phase 2 identifies
messages that sn receives between send(Req1) and receive(Rsp1) that
hi has not delivered.

The FIFO dissemination on wired channels also guarantees that
messages received by sn between send(Req1) and receive(Rsp1) are
surely received by sp between receive(Req1) and receive(Req2). sp
saves the id of such messages and sends this list of ids to sn in Rsp2
message (lines sp.9 – sp.12).

Upon reception of Rsp2, sn determines which messages hi has
not delivered among those received before Rsp1. The messages are
those (1) sp identified as not delivered by hi (line sp.8), (2) sp received
between the receptions of Req1 and Req2 (line sp.12). On the other
hand, hi has already delivered all the other messages sn received
before Rsp1. Moreover, messages that sn receives after Rsp1 are not
delivered by hi because the FIFO dissemination approach on wired
channels ensures that all messages received by sp before it sent the
Rsp1 message were also received by sn before receive(Rsp1).

Phase 3: Assigning a sequence number to hi is not sufficient
to identify all messages already delivered by hi. For example, in
Figure 4, if hi delivered m1 before connecting to sn but did not
deliver m2, then sn must give to hi the sequence number 0 (seqNC =
0), so that it will deliver m2. However, without additional control,
hi would then also deliver m1 again. To prevent hi of delivering
the same messages twice, sn adds hi’s id to the messages hi already
delivered but which are still cached in sn’s SBuffer(line sn.14), and,
upon receiving them, hi will only increment seqNC and not deliver
them again.

Moreover, sn must send to hi messages identified at Phase 2 that
it already discarded but that hi did not deliver. sn sends these mes-
sages to hi, ordered as in msg, also piggybacking (idhi ,Sesi) that
identify the handoff procedure instance. Once hi acknowledged all
of them, or if hi has no message to deliver that sn discarded (sn.16),
then sn concludes the handoff by sending a connectACK message to
hi with seqCi , the sequence number of the oldest message in sn’s
SBuffer that hi has not delivered (line sn.18). At its side, hi ends the
handoff by setting seqNC, seqh, and SesLC (line hn.4).

4.4 Handoff example
Figure 5 presents the handoff executed when hi, previsouly con-
nected to sp, tries to connect to sn in the configuration of Figure 4.
For better readability, we assume that no other handoff procedure
takes place simultaneously for hi. At the beginning of the handoff
sp has discarded m1, sn discarded m2, and hi delivered m1. Both
stations receive m3 during the handoff.

Host hi sends a connect message to sn, which contains seqNC=2,
since hi delivered m1. Upon reception of the connect message, sn
sends Req1 to sp with seqNC=2. When receiving Req1, sp concludes
that hi has not deliveredm2 and replies with Rsp1 = {{id(m2)}, seqh =
1} (seqh=1 since hi already broadcasted m1). sn requests then m2
via Req2, since it has already discarded m2. sp replies with Rsp2
containing the requested message ({m2}) and the list of messages
received between Rsp1 and Rsp2 ({id(m3)}). Finally, sp unregisters hi.
sn determines with Rsp2 which messages of its SBuffer={m1, m3} hi
has delivered. sn receivedm1 before Rsp1, and sp did not identifym1
as not delivered by hi. Hence, hi already delivered m1 and sn adds
hi’s id via m1. In addition, hi must first deliver m2 before delivering
m3. Thus, sn resends m2 received from sp with seqC=0 to hi. Finally,
sn discards m2 once hi acknowledged it, assigns seqCi=3 to hi, since
hi delivered m1 and m2, and sends connectACK to hi. Upon reception
of connectACK, hi sets seqNC=3.

4.5 Host failures
Hosts can fail temporarily or permanently and stations handle such
failures. The duration of temporal failures should be bounded in
time. In fact, a station does not discard a message until all hosts
of its cell, including the faulty one, have acknowledged the mes-
sage. Hence, a long temporal failure would increase the number of
messages a station broadcasts, which in turn would increase the sta-
tion’s cell’s message collision rate. The latter would then decrease
the throughput, which could reach the point where messages are
delivered more slowly than new messages are broadcasted, degrad-
ing the cell forever. Thus, stations control their cell’s collision rate
and a station unregisters a faulty host before this rate becomes
too high. A station considers that a host is faulty when it does not
receive any message from the host during a given time interval, or
if the message collision rate becomes too high due to the lack of
acknowledgments from the host.

Few variables of the host’s persistent local storage should be
restored when it recovers from a temporal failure: seqh, seqNC,
Ses, and SesLC, and unacknowledged messages broadcasted by the
host before its failure. Note that the number of these messages
is quite small since messages are acknowledged very fast. A host

6

saves seqh (resp., seqNC) when broadcasting an application (resp.,
acknowledge) message, Ses when changing cell, and SesLC when the
host receives the confirmation that the station registered it. Upon
recovering, the host restores these variables and sends a recover
message to the station of its cell. However, since a faulty host can
move during its temporal failure or stay faulty for a long time,
this station might not keep the host’s causal information. If the
station still registers the host, it replies to the host with a connectACK
message. Otherwise it broadcasts a recoveryreq to stations, which
reply with either the host’s causal information, or a message that
notifies that they do not store the host’s causal information. If
no station maintains the host’s causal information, the end of the
recovery procedure is similar to the join procedure, otherwise to a
cell changing.

Summing up, our algorithm tolerates permanent and transient
failures, requiring few persistent information. Based on wireless
message loss rate and timeouts, a station removes from its mem-
ory a host that permanently or temporarily failed. We point out
that, inherent to wireless networks, interferences constrain the
effectiveness of transient fault tolerance.

5 PERFORMANCE EVALUATION
Experimental setup. Experiments were conducted on INET, a
network simulator implemented on OMNeT++ [21]. INET offers
communication layers (e.g., TCP/UDP/Ethernet/IPv4/MAC), node
mobility, node failures, and network interferences in wired and
wireless networks.

Since no causal broadcast in mobile networks has been proposed
yet, we compare our algorithm, denoted WAS, with the one pro-
posed by Chandra and Kshemkalyani [6], denoted CK, which we
have described in Section 6. We extended CK, which provides a
causal multicast algorithm, to causal broadcast.

Stations are placed to ensure a complete area coverage with a
minimum intersection of cells. Hosts are placed randomly in each
cell at initialization. Antennas have a communication range of 120m
and a bandwidth of 20Mb/s. Stations are connected by a wired net-
work organized into a tree of degree 3 whose links have a bandwidth
of 100Mb/s and a delay of 10ms. Application messages have a size of
100 bytes and are encapsulated in IPv4/MAC packets, whose header
has 8 (resp., 20) bytes for UDP (resp., TCP). Therefore, an UDP (resp.,
TCP) packet has an overhead of 20(IPv4)+20(MAC)+8(UDP)=48
(resp., 60) bytes. UDP is used for communication on the wireless
network, while TCP on the wired network. Each host broadcasts
application messages following a Poisson distribution. Hosts move
in a straight line with a speed of 5km/h≈1.39m/s inside the area
covered by stations, and change direction every 5 seconds.

Experimental results concern three evaluations: (1) scalability
comparison between WAS and CK, (2) comparison between a cen-
tralized and decentralized message discarding, (3) execution ofWAS
in a scenario with faulty hosts.

5.1 Scalability
Throughput and delivery delay. The first experiment, whose
results are shown in Figure 6, evaluates the maximal throughput
when the number of hosts per cell increases. The experiment con-
tains 10 stations and a total number of hosts that varies from 100

100 150 200 250 300 350 400
Number of hosts

20.0
30.0

50.0

100.0

200.0
300.0
400.0

700.0

Th
ro
ug

hp
ut
 (m

es
sa

ge
s/
se

co
nd

)

WAS
CK

Figure 6: Throughput in function of hosts per cell

100 150 200 250 300 350 400
Number of hosts

0

250000

500000

750000

1000000

1250000

1500000

Da
ta

 (K
by

te
s)

WAS
CK

Figure 7: Sent data (Kbytes)

to 400 (x-axis). Results, presented in a logarithmic scale, show that
WAS has a much higher (x10-20) throughput than CK, and that
the throughput of CK decreases faster than WAS. In a system con-
taining 400 hosts, the maximal throughput of WAS is more than
20x higher than CK. The throughput of CK is bounded mostly by
the fact that a station only sends an application message to a host
once the latter has acknowledged all the message’s dependencies.
Consequently, hosts send acknowledge messages very frequently,
which negatively impacts performance because of a higher message
collision rate on the wirless network. Moreover, CK has a delivery
delay - the delay between broadcast(m) and deliver(m) - 2 times
higher thanWAS, because a station waits that a host acknowledges
a message’s dependencies before sending it to the host.

The second experiment measures the size and number of mes-
sages, evaluated at the IPv4 level, when the number of hosts in-
creases. Results are shown in Figures 7 and 8 respectively. The
number of stations is adapted to keep a ratio of 20 hosts/cell. 20
messages are broadcasted per second in the system.

Number of sent messages. Figure 8 shows that WAS sends
much fewer messages on both the wired and wireless networks.
Moreover, the number of messages sent by CK increases much
faster than the number of messages sent byWAS.WAS sends fewer
messages on the wireless network because (1) hosts acknowledge
messages less often than CK (20x), (2) hosts buffer messages at

7

100 150 200 250 300 350 400
Number of hosts

0

2500

5000

7500

10000

12500

15000

M
es

sa
ge

s/
Se

co
nd

WAS
CK

(a) Messages sent over the wireless network

100 150 200 250 300 350 400
Number of hosts

0

1000

2000

3000

4000

M
es

sa
ge

s/
Se

co
nd

WAS
CK

(b) Messages sent over the wired network

Figure 8: Sent messages in the network
reception following seqNC piggybacked on messages, contrarily to
CK where hosts do not buffer messages since stations only send a
message m to a host once the host can causally deliver m. Hence,
stations must retransmit messages less often than with CK (x5).
On the wired network, CK sends more messages due to its cen-
tralized approach to discard obsolete messages.WAS implements
a decentralized mechanism which requires no message exchange
to discard obsolete messages. We point out that CK sends much
fewer messages on the wired network than theoretically expected,
because acknowledge messages of CK are small, and TCP groups
many of them in a single packet.

Amount of sent data. Figure 7 shows that WAS sends a lower
amount of data than CK. On the wireless network, this is mostly
due to acknowledge messages. Even though these messages con-
tain only a few integers, they have an additional size of 48 bytes
because they are encapsulated in UDP/IPv4/Mac packets. How-
ever, only a few acknowledge messages can be grouped into one
single packet since the station will not send the next messages to
deliver until the current ones are acknowledged. On the wired net-
work, acknowledge and deletemessages are grouped by TCP, which
mostly removes the encapsulation overhead. However, those many
acknowledge and delete messages scale up fast. Moreover, with CK
stations piggyback a vector of size N (N=number of stations) on
application messages sent over the wired network, and that vector
rapidly takes much space when the number of stations increases.
WAS only piggybacks a few integers on application messages.

5.2 Decentralized discard mechanism
This section compares our decentralized discard approach, used by
WAS, with the existing centralized discard approach [6].

In the third experiment, 200 hosts are distributed over 10 cells,
the wireless network has a bitrate of 1Mb/s, and 35 messages are
broadcasted per second for 300s. Figure 9 shows the number of
messages that stations store in their respective SBuffer. CurveMax
shows the maximum number of messages cached in a stations’
SBuffer, i.e., approximately the number of messages each station
would store with a centralized discard approach. Curve Avg shows
the average number of messages a station stores in its sending
buffer, and curve Deviation gives the standard deviation between
the average and the number of messages each station caches. The

curves Avg and Deviation do not take into account the SBuffer of
the station that stores the most messages, in order to compare both
curves with the Max curve.

The comparison of curves Avg and Max of Figure 9 shows that
the number of messages cached by stations can vary a lot. Such
a variation depends on the message loss rate in the station’s cell:
the higher the message loss rate, the longer a station caches a
message, since lost messages must be retransmitted. The message
loss rate depends on the number of messages to broadcast as well
as the position of hosts in the network. The probability of message
collision is higher in areas where two cells overlap because the
respective stations send messages over their cells that might collide.
Similarly, areas with a high density of hosts have a higher message
loss rate. The standard deviation is low, mostly around 10 messages,
except for a short period around 70s where a heavily loaded cell
degrades its adjacent cells. Hence, the number of messages a station
stores in SBuffer is mostly close to the average for all stations,
except for some stations whose local characteristics make their
send buffer grow temporarily. In a decentralized message discard
approach, message loss rate and failing hosts only have a local
impact. The comparison of curves Avg and Max shows that with
a decentralized message discard approach, stations store up to 4
times fewer messages than with a centralized one, and that, on
average, stations store 40-50% fewer messages.

Finally, a host that fails stops acknowledging messages. Hence,
the station which the host is connected to will stop discarding mes-
sages, and Figure 10 shows that, in presence of host failures, the
station to which the faulty host is connected then caches many
more messages than the other stations (8-10x more). Hence, the
decentralized discard approach caches up to 8-10 times fewer mes-
sages on stations in presence of host failures.

5.3 Transient host failures
The last experiment, whose results are presented in Figure 10 mea-
sure the impact of transient host failures onWAS in a system con-
taining 10 stations and 200 hosts (20 hosts per station), a wireless
network bitrate of 1Mb/s, and where 15 messages are broadcasted
per second. The first host fails at t=10s for 5 seconds, then each 30
seconds another host fails, and the fault duration increases by 2
seconds at each failure. In total, 9 hosts fail, the first failing at t=10s

8

0 100 200 300
Time(s)

0

50

100

150

200

St
at

io
n

SB
uf

fe
r s

ize
 (m

es
sa

ge
s)

Avg Max Deviation

Figure 9: Messages in station sending buffers

for 5s, the second at t=40s for 7s, and so on. When a host fails it
stops acknowledging messages. The number of messages cached in
the SBuffer of the station that registers the faulty host then grows.
Hence, we measure the impact of transient failures through the
number of messages cached in the SBuffer of that station.

CurveMax shows the maximum number of messages cached in a
station’s SBuffer which is, during failures, the number of messages
cached by the station at which the faulty host is registered. Curve
Avg shows the average number of messages a station stores in its
SBuffer, and curve Deviation gives the standard deviation between
the average and the number of messages each station caches. In
order to evaluate the impact that a cell containing a faulty host
has on the other cells, the former is not taken into account in the
computation of Avg and Deviation. Vertical dashed lines represent
a host crash.

During each failure, the number of messages cached by the sta-
tion that registers the faulty host linearly increases. Those messages
are also broadcasted by that station. Nevertheless, the number of
cached messages sharply decreases once the host recovers, showing
that, very fast, the host receives the missing messages and the cell
rapidly reaches the same message load it had before the failure.

Curve Avg shows that, on average, a faulty host has a low impact
in the number of messages stored by the other stations, except for
the last failure occurring at t=255s.

Curve Deviation also shows that the increasing size of SBuffer of
the faulty host’s station has no impact on other cells, as long as the
SBuffer does not become bigger than 150-200 messages. Once the
SBuffer exceeds that size, the faulty host’s station begins to degrade
adjacent cells that overlap with it. In fact, the station broadcasts
application messages and retransmits messages not acknowledged
by the faulty host, thus increasing the number of messages sent
by the station. This leads to an increasing number of message
collisions in the cell, including the areas where the cell overlaps
with other cells. Hosts in those overlapping areas, connected to
other stations, will receive fewer messages, because of this higher
message collision rate. Hence, they will deliver messages more
slowly, increasing the number of messages broadcasted by the
neighboring stations of the faulty host’s cell. During the last crash
occurring between t=250s and t=273s, the 3 adjacent cells of the
faulty host’s cell are impacted, explaining why the average size

0 100 200 300
Time(s)

0

100

200

300

400

St
at

io
n

SB
uf

fe
r s

ize
 (m

es
sa

ge
s)

Avg Max Deviation

Figure 10: Messages stations cache when hosts fail

of the SBuffer increases. Moreover, contrarily to previous failures
where the faulty host takes less than a second to acknowledge
messages, the host takes 7 seconds to acknowledge all messages.
Therefore, the failure of a host first and mostly has an impact in
the cell in which it occurs and afterwards in adjacent cells when
its cell’s station stores more than 150-200 messages. Nevertheless,
such an impact rapidly disappears once the host recovers.

In conclusion, experiments confirm thatWAS is more scalable
than CK in terms of the number of hosts per cell, as well as in terms
of total hosts and/or stations. WAS sends much fewer messages
than CK both on the wired and wireless network, the amount of
sent data is also much lower, andWAS has half the delivery delay
of CK. Second, the decentralized message discard mechanism of
WAS caches much fewer messages than CK, particularly during
host failures. Finally, in WAS, the impact of a transient host failure
is sharply absorbed after the faulty host recovers.

6 RELATEDWORK
Charron-Bost proved [7] that without additional assumptions on
the system, the size of the information required to causally order
messages grows linearly with the number of nodes of the system.
Therefore, solutions based on logical clock vectors [8][13][4] are
not suitable to huge mobile networks since they are not scalable.

Plausible clocks [19], Bloom filters [18], and Probabilistic clocks
[14] have constant size and ensure causal order with high prob-
ability. However, even though they greatly reduce causal control
information in networks with a large number of nodes, messages
might be delivered out of causal order.

Hierarchical approaches [1] group nodes into clusters and logi-
cally organizes them in a tree. Causal information is handled only at
the cluster level. However, clusters must be reorganized in presence
of nodes churn and a node moves only inside its own cluster. Hence,
such a solution cannot be applied to mobile networks because hosts
move between cells/clusters and join/leave the network.

Many causal dissemination protocols [5][16][15][20], exploiting
message propagation and forwarding over reliable FIFO links on
overlay networks, have been proposed in the literature. They do
not require any causal information since messages are implicitly
causally ordered at reception. A static tree is used in [5] to dissem-
inate messages while, by using scalable data structures, [16][15]

9

extend [5] protocol for dynamic systems. Nevertheless, the consid-
ered dynamics of the system cannot be applied to mobile networks,
because every new channel must be initialized bymessage exchange
through already initialized channels. Consequently, a path of ini-
tialized channels must always connect each pair of nodes, which
is not always the case when a host moves to a new cell without
having initiated the connection with the latter.

In [20], a reliable causal multicast is presented where nodes main-
tain only local metadata about their neighborhood, being, thus,
scalable. The algorithm tolerates faults and outperforms other mul-
ticast causal algorithms with local views, but channels are assumed
to be static.

Several works [6][17] [2] [3] [12] have proposed causal multicast
for mobile networks.

Chandra and Kshemkalyani [6] consider a dynamic system com-
posed of fixed stations and mobile hosts. For each connected host
h, a station maintains information to control causal order on be-
half of h. When a node h moves to a new station, its information
is transferred from the previous station to the new one. A node
can leave its previous station only after the new station has ac-
knowledged the reception of such information which implies some
constraints on the mobility model. Moreover, the algorithm im-
plements a centralized message discarding of obsolete application
messages, which has an overhead both in terms of stored messages
in station SBuffer and number of messages sent over the wired net-
work: each application message m is managed by a station called
MSSinit, and acknowledge messages for m from each host are for-
warded to MSSinit. Once MSSinit received an acknowledge message
from each host, it broadcasts a delete messsage to all stations in
order to discard m.

In [17], messages piggyback only direct dependencies. Such an
approach copes with the dynamics of mobile networks since causal
information does not depend on node identifiers. However, every
node, including mobile hosts that have memory limitations, main-
tains a matrix of size N2, where N corresponds to the maximum
number of nodes in the system. Moreover, the information piggy-
backed onmessages growswith the number of concurrent messages
In [2], the authors propose a multicast protocol that tolerates a dy-
namically changing system membership. On the other hand, host
mobility is not supported by the algorithm, which does not imple-
ment any handoff procedure. Contrarily, [3] and [12] present causal
multicast protocols that tolerate node mobility among stations, but
both consider that wireless channels are FIFO and reliable, the con-
nection protocol is reliable, and hosts do not fail, which are not
realistic assumptions.

7 CONCLUSION
We have presented in this article a causal broadcast algorithm tai-
lored to the features and dynamics of mobile networks. The latter
include host mobility, dynamic host membership, unreliable dy-
namic wireless channels, memory and computing constraints of
mobile hosts, scalability issues due to the high number of mobile
hosts and stations, and mobile host failures. Messages piggyback
few causal information. Mobile hosts have a low memory footprint
while stations have a memory footprint that grows linearly with

the number of locally connected mobile hosts. Stations discard ob-
solete messages with only local information, removing the message
exchange between stations used by centralized message discarding
approaches.

Performance results from simulations done on OMNeT++/INET
show that our algorithm has a much lower message overhead, de-
livery delay, and caches fewer messages than a representative al-
gorithm adapted to provide causal broadcast [6]. Furthermore, the
decentralized approach to discard obsolete messages of our algo-
rithm results in much fewer messages cached by stations, as well
as much fewer messages sent on the network compared to a cen-
tralized approach. Finally, performance results show that hosts that
temporarily fail fastly catch up after recovering, and that the de-
centralized discard approach of obsolete messages mostly limit the
impact of host failures to the cells in which those failures occure.

REFERENCES
[1] N. Adly and M. Nagi. Maintaining causal order in large scale distributed systems

using a logical hierarchy. In IASTED Int. Conf. on Applied Informatics, pages
214–219, 1995.

[2] G. Anastasi, A. Bartoli, and F. Spadoni. A reliable multicast protocol for dis-
tributed mobile systems: Design and evaluation. IEEE Transactions on Parallel
and Distributed Systems, 12(10):1009–1022, 2001.

[3] C. Benzaid and N. Badache. An optimal causal broadcast protocol in mobile
dynamic groups. In IEEE International Symposium on Parallel and Distributed
Processing with Applications, pages 477–484, 2008.

[4] K. P. Birman, A. Schiper, and P. Stephenson. Lightweigt causal and atomic group
multicast. ACM Trans. Comput. Syst., 9(3):272–314, 1991.

[5] S. Blessing, S. Clebsch, and S. Drossopoulou. Tree topologies for causal message
delivery. In AGERE workshop, pages 1–10, 2017.

[6] Punit Chandra and Ajay D. Kshemkalyani. Causal multicast in mobile networks.
In 12th International Workshop on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, MASCOTS, pages 213–220, 2004.

[7] B. Charron-Bost. Concerning the size of logical clocks in distributed systems.
Inf. Process. Lett., 39(1):11–16, 1991.

[8] C. J. Fidge. Timestamps in message-passing systems that preserve the partial
ordering. In 11th Australian Computer Science Conference, 1988.

[9] R. Friedman and S. Manor. Causal ordering in deterministic overlay networks.
Technical report CS-2004-04, Technion - Computer Science Department, 2004.

[10] Atta ur Rehman Khan, Mazliza Othman, Sajjad Ahmad Madani, and Samee Ullah
Khan. A survey of mobile cloud computing application models. IEEE Communi-
cations Surveys Tutorials, 16(1):393–413, 2014.

[11] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, 1978.

[12] C. Li and T. Huang. A mobile-support-station-based causal multicast algorithm
in mobile computing environment. Proc. Natl. Sci. Counc. ROC(A), 23(1):100–110,
1999.

[13] F. Mattern. Virtual time and global states of distributed systems. In Parallel And
Distributed Algorithms, pages 215–226, 1988.

[14] A. Mostéfaoui and S. Weiss. Probabilistic causal message ordering. In Parallel
Computing Technologies - 14th International Conference, PaCT, pages 315–326,
2017.

[15] B. Nédelec, P. Molli, and A. Mostéfaoui. Causal broadcast: How to forget? In
22nd International Conference on Principles of Distributed Systems,OPODIS, 2018.

[16] B. Nédelec, P. Molli, and A. Mostéfaoui. Breaking the scalability barrier of causal
broadcast for large and dynamic systems. In 37th IEEE Symposium on Reliable
Distributed Systems, SRDS, pages 51–60, 2018.

[17] R. Prakash, M. Raynal, and M. Singhal. An efficient causal ordering algorithm for
mobile computing environments. In 16th International Conference on Distributed
Computing Systems, pages 744–751, 1996.

[18] L. Ramabaja. The bloom clock. CoRR, abs/1905.13064, 2019.
[19] F. Rojas and M. Ahamad. Plausible clocks: Constant size logical clocks for

distributed systems. In WDAG 1996, pages 71–88, 1996.
[20] Válter Santos and Luís Rodrigues. Localized reliable causal multicast. In NCA,

pages 1–10, 2019.
[21] A. Varga. The omnet++ discrete event simulation system. Proc. ESM’2001, 9, 2001.

10

APPENDIX - PROOF OF THE ALGORITHM
Proof when nodes never move between cells
Theorem 1: WAS ensures causal broadcast in mobile networks
when hosts do not move between cells. Validity. A station initially
disseminates only messages co-broadcasted by hosts connected to
it. Hence, all application messages disseminated among stations
are messages co-broadcasted by a host. Moreover, a host only co-
delivers messages that the station to which it is connected sends to
it. Hence, hosts only co-deliver messages co-broadcasted by hosts.
Integrity. The wired network connecting stations is FIFO and re-
liable. Hence, on the wired network, our dissemination approach
ensures that every station receives each message once and that
the message is causally ordered at reception. Each station then
attributes a unique sequence number to each message it receives
and sends them to the hosts of its cell. A host delivers messages in
increasing sequence number. Thus, a host that delivers a message
m will never deliver m again, since its local sequence number will
be greater than the sequence number of m.
Causal order. As explained above, messages are causally ordered
upon their reception at stations. A station attributes an increas-
ing sequence number to each message following its arrival time.
Hence, if m → m′, then stations receive m beforem’, and, therefore,
m.seq < m′.seq. Moreover, hosts deliver messages in increasing
sequence number. Hence, hosts deliver messages causally ordered.
Termination. A host hi that joins the system is not considered up
until the station si to which hi connects itself receives hi’s join mes-
sage. Upon reception of the message, si attributes to hi the sequence
number of the application message it caches with the lowest se-
quence number. Moreover, si retranmits the join acknowledgment
as well as every cached application message until hi acknowledged
each pf them (i.e., after having delivered it), or si considers hi as
down. Hence, all messages that si did not discarded upon the re-
ception of hi’s join message will be delivered by hi, given that hi
remains an up process.□

Proof when nodes move between cells
Now we show that WAS ensures causal order even when hosts
move between cells.

Lemme 1: When a host hi leaves the cell of station sp and con-
nects to station sn, then sn recovers those messages it has previously
discarded and that hi has not delivered yet.
First, sn does not delete messages after sn.recv(connect) from hi un-
less hi acknowledges them. On the other hand, messages not deliv-
ered by hi but discarded by sn are received by sn before sn.recv(connect).
Station sn recovers those discarded messages during the handoff
with sp: (1) Phase 1 composed of Req1 and Rsp1 identifies them.
The reliable FIFO channels connecting stations ensure that, when
sp receives the Req1 message sent by sn, it received all the messages
that sn received prior to sn.recv(connect). sp replies to Req1 with
Rsp1 which contain msg, the list with the ids of messages hi have
not delivered among those sp received before Req1. (2) Phase 2
composed of Req2 and Rsp2 recovers at sn the messages of msg that
sn has discarded. In Req2, sn requests to sp the messages of msgnd
it has already discarded, and sp sends them to sn in Rsp2. Thus, at
the end of Phase 2, sn buffers all messages it has discarded prior to
the connection of hi that it has not delivered yet.

Lemme 2: Upon reception of Req1, sp received all messages that
hi has delivered.
hi stops to deliver messages once it sends a connect message to sn,
and will only deliver messages again after receiving connectACK
from sn. Moreover, sn sends Req1 to sp after receiving connect from
hi. Hence, sp receives Req1 after that hi sent connect, i.e., after hi
stopped to delivermessages. Since sp handles the causal information
of hi, the latter only delivers messages already received from sp.
Hence, messages that hi delivered are received by sp at latest when
sp receives Req1.

Lemme 3: Upon reception of Rsp1, sn received all messages that
hi has delivered.
Following Lemme 2, upon reception of Req1, sp received all mes-
sages that hi delivered. sp forwarded all those messages to sn (FIFO
dissemination). Moreover, sp replies to Req1 by sending Rsp1 to sn.
The FIFO dissemination ensures that, upon the reception of Rsp1,
sn received all messages that sp forwarded prior to sp’s reception
of Req1. Therefore, upon the reception of Rsp1, sn received all mes-
sages that sp broadcasted until its reception of Req1, i.e., messages
that hi might delivered.

Lemme 4: The union of the lists mnd of Rsp1 and msgrcv of
Rsp2 contain the id of messages that hi did not deliver among the
messages that sn receives before the reception of Rsp1.
Following Lemme 2, hi did not deliver any message that sp receives
between Req1 and Req2. msgrcv contains those messages. Among
the messages that sp received before the reception of Req1, those
not delivered by hi are contained in mnd. Therefore, mnd ∪msgrcv
contains the list of messages (or their id) not delivered by hi among
the messages sp received upon the reception of Req2. The FIFO
dissemination ensures that upon reception of Req2, sp received all
messages that sn received upon reception of Rsp1. Hence, mnd ∪
msgrcv contains the list of messages or their id not delivered by hi
that sn received upon the reception of Rsp1.

Lemme 5: Messages that hi has not delivered are those that sn
receives before Rsp1 identified or contained in mnd ∪msgrcv and
the messages sn receives after Rsp1.
Following Lemme 4, messages that hi has not delivered among the
ones sn receives before Rsp1 are those contained in mnd ∪msgrcv.
Following Lemme 3, messages that hi delivered are received by sn
upon its reception of Rsp1. Hence, all messages sn receives after
Rsp1 are not delivered by hi.

Lemme 6: To respect causal order, hi must first deliver the mes-
sages of msgrcv of Rsp2, i.e., messages that sn discarded before the
connection of hi but that hi did not deliver, before delivering mes-
sages currently broadcasted by sn.
Hosts acknowledge messages whose sequence number is lower
than their seqNC. Hence, messages that sn discards have a lower
sequence number than messages sn still caches. hi must, there-
fore, first deliver messages of msg, since hosts deliver messages in
increasing sequence number.

Theorem 2: WAS ensures causal broadcast in mobile networks
where hosts move between cells.
Following Theorem 1 WAS ensures causal broadcast in mobile net-
works where hosts do not move between cells. We will show that
the handoff procedure of WAS ensures that the causal information
of a host that moves to a new cell is transmitted to the new cell’s
station and, therefore, the new cell’s station also ensures causal

11

broadcast for the moving host.
Validity. The validity of causal broadcast does not change when
hosts move between cells. Hence, the validity proof of Theorem 1
holds.
Integrity. Following Theorem 1, hosts co-deliver a message at most
once when not changing cell. Let’s show that when a host hi moves
from the cell of station sp to the cell of station sn, that sn will iden-
tify the messages that hi did already deliver, and that hi will not
deliver those messages again. Following the corollary of Lemme 5,
messages that sn caches that hi has already delivered are those that
sn receives before Rsp1 that are not identified in mnd∪msgrcv. «««<
HEAD sn broadcasts these message piggybacking hi’s id on them,
and hi does not deliver them, but only increments its sequence
number to deliver the next messages sent by sn. Moreover, follow-
ing Lemme 5 messages that sn receives after Rsp1 are not delivered
by hi. Therefore, hi will not deliver again messages it has already
delivered. Hence, hi will not deliver any message twice, i.e., hi will
deliver a message at most once.
Causal order. Theorem 1 shows that causal order is ensured when
hosts do not change cell. Let’s show that when a host changes
cell, no application message is lost and that the host delivers them
respecting causal order. Following Lemme 6, hi must first deliver
messages it has not delivered yet but that sn discarded prior to
its connection. Following Lemme 1, sn recovers those messages
at sp which orders them in the list msgrcv of Rsp2 following their
reception order. Moreover, sn sends them to hi before sending to hi
messages it currently broadcasts. Therefore, hi will deliver those
messages in FIFO (and consequently in causal) order. Following the
corollary of Lemme 5, messages that sn caches that hi has already
delivered are the messages that sn receives before Rsp1 that are not
identified in mnd ∪msgrcv. sn piggybacks hi’s id on those messages,
and hi does not deliver them, but only increments its sequence
number to deliver the following messages sent by sn. Hence, all
messages which piggyback hi’s id have been already delivered by
hi. For all other messages cached by sn, hi will deliver them in in-
creasing sequence number order. Hence, hi first delivers messages
not cached anymore by sn, then it delivers the messages cached by
sn in increasing sequence number order, i.e., causally ordered.
Termination. Theorem 1 shows that the termination is ensured
when hosts never move between cells. Let’s show that an up host
that changes cell will co-deliver all application messages. Note that
a host that delivers no message because it changes to often its cell
would eventually be considered as down by the station registering
it. Therefore, periodically, hosts are supposed to be long enough
inside a cell in order to deliver outstanding application messages.
Let’s consider that host hi moves from the cell of station sp to the
cell of station sn. Following Lemme 1, sn recovers messages it dis-
carded among those hi has not delivered yet in the list msgrcv of
Rsp2. sn then sends those messages to hi. Moreover, after receiving
the connect message from hi, sn will not discard any message unless
it considers hi as down, and will retransmit them periodically until
hi acknowledges them. Hence, the handoff procedure ensures that
sn recovers and sends to hi all messages it discarded that hi has
not delivered, and for all other messages not delivered yet by hi,
sn caches them and will retransmit them until hi acknowledged
them.□

Proof that handoffs finish and that the most
recent will execute
Lemme 8: PS that host hi appends on connect messages contains
the station that holds hi’s causal information, as well as the corre-
sponding connection sequence number.
Station sn only sends a connectACK to hi once it received hi’s causal
information. Hence, hi knows, when receiving a connectACK mes-
sage from sn during the connection Sesk, that sn maintains its
causal information during the connection with sequence number
Sesk. Hence, hi sets PS to (sn, Sesk) when it receives a connectACK
message from station sn during the connection Sesj. Otherwise,
when hi changes cell, it appends the tuple (si, Sesj) on PS when it
connects to station si with the connection sequence number Sesk.
Hence, PS contains the identifier (sn, Sesk) of the last confirmed
connection that maintained its causal information, as well as the
tuples (si, Sesj) of later connections that might maintain its causal
information.

Lemme 9: All connections not included in PS that hi appends
on connect messages are either finished or will be finished by a
Delete message.
hi adds the tuple (si, Sesj) to PS each time it changes cell and con-
nects to station si with connection sequence number Sesj. It sets PS
to (sn, Sesk) when receiving a connectACK from sn during the con-
nection Sesk. Hence PS contains the connection identifiers since the
last connection (sn, Sesk) in which hi received a connectACK. When
sending a connectACK message, sn also sends a Delete message for
all connections of PS. A non finished connection (si, Sesj) of PS will
then be finished by station si at reception of the Delete message.
Hence, all connection not contained in PS are either finished or will
be finished by a Delete message.

Lemme 10: If several handoffs occure simultaneously for the
same host, then the station that started the handoff with the high-
est session sequence number, i.e. the handoff of the most recent
connection, will eventually be the only station that registers the
host and holds its causal information.
Consider host hi that changes cell several times in a short time in-
terval, leading to a sequence (sj, Sesj), i < j < k of handoffs occuring
simultaneously. We show that station sk will eventually hold hi’s
causal information with th connection session number Sesk. Fol-
lowing lemme 8, the causal information of hi is maintained in one
of the connection (si, Sesi) contained in PS. sk sends a Req1 message
to station si for each connection (si, Sesi) of PS. The station that
maintains the causal information of hi either receives Req1,k from
sk or from another station sj, i < j < k. If it first receives Req1,k
from sk, then it will send the causal information of hi to sk, and
sk will, at the end of the handoff (sn.19), send Delete messages to
finish all connections of PS. Therefore, sk will maintain the causal
information of hi and all other stations will unregister hi. If the
station that holds hi’s causal inforamtion first receives the Req1,j
message from another station sj, i < j < k, then sj will receive the
causal information of hi. However, following lemme 8 sj the con-
nection for which sj does the handoff is included in PS. Hence, sj
will receive the Req1,k message from sk. If upon reception of Req1,k
the handoff of sj is not finished, it will cache Req1,k until the end of
the handoff where it will handle it. If the handoff is finished, it will
handle Req1,k directly. Hence, sk will eventually receive the causal

12

information of hi. Moreover, sk will send a Delete message to close
all conection of PS, and following Lemme9, all connections not
included in PS are finished or will be finished by a Delete message.
Hence, eventually sk will be the only station that registers hi and it
will hold hi’s causal information.

Theorem 3: Each handoff eventually ends.
Following lemme10, if several handoffs occure for the same host
simultaneously, the station that initiated the most recent handoff
will eventually hold the host’s causal information. If a handoff is
not concurrent with another one, it will execute normally. Hence,
each handoff eventually ends. □

13

	Abstract
	1 Introduction
	2 Background
	3 Model
	4 Causal broadcast algorithm
	4.1 Dissemination of application messages
	4.2 Join/leave the network
	4.3 Handoff procedure
	4.4 Handoff example
	4.5 Host failures

	5 Performance Evaluation
	5.1 Scalability
	5.2 Decentralized discard mechanism
	5.3 Transient host failures

	6 Related work
	7 Conclusion
	References

