H. Wei, A. Sehgal, and N. Kehtarnavaz, A deep learning-based smartphone app for real-time detection of retinal abnormalities in fundus images, Proc. SPIE 11401, 2019.

A. Sehgal and N. Kehtarnavaz, Guidelines and benchmarks for deployment of deep learning models on smartphones as real-time apps, Machine Learning and Knowledge Extraction, vol.1, pp.450-465, 2019.

, International Diabetes Federation. IDF Diabetes Atlas, vol.159, 2019.

C. Sánchez, M. García, A. Mayo, M. López, and R. Hornero, Retinal image analysis based on mixture models to detect hard exudates, Medical Image Analysis, vol.32, pp.650-658, 2009.

L. Giancardo, F. Meriaudeau, T. Karnowski, Y. Li, S. Garg et al., Exudate-based diabetic macular edema detection in fundus images using publicly available datasets, Medical Image Analysis, vol.16, pp.216-226, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00639756

N. Dawar and N. Kehtarnavaz, Action detection and recognition in continuous action streams by deep learningbased sensing fusion, IEEE Sensors Journal, vol.18, pp.9660-9668, 2018.

H. Wei, M. Laszewski, and N. Kehtarnavaz, Deep learning-based person detection and classification for far field video surveillance, Proceedings of IEEE Dallas Circuits and Systems Conference, 2018.

K. Xu, D. Feng, M. , and H. , Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image, Molecules, vol.12, p.2054, 2017.

C. Lam, C. Yu, L. Huang, R. , and D. , Retinal lesion detection with deep learning using image patches, Investigative Ophthalmology & Visual Science, vol.59, pp.590-596, 2018.

R. Gargeya and T. Leng, Automated identification of diabetic retinopathy using deep learning, Ophthalmology, vol.124, issue.7, pp.962-969, 2017.

K. Maninis, J. Pont-tuset, P. Arbeláez, and L. Gool, Deep retinal image understanding, Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, 2016.

P. Opthalmoscope, , 2020.

D. , , 2020.

Y. Elloumi, M. Akil, and N. Kehtarnavaz, A mobile computer aided system for optic nerve head detection, Computer Methods and Programs in Biomedicine, vol.162, pp.139-148, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01796762

Y. Elloumi, M. Akil, and N. Kehtarnavaz, A computationally efficient retina detection and enhancement image processing pipeline for smartphone-captured fundus images, Journal of Multimedia Information System, vol.5, pp.79-82, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01796763

, EyePACS, 2018.

, APTOS 2019 blindness detection dataset, 2020.

M. Akil, Y. Elloumi, and R. Kachouri, Detection of retinal abnormalities in fundus image using CNN deep learning networks, State of the Art in Neural Networks, vol.1, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02428351

M. Akil and Y. Elloumi, Detection of retinal abnormalities using smartphone-captured fundus images: a survey, Proc. SPIE 10996 Real-Time Image Processing and Deep Learning, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02121855

Y. Elloumi, M. Akil, and H. Boudegga, Ocular diseases diagnosis in fundus images using a deep learning: approaches, tools and performance evaluation, Proc. SPIE 10996 Real-Time Image Processing and Deep Learning, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02121851

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, Rethinking the inception architecture for computer vision, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016.

A. Krizhevsky, I. Sutskever, and G. Hinton, Imagenet classification with deep convolutional neural networks, Communications of the ACM, vol.60, pp.85-90, 2012.

J. Deng, W. Dong, R. Socher, L. Li, K. Li et al., ImageNet: A large-scale hierarchical image database, Proceedings of IEEE Computer Vision and Pattern Recognition, 2009.

. Tensorflow, , 2019.

. Keras, , 2019.

. Coreml, , 2019.

A. Studio, , 2019.

. Xcode, , 2019.