M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 1972.

S. Ancey, E. Bazzali, P. Gabrielli, and M. Mercier, Elastodynamics and 780 resonances in elliptical geometry, Journal of Physics A: General Physics, vol.46, p.435204, 2013.

J. Auriault, Acoustics of heterogeneous media: macroscopic behavior by homogenization, Current Topics in Acoustical Research, vol.1, pp.63-90, 1994.

J. Auriault and G. Bonnet, Dynamique des compositesélastiques péri-785 odiques. (Dynamics of periodic elastic composites), Arch. Mech, vol.37, pp.269-284, 1985.

J. Auriault and C. Boutin, Long wavelength inner-resonance cut-off frequencies in elastic composite materials, International Journal of Solids and Structures, vol.49, pp.3269-3281, 2012.

A. Avila, G. Griso, and B. Miara, Phononic bandgaps in linearized 790 elasticity. Comptes Rendus de l'Académie des Sciences I, vol.340, pp.933-938, 2005.

N. Babych, I. Kamotski, and V. Smyshlyaev, Homogenization of spectral problems in bounded domains with doubly high contrasts, Networks and Heterogeneous Media, vol.3, pp.413-436, 2008.

A. Baz, An active acoustic metamaterial with tunable effective density, 2010.

, ASME Journal of Vibration and Acoustics, vol.132, pp.410111-0410119

E. Bazzali, Résonances d ' objetsélastiques en géométries elliptique et sphéroidale (Resonance of elastic objects in elliptic and spheroidal geometries), 2014.

A. Bensoussan, J. Lions, and G. Papanicolaou, Asymptotic analysis for 800 periodic structures, 1978.

M. Bibby and A. Peterson, Accurate computation of Mathieu functions, 2013.

W. G. Bickley, The Tabulation of Mathieu functions, Mathematical Tables and Other Aids to Computation, vol.1, pp.409-419, 1945.

D. Bigoni, S. Guenneau, A. B. Movchan, and M. Brun, Elastic metamaterials with inertial locally resonant structures: Application to lensing and localization, Physical Review B, vol.84, p.174303, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01281298

G. Blanch, On the computation of Mathieu functions, Journal of Mathematics and Physics, vol.25, pp.1-20, 1946.

G. Bonnet and V. Monchiet, Dynamic mass density of resonant metamaterials with homogeneous inclusions, Journal of the Acoustical Society of America, vol.142, pp.890-901, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01574528

C. Boutin, J. Auriault, and G. Bonnet, Inner resonance in media governed by hyperbolic and parabolic dynamic equations. Principle and exam-815 ples, pp.83-84, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01802862

A. V. Buren and J. Boisvert, Accurate calculation of the modified Mathieu functions of integer order, Quarterly of Applied Mathematics, vol.65, pp.1-23, 2007.

E. Cojocaru, Mathieu functions, computational toolbox implemented in matlab, 2008.

C. Comi and J. Marigo, Homogenization approach and Bloch-Floquet theory for band-gap prediction in 2D locally resonant metamaterials, Journal of Elasticity, vol.139, pp.61-90, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02146908

R. Craig and M. Bampton, Coupling of substructures for dynamic analyses, AIAA Journal, vol.6, pp.1313-1319, 1968.
URL : https://hal.archives-ouvertes.fr/hal-01537654

R. Craster, J. Kaplunov, and A. Pichugin, High-frequency homogenization for periodic media, Proceedings of the Royal Society A, vol.466, pp.2341-2362, 2010.

S. Daymond, The principal frequencies of vibrating systems with elliptic 830 boundaries, Quarterly Journal of Mechanics and Applied Mathematics, vol.8, pp.361-372, 1955.

A. Eringen and E. Suhubi, Elastodynamics, vol.2, 1978.

D. Frenkel and R. Portugal, Algebraic methods to compute Mathieu functions, Journal of Physics A: General Physics, vol.34, pp.3541-3551, 2001.

S. Goldstein, Mathieu functions. Transactions of the Cambridge Philosophical Society, vol.23, pp.303-336, 1927.

J. C. Gutierrez-vega, Theory and numerical analysis of the Mathieu functions, 2008.

R. Hackman, The transition matrix for acoustic and elastic wave scattering in prolate spheroidal coordinates, Journal of the Acoustical Society of America, vol.75, pp.35-45, 1984.

H. Huang and C. Sun, Locally resonant acoustic metamaterials with 2D anisotropic effective mass density, Philosophical Magazine, vol.91, pp.981-996, 2011.

H. Huang and C. Sun, Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young's modulus, Journal of the Acoustical Society of America, vol.132, pp.2887-2895, 2012.

A. Krokhin, J. Arriaga, and L. Gumen, Speed of sound in periodic elastic 850 composites, Physical Review Letters, vol.91, pp.2643021-2643024, 2003.

S. Lee, C. Park, Y. Seo, Z. Wang, and C. Kim, Acoustic metamaterial with negative density, Physical letters A, vol.373, pp.4464-4469, 2009.

Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang et al., Locally resonant materials, vol.289, pp.1734-1736, 2000.

E. Mathieu, Le mouvement vibratoire d'une membrane de forme elliptique (Vibration of an elliptic membrane), Journal de Mathématiques Pures et Appliquées, vol.13, pp.137-203, 1868.

J. Meixner and F. Schäfke, Mathieusche Funktionen and Spheroidfunktionen, 1954.

G. Milton, The theory of composites, 2002.

G. Milton, New metamaterials with macroscopic behavior outside that of continuum elastodynamics, New Journal of Physics, vol.9, p.359, 2007.

G. Milton and J. Willis, On modifications of Newton's second law and 865 linear continuum elastodynamics, Proceedings of the Royal Society A, vol.463, pp.855-880, 2007.

P. Morse and H. Feshbach, Methods of theoretical physics, 1953.

C. Naify, C. Chang, G. Mcknight, and S. Nutt, Scaling of membrane-870 type locally resonant acoustic metamaterial arrays, Journal of the Acoustical Society of America, vol.132, pp.2784-2792, 2012.

H. Nassar, Q. He, and N. Auffray, Willis elastodynamic homogenization theory revisited for periodic media, Journal of the Mechanics and Physics of Solids, vol.77, pp.158-178, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01112307

H. Nassar, Q. He, and N. Auffray, On asymptotic elastodynamic homogenization approaches for periodic media, Journal of the Mechanics and Physics of Solids, vol.88, pp.274-290, 2016.

S. Nemat-nasser, J. Willis, A. Srivastava, and A. Amirkhizi, Homogenization of periodic elastic composites and locally resonant materials, Physical 880 Review B, vol.83, p.104103, 2011.

A. N. Norris, A. L. Shuvalov, and A. A. Kutsenlo, Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems, Proceedings of the Royal Society A, vol.468, pp.1629-1651, 2012.

J. Park, B. Park, D. Kim, and J. Park, Determination of effective mass 885 density and modulus for resonant metamaterials, Journal of the Acoustical Society of America, vol.132, pp.2793-2799, 2012.

W. Parnell and I. Abrahams, Dynamic homogenization in periodic fibre reinforced media. Quasi-static limit for SH waves, Wave Motion, vol.43, pp.474-498, 2006.

A. Rallu, S. Hans, and C. Boutin, Asymptotic analysis of high-frequency 890 modulation in periodic systems. Analytical study of discrete and continuous structures, Journal of the Mechanics and Physics of Solids, vol.117, pp.123-156, 2018.

E. Shamonina and L. Solymar, Metamaterials: How the subject started, Metamaterials, vol.1, pp.12-18, 2007.

P. Sheng, X. Zhang, Z. Liu, and C. Chan, Locally resonant sonic mate-895 rials, Physica B, vol.338, pp.201-205, 2003.

J. Soubestre and C. Boutin, Non-local dynamic behavior of linear fiber reinforced materials, Mechanics of materials, vol.55, pp.16-32, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00943749

A. Sridhar, V. Kouznetsova, and M. Geers, Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum, 900 Computational Mechanics, vol.57, pp.423-435, 2016.

A. Sridhar, V. Kouznetsova, and M. Geers, A general multiscale framework for the emergent effective elastodynamics of metamaterials, Journal of the Mechanics and Physics of Solids, vol.111, pp.414-433, 2018.

B. A. Troesch and H. R. Troesch, Eigenfrequencies of an elliptic mem-905 brane. Mathematics of Computation, vol.27, pp.16-32, 1973.

J. Vasseur, P. Deymier, G. Prantzikonis, and G. Hong, Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media, Journal of Physics: Condensed matter, vol.10, pp.6051-6064, 1998.

V. Veselago, The electrodynamics of substances with simultaneously negative values of and ?, Soviet Physics Uspekhi, vol.10, pp.509-514, 1968.

J. Willis, Variational principles for dynamic problems for inhomogeneous elastic media, Wave Motion, vol.3, pp.1-11, 1981.

J. Willis, Exact effective relations of s laminated body, Mechanics of 915 materials, vol.41, pp.385-393, 2009.

P. Wu and P. Shivakumar, Eigenvalues of the laplacian on a elliptic domain, Computers and Mathematics with Applications, vol.55, pp.1129-1136, 2008.

Z. Yang, J. Mei, M. Yang, N. C. Zhou, and P. Sheng, Membrane-type acoustic metamaterial with negative dynamic mass, Physical Review Letters, pp.920-101, 2008.

S. Yao, X. Zhou, and G. Hu, Experimental study on negative effective mass in a 1D mass-spring system, New Journal of Physics, vol.10, p.43020, 2008.

X. Zhou, X. Liu, and G. Huc, Elastic metamaterials with local resonances: an overview. Theoretical and applied mechanics letters, vol.2, 2012.