F. Berthelin, Existence and weak stability for a pressureless model with unilateral constraint, Math. Models Methods Appl. Sci, vol.12, issue.2, pp.249-272, 2002.

F. Berthelin, P. Degond, M. Delitala, and M. Rascle, A model for the formation and evolution of traffic jams, Arch. Ration. Mech. Anal, vol.187, issue.2, pp.188-220, 2008.

D. Bresch, C. Perrin, and E. Zatorska, Singular limit of a Navier-Stokes system leading to a free/congested zones two-phase model, C. R. Math. Acad. Sci. Paris, vol.352, issue.9, pp.685-690, 2014.

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, vol.52, issue.5, pp.852-862, 2007.

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Inventiones Mathematicae, vol.141, pp.579-614, 2000.

R. Danchin, A Lagrangian approach for the compressible Navier-Stokes equations, Annales de lInstitut Fourier, vol.64, issue.2, pp.753-791, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00664343

R. Danchin, F. Fanelli, and M. Paicu, A well-posedness result for viscous compressible fluids with only bounded density, vol.13, pp.275-316, 2020.
URL : https://hal.archives-ouvertes.fr/hal-01778175

R. Danchin and P. B. Mucha, Compressible Navier-Stokes system : large solutions and incompressible limit, vol.320, pp.904-925, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01292106

R. Danchin and P. B. Mucha, The incompressible Navier-Stokes equations in vacuum, Communications on Pure and Applied Mathematics, vol.52, pp.1351-1385, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01523740

R. Danchin and P. B. Mucha, From compressible to incompressible inhomogeneous flows in the case of large data, Tunisian Journal of Mathematics, vol.1, issue.1, pp.127-149, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01622159

R. Danchin and P. B. Mucha, Compressible Navier-Stokes equations with ripped density, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02075922

R. Danchin, P. B. Mucha, J. Peszek, and B. Wróblewski, Regular solutions to the fractional Euler alignment system in the Besov spaces framework, Math. Models Methods Appl. Sci, vol.29, issue.1, pp.89-119, 2019.

A. Debenedictis and A. Das, The General Theory of Relativity: A Mathematical Exposition, 2012.

R. , D. Perna, and P. , Lions: Ordinary differential equations, transport theory and Sobolev spaces, Inventiones Mathematicae, vol.98, pp.511-547, 1989.

T. Do, A. Kiselev, L. Ryzhik, and C. Tan, Global regularity for the fractional Euler alignment system, Arch. Ration. Mech. Anal, vol.228, pp.1-37, 2018.

E. , Dynamics of Viscous Compressible Fluids, vol.26, 2004.

E. Feireisl, P. B. Mucha, A. Novotny, and M. Pokorny, Time-periodic solutions to the full Navier-Stokes-Fourier system, Arch. Ration. Mech. Anal, vol.204, issue.3, pp.745-786, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01284064

L. Grafakos, Classical and Modern Fourier Analysis, 2006.

M. Herty and V. Schleper, Traffic flow with unobservant drivers, ZAMM Z. Angew. Math. Mech, vol.91, issue.10, pp.763-776, 2011.

D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differential Equations, vol.120, issue.1, pp.215-254, 1995.

D. Hoff, Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional, compressible flow, SIAM J. Math. Anal, vol.37, issue.6, pp.1742-1760, 2006.

P. Lions, Compressible Models, vol.II, 1998.

O. Ladyzhenskaja, V. Solonnikov, and N. Uraltseva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, vol.23, 1967.

A. Matsumura and T. Nishida, Initial boundary value problem for equations of motion of compressible viscous and heat conductive fluids, Commun. Math. Phys, vol.89, pp.445-464, 1983.

P. Minakowski, P. B. Mucha, J. Peszek, and E. Zatorska, Singular Cucker-Smale dynamics. Active particles, vol.2, pp.201-243, 2019.

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys, vol.144, pp.923-947, 2011.

P. B. Mucha, The Cauchy problem for the compressible Navier-Stokes equations in the L p -framework, Nonlinear Anal, vol.52, issue.4, pp.1379-1392, 2003.

K. Oh, M. -ch, H. Park, and . Ahn, A survey of multi-agent formation control, Automatica, vol.53, pp.424-440, 2015.

L. Saint-raymond, Hydrodynamic limits of the Boltzmann equation, Lecture Notes in Mathematics, 1971.

R. Shvydkoy and E. Tadmor, Eulerian dynamics with a commutator forcing, Trans. Math. Appl, vol.1, issue.1, p.pp, 2017.

E. Tadmor and C. Tan, Critical thresholds in flocking hydrodynamics with non-local alignment, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci, vol.372, p.pp, 2014.

H. Triebel, E-mail address: raphael.danchin@u-pec.fr (P.B. Mucha) Instytut Matematyki Stosowanej i Mechaniki, Interpolation theory, function spaces, differential operators, vol.18, pp.2-097, 1978.