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Abstract

Dilatancy plays a key role in mixtures of grains and fluid but is poorly investigated
in dry granular flows. These flows may however dilate by more than 10% in granular
column collapses. We investigate here dilatancy effects in dry flows with a shallow
depth-averaged model designed to be further applied to simulate natural landslides.
We use a compressible µ(I), φeq(I) rheology with a dilatancy law, where φeq(I) is
the volume fraction at the equilibrium (i.e. critical) state and I the so-called inertial
number. This law is obtained by simply removing the fluid phase in the solid/fluid
model of our previous work [J. Fluid Mech, 801, 166-221 (2016)] and derived from
critical state theory. A numerical method is proposed to solve the equations, that have
however singularities that are rather difficult to handle.

Simulations of granular collapses on horizontal and sloping beds show that the
maximum height of the deposits changes as a function of the initial volume fraction with
higher (lower) deposits for initially denser (looser) granular masses, as observed with
Discrete Element simulations. The front position and the deposit shape behind it are
on the contrary poorly affected by the initial volume fraction, as if the flow had almost
forgotten its initial state. However subtle effects can be observed with the occurrence of
low velocity regimes on steep slopes that strongly depend on the initial volume fraction.
Simulations show complex compression/dilation effects during the flow, in particular
with front dilation (compression) during the acceleration (deceleration) phases. These
effects may dramatically change the effective friction that is observed to decrease at
the front in some situations, while the µ(I) rheology without dilatancy would have
predicted an increasing friction. The model predicts an increasing dilation of the mass
for increasing slopes by up to 10% in the studied configurations, in agreement with
laboratory experiments. Our results suggest that this compressible model contains key
features to describe granular dilatancy.
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1 Introduction

Dilatancy plays a key role in mixtures of grains and fluid, making it possible to dramatically
change their flow dynamics and deposit [19, 32, 5, 11]. This process is an essential ingredient
in landslide numerical models, increasingly used to build hazard maps for risk assessment
[23].

Dilatancy can be described using the critical state theory [35]. The essential feature is
that a granular material, when sheared, reaches an equilibrium state called the critical state.
When the volume fraction of the granular mass is initially smaller than the equilibrium
volume fraction (initially loose material), the granular material compresses under shear.
This compression expels the interstitial fluid, increasing the pore pressure and therefore
decreasing the effective friction experienced by the grains. This effect may possibly lead
to the so-called liquefaction of granular mass. The contrary is observed for initially dense
materials that dilate under shear, leading to a decrease of fluid pressure and an increase of
effective friction.

Dilatancy has been introduced in models of grain/fluid mixtures by using the law pro-
posed by [33] for dry granular material [30, 20, 6]. Depth-averaged models based on the
shallow approximation (the depth of the landslide is assumed to be much smaller than its
extension along the slope) are extensively used to simulate granular flows in natural geolog-
ical context. Indeed, these approximations reduce the high computational cost related to
the need of accurately describing the complex topography (e. g. [31, 29, 25, 28, 21]). Solv-
ing numerically two-phase equations with dilatancy in such models however involves several
difficulties: shear rate and pore fluid pressure dependency in the dilatancy law that induces
several singularities at low depth, tendency to produce oscillations on the volume fraction
due to the coupling between convection and dilatancy, nontrivial steady states to preserve
[5].

Even though dilatancy is expected to have a much smaller impact on dry granular flows
than in grain/fluid mixtures, the volume of the flowing mass may increase by more than
10% during granular column collapses over sloping beds [27]. The effect of dilatancy in dry
granular flows has been poorly investigated. The question is how and how much dilatancy
changes flow dynamics, effective friction and deposit shape of dry flows. Recent simulations
based on Discrete Element Models (DEM) showed that the deposit of dry granular collapses
changes as a function of the initial state (loose or dense) of the released mass [24]. In
particular the maximum thickness of the deposit is significantly smaller for initially loose
than for initially dense granular columns. On the contrary, the front position and the deposit
shape near the front are poorly affected by the initial volume fraction as if the material had
forgotten the memory of its initial state in the front zone.

We propose here to investigate these effects by including dilatancy in a shallow depth-
averaged model of dry granular flows with the ultimate objective to further apply it to
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simulate real landslides. One of the question is as to whether the simple law proposed by
[33] makes it possible to qualitatively and possible quantitatively reproduce these effects. The
frictional behavior in the model will be described by the µ(I) rheology where I is the so-called
inertial number. This widely used rheology has been shown to reproduce a wide range of
laboratory experiments (see references in [1, 11]) even though it is ill-posed for some values of
I [2, 27]. It has recently been shown that compressible effects may resolve the ill-posedness of
the initially incompressible µ(I) rheology [2, 17]. However, when describing compressibility
only by adding a variable volume fraction φ(I) (so-called µ(I), φ(I) rheology), the model is
even more prone to ill-posedness in time-dependent calculations than the incompressible µ(I)
rheology [17, 34]. A more realistic way to introduce compressible effects such as dilatancy
is to use, in addition to the µ(I), φ(I) rheology, flow rules derived from critical state theory
as that proposed by [33]. Then dilatancy occurs when the volume fraction φ deviates from
the equilibrium (i.e. critical) volume fraction φeq(I) [30], this is the formulation that we
take. The authors of [2, 34] propose relations to be satisfied by the yield function (related
to the frictional behavior) and the flow rule (related to compressible effects) to insure well-
posedness.

The relevance of the model should be tested against laboratory experiments. Quantitative
comparison between laboratory experiments and 2D granular flow simulations is however
challenging in particular because most experimental flows are 3D, within a channel, and
therefore significantly affected by lateral walls [36, 22, 27]. Furthermore, introducing wall
effects in shallow depth-averaged models may lead to large errors because these effects depend
on the flowing depth and not on the whole depth as assumed in depth-averaged models [16].
As a result, we will mainly focus here on the qualitative effect of dilatancy on the flow and
deposit even though the results will be compared to laboratory experiments.

We present in Section 2 the compressible (further called dilatant) µ(I) model which is
obtained by simply removing the fluid in the two-phase model derived in [6]. We then
propose in Section 3 a numerical method to solve the equations, pointing out the numerical
difficulties. We then investigate in Section 4 compression/dilation effects in dry granular
column collapse showing the subtle role of dilatancy on flow dynamics, effective friction and
final deposit.

2 Dry granular model with dilatancy

We consider a one-dimensional version of the 2D equations presented in [6], for the case of a
dry granular material with dilatancy effects. The dry assumption means that ρf = 0, β̄ = 0,
pefm = 0, using the notations of [6]. Then from equations (4.10)-(4.13) of [6], we obtain a
closed system with the unknowns ϕ, h and v that are averaged quantities representing the
volume fraction, the thickness of the granular layer in the direction normal to a fixed inclined
plane, and its velocity, respectively.
We consider the dilatancy law ∇·v = γ̇ tanψ = Kγ̇(ϕ−ϕeq) (see below), defining the source
term for the solid volume fraction continuity equation. With x defined as the slope aligned
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Figure 1: Notation and sketch of the domain. The slope angle θ is negative on this plot.

coordinate, the equations are

∂tϕ+ v∂xϕ = −ϕ γ̇ tanψ, (2.1)

∂t(ϕh) + ∂x(ϕhv) = 0, (2.2)

ρsϕ(∂tv + v∂xv) = −ρsϕgc∂x(b̂+ h)− ρsgc
h

2
∂xϕ−

τb
h

sgn(v), (2.3)

with gc = g cos θ, where g is acceleration due to gravity and θ the slope of the inclined plane.
We set b̂(x) = b(x) +x tan θ with b denoting the bottom elevation in the direction normal to
the inclined plane (see Figure 1). Note that equations (2.1) and (2.2) lead to the equation
on the thickness h

∂th+ ∂x(hv) = h γ̇ tanψ. (2.4)

The term sgn(v) in (2.3) represents the solid friction, and is multivalued in the sense that
its value can be any number in [−1, 1] when v = 0. The model satisfies the momentum
equation ((4.17) in [6])

∂t(ρsϕhv) + ∂x(ρsϕhv
2) + ∂x

(
ρsϕgc

h2

2

)
= −ρsϕgch∂xb̂− τb sgn(v), (2.5)

and the energy equation ((4.41) in [6])

∂t

(
ρsϕh

v2

2
+ ρsϕgc

h2

2
+ ρsϕgchb̂

)
+ ∂x

(
ρsϕh

v2

2
v + ρsϕgch

2v + ρsϕgchb̂v

)

≤ ρsϕgc
h2

2
γ̇ tanψ − τb|v|, (2.6)

the inequality being strict only when discontinuities (shocks) appear.
We use the dilatancy law

∇ · v = γ̇ tanψ with tanψ = K(ϕ− ϕeq). (2.7)
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The quantity γ̇ is the (averaged) shear rate and ϕeq is the critical-state compacity given by

ϕeq = ϕstat − K̃ I, (2.8)

where ϕstat is a constant volume fraction corresponding to the static equilibrium, K, K̃ are
constants, and I is the inertial number. In our case of dry material it is defined as

I =
γ̇ d√
ps|b/ρs

, (2.9)

where d is the mean diameter of the solid particles, ρs is the density of the solid material,
and ps|b is the bottom solid pressure,

ps|b = ρsϕgch. (2.10)

The velocity equation (2.3) involves the bottom solid pressure through the effective bottom
solid friction

τb = µeff ps|b , (2.11)

where we define
µeff = max(0, tan δeff) (2.12)

with

tan δeff = µ(I) + tanψ and µ(I) = µ1 +
µ2 − µ1

I + I0

I. (2.13)

The constant values µ1, µ2 are the tangents of the internal friction angles and I0 is a constant
parameter, all of them involved in the µ(I) rheology. The cutoff at 0 in the definition of µeff

avoids negative values, even if this possibility does not occur in practice. We compute the
shear rate with the approximation

γ̇ =
5

2

|v|
h
, (2.14)

compatible with the free fall or inertial regime (cf. [10]). In the formulation (2.6) of the
energy equation, we do not include the dilation internal energy eeqc terms of [6] (equation
(C7) in [6]) because, with our above defined dilatancy law, this would not give a nonpositive
right-hand side. This is because ϕeq does not depend only on ps|b , but also on γ̇.

The system has the steady state at rest (i.e. with vanishing velocity) solutions charac-
terized by

v = 0,
∣∣∂x(b̂+ h) +

h

2ϕ
∂xϕ

∣∣ ≤ µeff. (2.15)

Note that the volume fraction equation (2.1) and the definition (2.7) of γ̇ tanψ indicate
that ϕeq is an attractive value for ϕ. To obtain a relevant volume fraction ϕ ∈ [0, 1], we
therefore need to have ϕeq ∈ [0, 1]. This is not the case with the definition (2.8) of ϕeq since

I can take arbitrary large values, in particular I ∼ h−
3
2 when h approaches zero.

Therefore we consider several modifications of (2.8) that remain in [0, 1] while keeping
the same behavior when I is small. We consider either
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(f0) ϕeq = max(0, ϕstat − K̃ I),

or the following approximations that allow a smooth decay

(f1) ϕeq = ϕstat e
− K̃

ϕstat
I
,

(f2) ϕeq =
ϕstat(

1 + K̃
Nϕstat

I
)N , for a given N > 0.

Figure 2 shows the effect of these approximations for dense initial packing at inclination angle
22◦ and t = 1.38s. As the inertial number tends to infinity near the front (Figure 2(b)),
the equilibrium volume fraction ϕeq reaches unphysical negative values owing to equation
(2.8), as shown by the black circles in Figure 2(a). The simplest regularization (f0) is very
sharp and generates oscillation of the mass thickness near the front at θ = 0◦ (Figure 2(c)).
Regularization (f1) is smoother but still gives rise to small instabilities near the front at
θ = 0◦ where the thickness h is small. The decreasing rate of change of ϕeq towards zero
can be controlled by the exponent N in regularization (f2). As N increases regularization
(f2) tends to (f1) (N ≥ 5 is almost superimposed to (f1)). For N = 1 the decrease to zero is
smoother than (f1) but still close to ϕeq and no more oscillations occur (red line in Figure
2(c)). At higher slope angles (θ = 22◦), all regularizations give a stable h (Figure 2(d)).
This may be due to greater thicknesses at the front at higher slope angles whereas at small
angles the front thickness decreases very slowly to zero.

However, whatever the regularization, the system still has a singularity when h is small,
because of (2.14) that implies that γ̇ tanψ in (2.7) tends to infinity like 1/h. This property
induces some numerical difficulties close to the vacuum (i.e. close to h = 0).

3 Numerical scheme

The system (2.1), (2.2), (2.3) can be written as the following shallow water system with
volume fraction and dilatancy,

∂t(ϕh) + ∂x(ϕhv) = 0, (3.1)

∂t(ϕhv) + ∂x

(
ϕhv2 +

1

2
gcϕh

2

)
= −gcϕh∂xb̂−

τb
ρs

sgn(v), (3.2)

∂t(ϕ
αh) + ∂x(ϕ

αhv) = −(α− 1)ϕαhγ̇ tanψ, (3.3)

for some fixed value α with
α 6= 1 and α ≥ 1/2. (3.4)

Note that the last equation (3.3) makes it possible to replace (2.1) by a conservative equation.
It is important to recall that even for weak solutions with discontinuities, the conservation
laws (3.3) (when α varies) are all equivalent, because of the combination with (3.1). This
gives meaning to the nonconservative equation (2.1). The condition α ≥ 1/2 is assumed
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Figure 2: Effects of the regularization of ϕeq. (a) ϕeq calculated with (2.8) and with regular-
ization functions (f0), (f1) and (f2) for several values of the exponent N , shown near the front
position at inclination angle θ = 22◦ at time t = 1.38s; (b) Inertial number shown near the
front position at inclination angle θ = 22◦. Influence of such regularization on the computed
thickness for dense initial packing on a plane inclined at (c) θ = 0◦ and (d) θ = 22◦ with
dilation coefficient K = 4.09 and no lateral wall effect.

because it characterizes the convexity of the energy ϕhv2/2 + gcϕh
2/2 with respect to the

conservative variable (ϕh, ϕhv, ϕαh). In practice, a value of α = 2 is used. Note that
although classically the variable considered to write a two-phase system is (1− ϕ)h instead
of ϕαh, we do not consider it because of the lack of convexity (it corresponds to the case
α = 0).

The system (3.1), (3.2), (3.3) is discretized with a combination of finite volume and finite
difference schemes, in a two-step splitting approach. The finite volume method is devoted to
the system in which the dilatancy source term involving γ̇ tanψ is excluded, while the finite
difference scheme handles only that source term.
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3.1 Finite volume step

Denoting U = (ϕh, ϕhv, ϕαh), the finite volume step to deal with the PDE part of (3.1)-(3.3)
(i.e. with γ̇ tanψ = 0) is performed by the well-balanced formula

Un+1
i − Un

i +
∆t

∆x

(
Fl(U

n
i , U

n
i+1,∆zi+1/2)− Fr(Un

i−1, U
n
i ,∆zi−1/2)

)
= 0, (3.5)

where the upper index n refers to time, the lower index i refers to the space location, and the
left/right numerical fluxes Fl(Ul, Ur,∆z), Fr(Ul, Ur,∆z) are defined according to Appendix
A. The “total topography” z is defined formally by ∂xz = ∂xb̂ + µeff sgn(v) to enter the
framework of the apparent topography approach (see [3, section 4.12.1]). More explicitly,
this means that at the interface i + 1/2, denoting Ul = Un

i , Ur = Un
i+1, ∆b̂ = b̂i+1 − b̂i, we

define ∆zi+1/2 ≡ ∆z by

∆z = ∆b̂+ ∆bapp, (3.6)

∆bapp = ∆x Proj
µinterf

eff

(
Xinterf ,

vinterf
gc∆t

)
, (3.7)

where

vinterf =
ϕlhlvl + ϕrhrvr
ϕlhl + ϕrhr

, (3.8)

Xinterf is an approximation of

X = −
(
∂x(h+ b̂) +

h

2ϕ
∂xϕ

)
, (3.9)

and where

Proj
µ

(X, Y ) = proj
µ

(
proj
µ

(X) +
2

1 + max(1,−X · Y/µ|Y |)Y
)
, (3.10)

with

proj
µ

(X) =





X if |X| ≤ µ,

µ
X

|X| if |X| > µ.
(3.11)

The argument X in (3.7) ensures the well-balanced property for the steady states at rest (i.e.
to exactly preserve discrete steady states at rest). If we want to approximate the stopping
phase well when ϕ is not constant, we have to take into account the term in ∂xϕ from (3.9)
in the computation of X. We take

Xinterf =
1

∆x

(
hl − hr −∆b̂+

1

2(α− 1)

hl + hr

ϕα−1
l + ϕα−1

r

(
ϕα−1
l − ϕα−1

r

))
. (3.12)

Considering that (∂xϕ)/ϕ = (∂xϕ
α−1)/((α − 1)ϕα−1), we can see that this definition is

consistent with (3.9). Moreover because of the well-balanced property of the numerical flux
(see Appendix A, Theorem A.1), the scheme preserves exactly the discrete data satisfying

vl = vr = 0, |Xinterf | ≤ µinterfeff , and either ϕl = ϕr or hlϕ
1−α
l = hrϕ

1−α
r . (3.13)
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We thus obtain the well-balanced property, not for all the steady states at rest (2.15), but at
least for those that satisfy either ϕ = cst or hϕ1−α = cst. For ϕ = cst, these steady states at
rest are characterized by the property |∂x(b̂+ h)| ≤ µeff. The steady states at rest verifying

hϕ1−α = cst are characterized by the property |∂x(b̂+ α−1/2
α−1

h)| ≤ µeff. In the latter case the

free surface is not flat and the volume fraction ϕ is proportional to h1/(α−1). Setting α = 2,
we obtain that the volume fraction ϕ is proportional to h.

Note that a difficulty is encountered when applying the scheme (3.5) to a state with
h = 0, because as seen in the formulas of Appendix A, the value of ϕ is really needed in this
case, even if not determined by the value of U (which vanishes). For this case, we therefore
set

ϕi = max(ϕi−1, ϕi+1) whenever hi = 0. (3.14)

3.2 Finite difference step

To complete the numerical procedure, we need to solve only the reaction term that involves
the dilatancy effects, i.e.

∂t(ϕh) = 0, ∂t(ϕhv) = 0, ∂tϕ = −ϕγ̇ tanψ. (3.15)

According to (2.7), γ̇ tanψ = γ̇ K(ϕ − ϕeq). We use a semi-implicit method here since the
shear rate is involved in the expression of the dilation term through the equilibrium solid
volume fraction ϕeq. Let us denote the solution after the finite volume step by ϕ∗, h∗, v∗ and

the final solution by ϕ, h, v. Then γ̇∗ = 5
2
|v∗|
h∗

and we write

ϕ = ϕ∗ −∆tϕ∗γ̇ tanψ = ϕ∗
(
1−∆tγ̇∗K(ϕ− ϕ∗eq)

)
.

Thus we obtain
ϕ− ϕ∗eq = ϕ∗ − ϕ∗eq −∆tγ̇∗Kϕ∗(ϕ− ϕ∗eq),

and we deduce the equality

(1 + ∆tγ̇∗Kϕ∗)(ϕ− ϕ∗eq) = ϕ∗ − ϕ∗eq. (3.16)

We can deduce the solution for ϕ either directly from (3.16) by setting

ϕ = ϕ∗eq +
ϕ∗ − ϕ∗eq

1 + ∆tγ̇∗Kϕ∗
, (3.17)

or using the following approximation that mimics the analytical solution of the corresponding
differential equation,

ϕ = ϕ∗eq + (ϕ∗ − ϕ∗eq) e−∆tγ̇∗Kϕ∗
. (3.18)

Next, we get the components h and v from

ϕh = ϕ∗h∗, v = v∗. (3.19)

The value of ϕ∗eq is computed using (f2) with N = 1 instead of (2.8), so that ϕ∗eq decays
slowly to 0 as I →∞.
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3.3 Stabilization step

As we are interested in simulating the spreading of a dry granular column, the scheme should
be able to deal with the transition between h > 0 and h = 0 (the so-called dry/wet interface
in numerical methods). This is a key and generally delicate issue in the design of numerical
schemes solving shallow water type equations. Note that with the splitting numerical method
described above, we obtain instabilities when using perfectly dry states in the simulation of
the granular column collapse. Indeed when h approaches zero, the blow up concerns the
shear rate γ̇ and the inertial number I, that are involved in the computation of various other
quantities. A classical approach is therefore to use a threshold on the thickness h and to
consider a very thin layer of granular material instead of a perfectly dry state. We can choose
a thickness threshold of about tens of particles, because for a thickness under this threshold
the numerical results are physically meaningless.

In spite of the above procedure, the scheme still shows instabilities in some dry front
configurations. These instabilities are actually due to the handling of the non-standard
dilatancy source term that is coupled with the standard topography source term. Therefore,
we stabilize the numerical method using a very classical approach that consists in including
artificial viscosity. Hence the system we solve actually reads





∂t(ϕh) + ∂x(ϕhv)− ∂x[ι1∂x(ϕh)] = 0,

∂t(ϕhv) + ∂x(ϕhv
2 + 1

2
gcϕh

2) + gcϕh∂xz − ∂x[ι2∂x(ϕhv)] = 0,

∂t(ϕ
αh) + ∂x(ϕ

αhv)− ∂x[ι3∂x(ϕαh)] = −(α− 1)ϕαhγ̇ tanψ,
(3.20)

where we denote formally ∂xz = ∂xb̂ + µeff sgn(v) as above in the finite volume step. The
numerical viscosity coefficients ιi, for i = 1, 2, 3, are defined by

ιi = max(0, ξiv∆z), (3.21)

with ξi nonnegative constant parameters. For the numerical results, we take ξ1 = ξ2 =
2, ξ3 = 5. These numerical viscosities are of the order of ∆x, thus system (3.20) remains
close to (3.1)-(3.3). The choice (3.21) is made because we noticed that instabilities appear
only when the quantity v∂xz is positive. We apply a standard centered finite difference
scheme to deal with viscous terms. In addition to the classical CFL condition in the finite
volume framework, we require the parabolic CFL condition

∆t

∆x2
max
i=1,2,3

ιi ≤
1

2
. (3.22)

Figure 3 shows that the viscosity has almost no impact on the calculated thickness profiles
whatever the inclination angle. When zooming close to the front, we however see that using
such small viscosity makes it possible to eliminate the small instabilities observed at the
front (insets in Figures 3(a) and 3(b)). The front position changes more at θ = 0◦ than
at θ = 22◦ where it changes by 0.43% of the total extent. Even though the front position
difference is up to 9.1% of the total extent at θ = 0◦, it occurs for very small thicknesses (i.e.
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h ≤ 5×10−4 m) that are not physically relevant for a continuum model representing granular
materials with a grain diameter of about 5× 10−4 m. As a result, the small viscosities used
in our numerical method are shown to have negligible effect on the calculated fields.
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Figure 3: Effects of the numerical viscosity on the computed thickness for dense initial
packing on a plane inclined at θ = 0◦, 22◦ with dilation coefficient K = 4.09 and no lateral
wall effect.

4 Application to granular collapse

4.1 Experimental setup

We simulate the experiments of [26, 13] as done in [27]. The setup consists of a w = 20 cm
wide inclined channel with a rectangular cross-section and plexiglasswalls. A rectangular
mass of glass beads with height h0 = 14 cm and length l0 = 20 cm (i.e. aspect ratio
h0/l0 = 0.7), initially at rest, is released from a reservoir at time t = 0 s by lifting a gate
(Figure 4). The glass beads are subspherical, cohesionless, and highly rigid with a diameter
d = 0.7±0.1 mm. They flow down a plane inclined at θ, roughened with a glued layer of the
same glass beads. The particle density is ρs = 2500 kg m−3 and the initial volume fraction
is estimated at ϕ0 = 0.62 giving an apparent density of ρ = 1550 kg m−3. The thickness
profiles of the flowing granular mass are recorded by a fast camera.

We use the same rheological parameters µ1, µ2 and I0 as [18] and [27], summarized in
table 1. We also test how the classical approach to accounting for wall effects in shallow
depth-averaged models (using a grain/wall friction µw) impacts our results. This will be

presented in section 4.5. The parameters related to dilatancy effects are K = 4.09, K̃ = 0.2,
and ϕstat = 0.585. The value of K is taken from [30] even though they were for mixtures
of grains and fluid while we are dealing with dry granular flows. The parameters involved
in the definition of the solid volume fraction at equilibrium, K̃ and ϕstat are taken from [1]
(equation 6.7) obtained experimentally for dry granular flows. We performed simulations
with two initial volume fractions: ϕ0−dense = 0.62 as in the experiments, referred to as dense
packing, and ϕ0−loose = 0p.55, hereafter referred to as loose packing.
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Figure 4: Experiment setup

µ1 µ2 µw I0 d(m) K K̃ ϕstat ϕ0−dense ϕ0−loose
0.48 0.73 0.18 0.279 7.10−4 4.09 0.2 0.582 0.62 0.55

Table 1: Experimental rheological parameters. µ1, µ2, I0 and d are used in the friction law
(equation (2.12)). µw (grain/wall friction) is also involved when wall friction is considered

(equation (4.1)). K, K̃, and ϕstat are used in the dilation/compression law (equations (2.7)
and (2.8)). Two initial packing fractions are considered corresponding to dense (ϕ0−dense)
and loose (ϕ0−loose) packing.

4.2 Intrinsic limitation of the model for granular collapse simula-
tion

The current one-dimensional model does not take into account the lifting of the gate. The
gate has been shown to impact the flow dynamics but has little effect on the deposit (Figures
14 and 15 of [18]). The presence of the gate reduces the mass velocity and leads to steeper
flow front, at least during the first half of the collapse. Because it does not take gate lifting
into account, our model overestimates the front position (distance from the gate to the front)
during the flow by about 10%.

Furthermore, the effect of the lateral walls of the channel could be significant, in particular
at higher slope angles (Figures 3 and 4 of [26]). Wall effects globally straighten the granular
mass. Because it does not take wall effects into account, our model underestimates the
maximum thickness at the rear of the flow and overestimates the front position. At θ = 22◦,
our simulation can overestimate the front position by 15% and underestimate the maximum
thickness by 25%. However taking into account wall effects in shallow depth-averaged models
is challenging and the classical way of doing that (see equation (4.1)) can lead to unrealistic
effects (e.g. see Figure 11 of [16]).

Finally, the depth-averaged nature of the model makes it impossible to take into account
any motion or inhomogeneity (such as static or flowing grains) in the direction normal
to the slope. Neglecting these effects by depth-averaging the equations may lead to an
overestimation of the front position by up to 15% and an underestimation of the maximum
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thickness by up to 10% at slope θ = 22◦ (e.g. Figure 15 of [15]).
Qualitatively speaking, all of these effects not taken into account in our model produce

the same consequences in our simulations: an overestimation of the maximum thickness of
the flowing mass and an underestimation of the front position. As a result, it is difficult
to quantitatively match experimental results with our simulations given that the combined
effect of the gate, wall friction and processes in the direction normal to the slope are not
or are poorly accounted for in our model. Our simulations may therefore overestimate the
front position by up to 30% and underestimate the maximum thickness at the rear of the
flow by up to 35% on moderate slopes.

The objectives here are therefore only to (i) estimate how dilatancy changes the flow
profiles, velocity, forces and deposit, (ii) identify where and when dilation or compression
occurs, and (iii) possibly estimate how these effects make it possible to improve the match
with laboratory measurements.

4.3 Effect of the initial packing

4.3.1 Mass profiles and velocities

In classical simulations without dilatancy (i.e. K = 0, hereafter called the incompressible
case), shallow depth-averaged models overestimate the flow velocity especially at the initial
instants and on small slopes as shown in Figures 5 and 6. The front position is strongly
overestimated for θ = 0◦ and by up to 40% for θ = 22◦ at the initial instants while the
maximum thickness is underestimated by up to 25%. The deposit is however quite well
reproduced.

Let us investigate how dilatancy changes these results for both initially dense (ϕ0−dense =
0.62) and loose (ϕ0−loose = 0.55) columns. The most significant effect of dilatancy occurs at
the rear of the mass, near the back wall, changing significantly the maximum flow thickness
(Figures 5 and 6). For all times and slopes, the maximum thickness is higher (smaller)
for initially dense (loose) packing than without dilatancy (K = 0). These results are in
very good agreement with those of discrete element modeling of dense and loose granular
columns (see Figure 9 of [24]), supporting the dilatancy law used in our continuum model.
At θ = 0◦, 10◦, the rear part of the mass is better reproduced with initially dense packing,
corresponding to the experimental case where ϕ0 = 0.62. The maximum mass thickness of
the deposit is however slightly overestimated for initially dense packing at θ = 22◦ (Figure
6(d)). At θ = 0◦, there is almost no difference in the mass profiles near the front between the
incompressible, dense and the loose cases. At θ = 10◦ and up to 0.48 s at θ = 22◦, for both
initially loose and dense packing, the front travels further and its thickness is slightly larger
than in the incompressible case. As time increases at θ = 22◦, the incompressible mass
profiles start to fall between the dense and loose cases (Figures 6(c) and 6(d)). Overall,
taking into account dilatancy with initial volume fractions close to those of the experiments
(i.e. dense case) improves the flow thickness simulations compared to the incompressible
and loose cases.

At the beginning of the collapse, the mass velocity is similar with or without dilatancy
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Figure 5: Thickness profiles computed for initially dense and loose packing on planes inclined
at θ = 0◦ (left) and θ = 10◦ (right) with dilation coefficients K = 0., 4.09 and no lateral wall
effect.

(Figures 7(a) and 8(a)) even though the thickness profile is already affected by dilatancy at
these initial times for θ = 22◦ (Figure 6(a)). At t = 1.38 s for θ = 22◦, the simulated rear
part has already stopped and the initially dense mass in the frontal zone travels much faster
than the loose one (Figure 8(c)). Later on, at t = 1.8 s when the experimental mass has
already stopped, the dense and loose cases have higher velocities than the incompressible
case (Figure 8(d)). The complex relative behavior of the initially dense, initially loose and
incompressible mass velocity can also be observed for example at t = 0.36 s for θ = 0◦ where
in some positions, near the rear of the flow, the incompressible case is inbetween the loose
and the dense cases while in other positions, near the front, the incompressible velocity is
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Figure 6: Thickness profiles computed for initially dense and loose packing on a plane inclined
at θ = 22◦ with dilation coefficients K = 0., 4.09 and no lateral wall effect.

0 10 20 30 40 50 60 70
−50

0

50

100

150

200

length (cm)

v
(c
m
/
s)

 

 

dilat. dense (K = 4.09)
dilat. loose (K = 4.09)
no dilat. dense (K = 0)
no dilat. loose (K = 0)

(a) t = 0.06 s

0 10 20 30 40 50 60 70
−2

0

2

4

6

8

length (cm)

v
(c
m
/
s)

 

 

(b) t = 0.36 s

Figure 7: Velocity profiles computed for initially dense and loose packing on a horizontal
plane (θ = 0◦) with dilation coefficients K = 0., 4.09 and no lateral wall effect.

smaller than in the initially loose and dense cases (Figure 7(b)).
For all slopes, the front position of the initially dense mass is always slightly larger than in

the loose case (Figure 9(a)). The simulated mass stops before the experimental mass at small
inclinations θ = 0◦, 10◦. Actually, for these inclinations, simulations stopped at t = 0.48 s
and t = 0.66 s, respectively while experiments stopped at t = 0.66 s and t = 1.02 s. At larger
slopes (θ = 16◦, 22◦) however, although almost all the mass is at rest at the deposit time
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Figure 8: Velocity profiles computed for initially dense and loose packing on a plane inclined
at θ = 22◦ with dilation coefficients K = 0., 4.09 and no lateral wall effect.

of the experiment, there is still a very slow motion of the front in simulations (see velocity
profiles for θ = 22◦ in Figure 8(d)). The full stopping of the mass takes a very long time
(> 7.5 s). Namely, it is achieved at t = 40 s, even if the velocity is smaller than 10−3 m s−1

from t = 19 s. The deposit profile is however almost the same as the thickness profile at
t = 1.8 s, as shown in the inset in Figure 6(d).

The front velocity is known to be strongly overestimated during the initial instants in
shallow depth-averaged models (Figure 9(b)) in agreement with Figure 9 of [26]. For θ <
22◦, there is almost no difference between the front velocity of the loose and dense cases,
even though the front velocity in the dense case is slightly higher than in the loose case.
However at θ = 22◦, the change of curvature of the front velocity as a function of time is
very well reproduced by the initially dense simulation (corresponding to the experimental
configuration) and not by the loose one. This change of regime from a decelerating flow to
an almost steady flow at slow velocity is a crucial and poorly understood point in granular
flow behavior, as discussed in [26, 13, 11, 14].

4.3.2 Dilatancy and friction

The different behaviors of the initially dense and loose cases can be understood by looking
at the volume fraction, dilatancy angle, friction coefficient and forces involved (Figures 10
and 12).
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Figure 9: Time series of front positions and velocities for various plane inclination angles
and for initially dense and loose packing with dilation coefficient K = 4.09 and no lateral
wall effect.

The initial difference in volume fraction ϕ in the dense and loose cases tends to disappear
near the front and over most of the mass as time increases (Figures 10(a), 10(b), 12(a) and
12(b)). In these regions, the mass behaves in the same way in the two cases in terms of
dilatancy, as if the memory of the initial state had been mostly forgotten. Only the rear
part of the flow maintains the initially dense and loose packing fractions. In this region, in the
dense (loose) case, ψ > 0 (ψ < 0) so that the mass dilates (contracts) (Figures 10(c), 10(d),
12(c) and 12(d)) and the friction coefficient is large (small) at all times (Figures 10(e), 10(f),
12(e) and 12(f)). The volume fraction near the back wall stays however constant because
at these instants the velocity is zero (Figure 7). At θ = 0◦, the front dilates during the
initial instants (t = 0.06 s) and then contracts (t = 0.36 s) in both initially dense and loose
cases (Figures 10(c) and 10(d)). The spatio-temporal distribution of dilation/compression is
complex (Figures 11). For example at t = 0.24 s, almost the whole mass contracts for both
the initially dense and initially loose cases (Figure 11(b)). Maximum dilation or compression
angles are |ψ| ' 8◦ initially but they can reach much higher values during the flow, for
example near the front at t = 0.36 s where ψ ' 16◦ (Figure 10(d)). Smaller dilatancy angles
are observed at intermediate times for θ = 0◦ and for θ = 22◦ (Figures 12(c) and 12(d))
with values of ψ smaller than 1◦. Indeed, at higher slopes, the volume fraction ϕ becomes
rapidly close to the equilibrium volume fraction ϕeq. Actually, as the slope increases, the
system gets closer to the slopes where steady uniform flows are obtained. As observed on
the horizontal slope, at θ = 22◦ the front dilates at the initial instants (Figure 13), then the
mass experiences dilation at the front, contraction just behind and dilation at the rear part
(Figure 13(c) and 13(d)). Finally almost the whole mass contracts before stopping (Figure
13(f)).

The combined effect of µ(I) rheology and dilatancy leads to a variable effective friction
coefficient (equation (2.12)). At θ = 0◦ the increase of friction at the initial instant (t =
0.06 s) near the front results from the µ(I) effect, while at t = 0.36 s its decrease to much
smaller values at the front is related to contraction (Figures 10(e) and 10(f), respectively).
At θ = 22◦, the µ(I) effect dominates due to small values of dilatancy, leading to an effective
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Figure 10: Time series of (a)-(b) volume fraction, (c)-(d) tangent of the dilation angle, and
(e)-(f) effective friction with inertial number and corresponding thicknesses in the inset, for
initially dense and loose packing and for the incompressible case, at slope angle θ = 0◦.
Simulations are made with dilation coefficients K = 0, 4.09 and no lateral wall effect.

friction coefficient that increases towards the front (Figure 12(e) and 12(f)). Interestingly,
without dilatancy, µ(I) always increases towards the front, i.e. towards smaller thicknesses in
our setup, while dilatancy can completely change this behavior leading to decreasing friction
at the front for flows on small slopes.

Increasing the slope angle leads, in the dense case, to increased mean dilation of the mass
(Figure 14). Even though dilatancy angles are smaller at θ = 22◦ than on a horizontal plane,
the dilation of the mass lasts longer so that the overall dilation is higher reaching almost
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Figure 11: Zoom of dilatancy angle profiles computed for initially dense and loose packing
on the horizontal plane (θ = 0◦) with dilation coefficients K = 0., 4.09 and no lateral wall
effect.

10%, in good agreement with experimental results. The mass dilation is overestimated in
the model but the general trend is quite well reproduced for all slope angles. However, in the
model, the contraction of the mass after the dilation is underestimated. This could be partly
due to the depth-averaging process that does not account for the difference of behavior in the
direction perpendicular to the slope. Interestingly, the results obtained in the initially loose
case (compression) are very different from the experiments that correspond to the dense
case.

As a result, taking into account dilatancy and the initial dense volume fraction measured
in the experiments improves the match between simulated and experimental mass thickness
profiles and mean dilation/compression as a function of time.

4.3.3 Forces

At the beginning of the flow, all the forces play a significant role and dilatancy has little affect
on them as shown in Figures 15(a) and 15(c). The largest effect of dilatancy is observed on
the friction force and on the pressure gradient forces while acceleration, inertia and gravity
forces are less sensitive to dilatancy. Later on, the flow at θ = 0◦ mostly results from a
balance between pressure gradient and friction forces, even though the acceleration force is
still present (Figure 15(b)). At θ = 22◦, the flow is controlled essentially by the equilibrium
between gravity and friction forces while the pressure gradient force is still present (Figure
15(d)). In that case, the acceleration and inertial forces balance each other out. At these
later times, dilatancy mostly affect the forces at the rear part of the mass as observed above
for example on thickness profiles (Figure 15(b) and 15(d)).

4.4 Effect of the dilation coefficient

The value of the dilation coefficient K involved in the computation of the dilatancy angle
(tanψ = K(ϕ−ϕeq)) was determined empirically for fluid-grain mixtures and may not be the
best value for dry granular flows. Figure 16(a) shows that increasing K increases the effect
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Figure 12: Time series of (a)-(b) volume fraction, (c)-(d) tangent of the dilation angle, and
(e)-(f) effective friction, for initially dense and loose packing on a plane inclined at θ = 22◦

with dilation coefficients K = 0., 4.09 and no lateral wall effect.

of dilatancy on thickness profiles up to K ' 4, but hardly changes the thickness profiles for
K ≥ 4. Increasing K changes the velocity profiles in a more complex way (Figure 16(b)).
Indeed in the dense case, at t = 0.36 s and θ = 0◦, the maximum velocity first increases from
K = 0 to K = 1 and then decreases for K = 4 and K = 8. At the rear part of the mass,
the behavior is the opposite.

Increasing K decreases (increases) the volume fraction ϕ near the rear part of the mass
in the dense (loose) case (Figure 17(a)) and increases (decreases) significantly the dilatancy
angles even between K = 4 and K = 8 (Figure 17(b)). This leads to an increase of the
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(f) t = 1.8s

Figure 13: Zoom of dilatancy angle profiles computed for initially dense and loose packing
on a plane inclined at θ = 22◦ with dilation coefficients K = 0., 4.09 and no lateral wall
effect.

effective friction at the rear of the mass and a decrease of this coefficient near the front in
the dense case (Figure 17(c)). As a result, stronger friction forces are observed in the dense
case near the rear of the mass (Figure 17(d)). In this region the thickness gradients are
higher for higher K, leading also to higher pressure gradient forces. Note that the increase
of friction compensates the increase of the driving force due to surface gradients. The overall
dilation of the mass increases when K increases but the qualitative behavior is very similar
(Figure 18(a)).

Similar behavior is observed at the rear of the mass at higher slopes such as θ = 22◦
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Figure 14: Time series of relative volume variation for various plane inclination angles and
for initially dense and loose packing with the dilation coefficient K = 4.09 and no lateral
wall effect.
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(b) θ = 0◦, t = 0.36s
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(d) θ = 22◦, t = 0.48s

Figure 15: Forces computed for initially dense and loose packing on planes inclined at
θ = 0◦, 22◦ with dilation coefficient K = 4.09 and no lateral wall effect.

(Figure 19(a)). The front position and shape are almost insensitive to the value of K if
K > 1. The velocity profiles are more affected by the value of K (especially for K > 4) in
the loose case than in the dense case at θ = 22◦ (Figure 19(b)). This can also be observed on
the front position (Figure 20(a)) and front velocity (Figure 20(b)). Interestingly, the change
in curvature of the front velocity and the development of a low velocity regime observed in
the experiments is reproduced by the dense simulation and is only slightly sensitive to the
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(b) velocity

Figure 16: Thickness and velocity profiles computed at t = 0.36 s for various dilation
coefficients K = 0., 1., 4.09, 8. and for initially dense and loose packing on a plane inclined
at θ = 0◦ without lateral wall effect.
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(b) dilatancy angle
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(c) effective friction coefficient
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Figure 17: (a) Solid volume fraction, (b) dilatancy angle, (c) effective friction coefficient
and (d) relevant forces profiles computed at t = 0.36s for various dilation coefficients K =
0., 1., 4.09, 8. and for initially dense and loose packing on a plane inclined at θ = 0◦ without
lateral wall effect.

value of K for K > 1. On the contrary, this behavior is observed in the loose case for K = 1
but disappears for K > 4 where the front velocity always decreases with time (dashed red
and blue lines in Figure 19(b)). At these instants at θ = 22◦, the front seem to have a
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(b) inclination θ = 22◦

Figure 18: Time series of volume variation for various dilation coefficients K = 0., 4.09, 8.
and for initially dense and loose packing on a plane inclined at θ = 0◦, 22◦ without lateral
wall effect.

different behavior than the rest of the mass behind, with its own dynamics (see forces in
Figure 21(a)). Figure 21(b) shows that in the dense case for all K and in the loose case
for K = 1, where we observed a change in curvature of the front velocity, the front dilates
whereas in other cases, the front compresses. The ability to reach a slow, almost steady
regime, could be therefore associated with front dilation.

As observed on horizontal planes, the dilation of the whole mass increases for increasing
K but remains stable for values of K > 4 (Figure 18(b)). Concerning the dilation of the
whole mass, values of K smaller than 4 seem to better reproduce the results for all the slopes
(Figure 18).
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Figure 19: Thickness and velocity profiles computed at t = 0.48 s for various dilation
coefficients K = 0., 1., 4.09, 8. and for initially dense and loose packing on a plane inclined
at θ = 22◦ without lateral wall effect.

4.5 Mimicking lateral walls

The model does not take into account wall effects that significantly change the flow dynamics
of granular column collapses as shown by [27]. In the 2D case (horizontal-vertical), an
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(b) front velocity

Figure 20: Time series of front positions and velocities for various dilation coefficients K =
0., 4.09, 8. and for initially dense and loose packing on a plane inclined at θ = 22◦ without
lateral wall effect.
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(a) Forces
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(b) dilatancy angle

Figure 21: Zoom of forces and dilatancy angle computed for initially dense and loose packing
on a plane inclined at θ = 22◦ at time t = 1.2 s and no lateral wall effect. In (a) we show forces
computed with dilation coefficient K = 4.09, the legend is the same as in Figure 15: orange,
facc (∂t(ϕhv)); cyan, finert (∂x(ϕhv

2)); green, fpress (−∂x(gcϕh2/2)); purple, fgrav (−gcϕh∂xb);
strawberry, ffric (−τbsgn(v)).

approximation of wall effects can be calculated using the in-plane flow assumption from the
3-D equations [27]. For depth-averaged models, wall friction is usually taken into account
by adding a friction term in the friction coefficient [36, 22, 18]

µeff,w = µeff + µw
h

w
, (4.1)

where w is the width between the lateral walls and µw is the Coulomb friction coefficient
between the grains and lateral walls.

A first general observation is that, contrary to dilatancy effects, lateral wall friction
affects the whole mass and not only the rear part, even at θ = 0◦ (Figure 22). These effects
are however stronger near the rear part of the mass as h is higher there. As observed in
[27], the wall effects straighten the mass, increasing the thickness at the rear and decreasing
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the runout distance, thus leading to overall steeper mean slope of the deposit. The match
with experimental results is better when adding wall effects at θ = 0◦ but at θ = 22◦, the
mass is much too steep with wall effect. This is due to the depth-averaged (i.e. monolayer)
model that cannot properly account for wall effects as shown in [16] (their Figure 11).
Indeed, using a multilayer model [16] or a model solving the full Navier-Stokes equations
[27] strongly improves the wall effect description as wall friction applied to the flow only
involves the flowing thickness and not the whole thickness. At θ = 0◦, wall effects are of
the same order of magnitude as dilatancy effects. Wall effects do not change the qualitative
behavior of the flow as shown by the volume fraction, dilatancy angle or friction coefficient
(Figure 23). These effects decrease the overall dilatancy of the mass by a few % (Figure
24). As for dilatancy, wall effects strongly change the front velocity during the low velocity
regime after the mass deceleration (Figure 25). As a result, the front velocity in this regime
provides an excellent constraint for the models.
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(c) θ = 22◦, t = 0.48s

0 50 100 150
0

2

4

6

length (cm)

h
(c
m
)

 

 

(d) θ = 22◦, t = 1.8s

Figure 22: Thickness profiles with lateral wall friction effect and initially dense packing on
planes inclined at θ = 0◦, 22◦ with dilation coefficients K = 0., 4.09.

5 Conclusion

We have proposed a shallow depth-averaged model for dry granular flows that takes into
account volume fraction variations and dilatancy. This model was deduced from the two-
phase model proposed in [6] by removing the fluid phase. The dilatancy law is derived from
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(c) dilatancy angle
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(d) effective friction

Figure 23: Profiles computed at t = 0.36s with lateral wall friction effect and initially dense
packing on a horizontal plane (inclination θ = 0◦) with dilation coefficients K = 0., 4.09.
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(b) inclination θ = 22◦

Figure 24: Time series of relative volume variation with lateral wall friction effect and initially
dense packing on a horizontal plane (inclinations θ = 0◦, 22◦) with dilation coefficients K =
0., 4.09.

the works of [33] and [30]. The equations are solved numerically by a well-balanced finite
volume method that uses a numerical flux resolving exactly two families of steady states at
rest and satisfying a semi-discrete energy inequality. Friction is dealt with by the apparent
topography method. The dilatancy law is solved by a simple explicit finite difference step. A
small numerical viscosity is applied to stabilize the singularity when the thickness approaches
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Figure 25: Time series of front velocity with lateral wall friction effect and initially dense
packing on a plane inclined at θ = 22◦ with dilation coefficients K = 0., 4.09.

zero, which occurs at the front, and the coupling between convection of volume fraction and
dilatancy. This small viscosity is shown to have a negligible effect on the calculated fields.

We performed a series of simulations of granular column collapse experiments on planes
with inclination varying from horizontal to θ = 22◦ [13]. By simulating the collapse of
initially dense and initially loose columns, we investigated the effect of dilatancy on the flow
dynamics and deposits. We compared these results with incompressible simulations where
dilatancy was not taken into account. Overall, the simulations obtained for the dense case
show better agreement with experimental results that indeed involve initially dense columns.

We showed that the strongest effect of dilatancy in dry granular column collapses is
observed at the rear part of the flow. The maximum thickness of the initially dense column
is higher than that of the incompressible case which is itself higher than the initially loose
column. This is in very good agreement with the discrete element modeling results of [24],
supporting the dilatancy laws used in our continuum model. At the front, the flow behaves
in a similar way for both the initially dense and loose cases, with similar values of the volume
fraction. The flow however keeps some memory of its initial packing fraction. At high slopes
the front simulated in the initially dense case travels further than in the loose case.

During the flow, the dilation/compression pattern is complex. At the initial instants, the
front dilates for all slopes and for both the initially loose and dense cases. Later on, the
mass may contract at the front while it dilates behind the front and contracts in the rear
part. Before stopping, most of the mass contracts. Contraction at the front at θ = 0◦ is
strong at the beginning and end of the collapse, with dilatancy angles ψ reaching up to 16◦.
Dilatancy angles at θ = 22◦ are much smaller (a few degrees) at all times but as the flow
duration is longer, the overall dilatancy of the mass is greater as the slope increases. It can
reach up to about 10% at θ = 22◦, in good agreement with laboratory measurements [27].
For smaller angles, dilatancy is overestimated and the compression of the whole mass in the
dense case, following its first dilation, is underestimated. This could be partly due to the
depth-averaging process that does not account for the difference of behavior in the direction
perpendicular to the slope.

A strong effect of dilatancy is observed on the front velocity at θ = 22◦. At this angle,
laboratory experiments show the emergence of a regime of slow, almost steady flow, after the
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deceleration phase of the mass [26]. This regime is reproduced by our simulation when using
dilatancy for the initially dense case but not for the incompressible case. For the initially
loose case, this regime can be obtained for a specific value of the dilation coefficient K. In
this regime, very small changes of the friction, gravity or pressure gradient forces, almost in
equilibrium, can change the flow acceleration. As a result, the front velocity in this regime
is very sensitive to the flow rheology. In particular we showed that the experimental results
are well reproduced only for flows in which dilation occurs at the front. This suggests that
dilatancy may play a key role in the development of such regimes.

The effective friction depends on both the µ(I) rheology and the dilatancy angle ψ. At
the front, the effective friction increases as I increases. This is always true at θ = 22◦ where
dilatancy angles are small. However, at θ = 0◦, front contraction may dominate, leading to a
friction coefficient decreasing towards the front (e.g. with decreasing flow thicknesses). As a
result, taking into account dilatancy significantly changes the value of the friction coefficient
in the model.

The coefficient K involved in the dilatancy law that best reproduces experimental results
is slightly smaller than the coefficient proposed for grain/fluid mixtures in [30]. Varying this
coefficient only quantitatively change the results while the overall behavior of the mass is
qualitatively the same. We found that dilatancy effects are of the same order of magnitude as
wall effects at θ = 0◦, even though taking into account wall effects in shallow depth-averaged
models [22, 36] may not be accurate [16].

For all slopes, the front position of the initially dense mass is always slightly larger
than in the loose case, contrary to what is observed for immersed granular columns [32,
5]. Indeed, the coupling between fluid pore pressure and compression/dilation increases
(decreases) significantly the friction coefficient in dilation (compression) for the initially
dense (loose) case. Dilatancy effects are much greater for fluid/grain mixtures than for
dry granular flows. These effects need to be deeply investigated even though solving these
equations numerically is very challenging. Our results provide new insight into the dilatancy
behavior of dry granular flows that may help better understand dilatancy in grain/fluid
mixtures.

Acknowledgements

This research has been partially supported by the Spanish Government under grants MTM
2015-70490-C2-2-R and RTI2018-096064-B-C22 with the participation of FEDER, by the
ANR contract ANR-11-BS01-0016 LANDQUAKES, the USPC PEGES project, and the
ERC contract ERC-CG-2013-PE10-617472 SLIDEQUAKES.

Appendix

29



A Numerical fluxes for the shallow water system with

volume fraction

In this appendix we define numerical fluxes for the shallow water system with volume fraction

∂t(ϕh) + ∂x(ϕhv) = 0, (A.1)

∂t(ϕhv) + ∂x
(
ϕhv2 +

1

2
gcϕh

2
)

+ gcϕh∂xz = 0, (A.2)

∂tϕ+ v∂xϕ = 0, (A.3)

where h ≥ 0 is the thickness, ϕ > 0 the volume fraction, v the velocity, gc > 0 the component
of acceleration due to gravity normal to the slope of the inclined plane, and z the (total)
topography (satisfying here ∂tz = 0). The system (A.1), (A.2), (A.3) can be interpreted
as the classical full gas dynamics system with γ = 2 (by setting the density to ρ = ϕh)
with force −gc∂xz, where the roles of energy and entropy have been reversed. Our system is
very similar to the Ripa system, for which a numerical method has been proposed in [12],
differing only by the factor in front of the topography term. The consequence is that the
steady states differ in the two systems. A conservative form for (A.3) is

∂t(hϕ
α) + ∂x(hϕ

αv) = 0, (A.4)

for some α with α 6= 1 in order to be independent of (A.1). It is important to recall that
even for weak solutions with discontinuities, the conservation laws (A.4) (when α varies) are
all equivalent, because of the combination with (A.1). This is why we can formally write
(A.3).

The system is completed with an entropy (energy) inequality

∂t

(
ϕh

v2

2
+ gcϕhz + gcϕ

h2

2

)
+ ∂x

(
ϕh

v2

2
v + gcϕh(h+ z)v

)
≤ 0. (A.5)

It is possible to check that this energy is convex with respect to the conservative variables
(ϕh, ϕhv, hϕα) if and only if α ≥ 1/2 (and still α 6= 1). Other entropy inequalities are

∂t
(
ϕhψ(ϕα−1)

)
+ ∂x

(
ϕhψ(ϕα−1)v

)
≤ 0, for ψ convex, (A.6)

indeed ϕhψ(ϕα−1) is convex with respect to (ϕh, ϕhv, hϕα) if and only if ψ is convex. Note
however that (A.6) is slightly misleading since, as we said above, weak solutions to (A.1),
(A.4) indeed satisfy (A.6) with equality (there is no dissipation), and for all ψ even if not
convex. The interest of the formulation (A.6) with inequality is only for numerical schemes,
because at the discrete level a scheme can never satisfy the two conservative equations (A.4)
and (A.6). Therefore the inequality (A.6) is a way to encode the minimum and maximum
principle on ϕ, by taking respectively ψ(ξ) = (k − ξ)+ and ψ(ξ) = (ξ − k)+ for an arbitrary
constant k ≥ 0.
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The velocity equation in nonconservative form is obtained from (A.1), (A.2),

ϕ(∂tv + v∂xv) + gcϕ∂x(h+ z) +
1

2
gch∂xϕ = 0. (A.7)

The steady states are characterized by

v = 0, ϕ∂x(h+ z) +
1

2
h∂xϕ = 0, (A.8)

or

ϕhv = cst 6= 0,
v2

2
+ gc(h+ z) = cst, ϕ = cst. (A.9)

Note that the equation (A.8) for steady states at rest is not well-defined for discontinu-
ous unknowns. Several discontinuous solutions can be obtained depending on the way we
understand the nonconservative products.

Hydrostatic reconstruction scheme

Our numerical fluxes are constructed by generalizing the hydrostatic reconstruction scheme
[3, 4, 7, 8, 9]. Let us define the conservative variable

U =
(
ϕh, ϕhv, hϕα

)
(A.10)

for some fixed α ≥ 1/2, α 6= 1. We consider a given scheme for the problem without
topography

F(Ul, Ur) =
(
F0(Ul, Ur),F1(Ul, Ur),F2(Ul, Ur)

)
, (A.11)

corresponding to the conservative problem with flux

F (U) =
(
ϕhv, ϕhv2 +

1

2
gcϕh

2, hϕαv
)
. (A.12)

We shall assume that the volume fraction flux is given by the classical upwind passive
transport flux

F2(Ul, Ur) =

{
F0(Ul, Ur)ϕ

α−1
l if F0(Ul, Ur) ≥ 0,

F0(Ul, Ur)ϕ
α−1
r if F0(Ul, Ur) ≤ 0,

(A.13)

this assumption being satisfied by most solvers, such as for example the Suliciu relaxation
solver [3] that we use in practice. It is well-known that this property (A.13) implies that the
volume fraction satisfies the minimum and maximum principles. The entropy and entropy
flux of the system are

η(U) = ϕh
v2

2
+ gcϕ

h2

2
, G(U) =

(
ϕh

v2

2
+ gcϕh

2
)
v. (A.14)

The entropy and entropy flux of the system with topography are

η̃(U, z) = η(U) + gcϕhz, G̃(U, z) = G(U) + gcϕhzv. (A.15)
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The hydrostatic reconstruction scheme is defined via reconstructed states. These are
defined as follows. We define first

∆z∗+ =
(

∆z − λ

gc

(v2
l

2
− v2

r

2

)
+

)
+
, ∆z∗− =

(
−∆z − λ

gc

(v2
r

2
− v2

l

2

)
+

)
+
, (A.16)

where (x)+ = max(0, x), ∆z = zr − zl, and λ ≥ 0 is a constant parameter. The classical
way of reconstructing is to take λ = 0. The value λ = 1 is intended to somehow take into
account the v2/2 term in the steady state relation (A.9). Other values of λ appear to be
irrelevant. We then have

0 ≤ ∆z∗+ ≤ (∆z)+, 0 ≤ ∆z∗− ≤ (−∆z)+, (A.17)

and moreover

0 ≤ (∆z)+ −∆z∗+ ≤ (∆z)+ −
(
∆z − λ

gc

v2
l

2

)
+
≤ λ

gc

v2
l

2
,

0 ≤ (−∆z)+ −∆z∗− ≤ (−∆z)+ −
(
−∆z − λ

gc

v2
r

2

)
+
≤ λ

gc

v2
r

2
.

(A.18)

We assume now
α > 1, (A.19)

and define

h∗l =





hl −
α− 1

α− 1/2
∆z∗+ if

α− 1

α− 1/2
∆z∗+ ≤ hl

(
1−

(ϕr
ϕl

)α−1
)

+
,

(
hl +

hl
2(α− 1)

(
1−

(ϕr
ϕl

)α−1
)

+
−∆z∗+

)

+

otherwise,
(A.20)

h∗r =





hr −
α− 1

α− 1/2
∆z∗− if

α− 1

α− 1/2
∆z∗− ≤ hr

(
1−

(ϕl
ϕr

)α−1
)

+
,

(
hr +

hr
2(α− 1)

(
1−

(ϕl
ϕr

)α−1
)

+
−∆z∗−

)

+

otherwise.
(A.21)

Note that in particular,
h∗l = (hl −∆z∗+)+ if ϕr ≥ ϕl,

h∗r = (hr −∆z∗−)+ if ϕr ≤ ϕl.
(A.22)

Another way to write (A.20) is

h∗l =

(
hl + min

(
hl

2(α− 1)

(
1−

(ϕr
ϕl

)α−1
)

+
,

1/2

α− 1/2
∆z∗+

)
−∆z∗+

)

+

, (A.23)

h∗r =

(
hr + min

(
hr

2(α− 1)

(
1−

(ϕl
ϕr

)α−1
)

+
,

1/2

α− 1/2
∆z∗−

)
−∆z∗−

)

+

. (A.24)
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Then we have
0 ≤ h∗l ≤ hl, 0 ≤ h∗r ≤ hr. (A.25)

We also define the reconstructed volume fractions

ϕ∗l =

{
ϕl if ∆z ≤ 0 or ϕr ≥ ϕl,

max
(
ϕl

(
h∗l
hl

)1/(α−1)

, ϕr

)
if ∆z ≥ 0 and ϕr ≤ ϕl,

(A.26)

ϕ∗r =

{
ϕr if ∆z ≥ 0 or ϕl ≥ ϕr,

max
(
ϕr

(
h∗r
hr

)1/(α−1)

, ϕl

)
if ∆z ≤ 0 and ϕl ≤ ϕr,

(A.27)

that satisfy
ϕ∗l , ϕ

∗
r ∈ [ϕl, ϕr], (A.28)

ϕ∗l ≤ ϕl, ϕ∗r ≤ ϕr. (A.29)

Finally the reconstructed states are

U∗l =
(
ϕ∗l h

∗
l , ϕ

∗
l h
∗
l vl, h

∗
l (ϕ

∗
l )
α
)
, U∗r =

(
ϕ∗rh

∗
r, ϕ

∗
rh
∗
rvr, h

∗
r(ϕ

∗
r)
α
)
. (A.30)

The numerical fluxes for the nonconservative system (A.1), (A.2), (A.4) are defined by

Fl(Ul, Ur,∆z) = F(U∗l , U
∗
r ) +

(
0, gcϕl

h2
l

2
− gcϕ∗l

(h∗l )
2

2
+ F0(U∗l , U

∗
r )gc

(∆z)+ −∆z∗+
vl

, 0
)
,

(A.31)

Fr(Ul, Ur,∆z) = F(U∗l , U
∗
r ) +

(
0, gcϕr

h2
r

2
− gcϕ∗r

(h∗r)
2

2
+ F0(U∗l , U

∗
r )gc

(−∆z)+ −∆z∗−
vr

, 0
)
.

(A.32)
Note that because of (A.18), the divisions by vl or vr in (A.31), (A.32) are not singular,
indeed the ratios tend to zero as vl or vr tends to zero.

Theorem A.1. Assume that α > 1 and that the homogeneous solver F for the flux (A.12)
satisfies (A.13). Then the numerical scheme defined by the left/right numerical fluxes (A.31),
(A.32) has the following properties.
(i) It is conservative in the first and third components, and reduces to the homogeneous
numerical flux F when ∆z = 0.
(ii) It is well-balanced for the steady states at rest (A.8) for which ϕ = cst.
(iii) It is well-balanced for the steady states at rest (A.8) for which hϕ1−α = cst.
(iv) The height h remains nonnegative if the homogeneous solver has this property.
(v) It satisfies a semi-discrete energy inequality if the homogeneous solver does.
(vi) It is consistent with the system (A.1), (A.2), (A.4).
(vii) If the initial volume fraction ϕ is constant, it remains constant.
(viii) The volume fraction ϕ satisfies the minimum principle (but not the maximum princi-
ple), which means that for any k ≥ 0, the inequality ϕ ≥ k remains true if it holds initially.
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Proof. For (i), conservativity follows from the fact that F 0
l = F 0

r and F 2
l = F 2

r . Then if
∆z = 0, according to (A.17) we obtain ∆z∗+ = ∆z∗− = 0, and (A.20), (A.21) give h∗l = hl,
h∗r = hr. Then (A.26), (A.27) give ϕ∗l = ϕl, ϕ

∗
r = ϕr, thus U∗l = Ul, U

∗
r = Ur, and (A.31),

(A.32) finally give Fl = Fr = F(Ul, Ur).
For the well-balanced property (ii), consider Ul, Ur a steady state at rest (A.8) with

constant ϕ, which means that

vl = vr = 0, hl + zl = hr + zr, ϕl = ϕr. (A.33)

Then (A.16) gives ∆z∗+ = (∆z)+, ∆z∗− = (−∆z)+. Since ϕl = ϕr, (A.22) yields h∗l =
(hl − (∆z)+)+, h∗r = (hr − (−∆z)+)+. Thus using (A.33),

∆z ≥ 0 ⇒ h∗l = (hl −∆z)+ = hr, h
∗
r = hr,

∆z ≤ 0 ⇒ h∗l = hl, h
∗
r = (hr + ∆z)+ = hl.

(A.34)

Moreover, (A.28) means that ϕ∗l = ϕ∗r = ϕl = ϕr. Thus in any case U∗l = U∗r , and taking
into account that v = 0,

Fl = F (U∗l ) +
(

0, gcϕl
h2
l

2
− gcϕ∗l

(h∗l )
2

2
, 0
)

= F (Ul),

Fr = F (U∗r ) +
(

0, gcϕr
h2
r

2
− gcϕ∗r

(h∗r)
2

2
, 0
)

= F (Ur).
(A.35)

For the well-balanced property (iii), we first observe that the relation hϕ1−α = cst implies
that (α− 1)∂xϕ/ϕ = ∂xh/h. Using this in (A.8) yields

∂x

(
h+ z +

h

2(α− 1)

)
= 0. (A.36)

Consider now data Ul, Ur corresponding to a steady state at rest with hϕ1−α = cst. Taking
into account the previous computation, this means that

vl = vr = 0,
α− 1/2

α− 1
hl + zl =

α− 1/2

α− 1
hr + zr, hlϕ

1−α
l = hrϕ

1−α
r . (A.37)

Let us assume that ∆z ≥ 0, the converse case being similar. Then h∗r = hr, ϕ
∗
r = ϕr,

∆z∗+ = ∆z. From (A.37) we have hl ≥ hr, ϕr ≤ ϕl, and hl(1 − (ϕr/ϕl)
α−1) = hl − hr. We

are thus exactly in the case of equality in the condition involved in (A.20), and this formula
gives h∗l = hr. Then (A.26) gives ϕ∗l = ϕr. We deduce that U∗l = Ur = U∗r , and we conclude
with (A.35) as in the proof of the well-balanced property (ii).

The proof of nonnegativity (iv) is the same as in the standard shallow water system,
using only (A.25) and (A.29).

For the semi-discrete energy inequality (v), the proof is more involved and is indeed the
origin of the intricate formulas (A.20), (A.21). We assume that the homogeneous solver
satisfies a semi-discrete energy inequality, which can be written

G(Ur) + η′(Ur)(F(Ul, Ur)− F (Ur)) ≤ G(Ul, Ur),
G(Ul, Ur) ≤ G(Ul) + η′(Ul)(F(Ul, Ur)− F (Ul)),

(A.38)
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for any Ul, Ur, where G(Ul, Ur) stands for the numerical entropy flux. Evaluating these
inequalities on U∗l , U∗r thus gives

G(U∗r ) + η′(U∗r )(F(U∗l , U
∗
r )− F (U∗r )) ≤ G(U∗l , U

∗
r ),

G(U∗l , U
∗
r ) ≤ G(U∗l ) + η′(U∗l )(F(U∗l , U

∗
r )− F (U∗l )).

(A.39)

For the numerical entropy flux (for the problem with topography), we are going to take the
formula

G̃(Ul, Ur, zl, zr) = G(U∗l , U
∗
r ) + gcz

∗F0(U∗l , U
∗
r ), with z∗ = max(zl, zr). (A.40)

Since the proof of the right semi-discrete inequality is similar, we are going to prove only the
left inequality. Comparing the left semi-discrete energy inequality that we need to satisfy to
the second line of (A.39), we deduce that it is sufficient to satisfy the inequality

G(U∗l ) + η′(U∗l )(F(U∗l , U
∗
r )− F (U∗l )) + gcz

∗F0(U∗l , U
∗
r )

≤ G(Ul) + gcϕlhlzlvl +
(
η′(Ul) + gczl(1, 0, 0)

)
(Fl − F (Ul))

= G(Ul) + η′(Ul)(Fl − F (Ul)) + gczlF0(U∗l , U
∗
r ).

(A.41)

We can compute the derivative of the energy η with respect to the conservative variable U
by

η′(U) =
(
−v

2

2
+ gc

α− 1/2

α− 1
h, v,− gc

2(α− 1)
hϕ1−α

)
. (A.42)

Then we compute

G(U)− η′(U)F (U)

= (ϕhv2/2 + gcϕh
2)v + ϕhv

(
v2/2− gc

α− 1/2

α− 1
h
)

− v(ϕhv2 + gcϕh
2/2) +

gc
2(α− 1)

hϕ1−αhϕαv

= −gcϕ
h2

2
v.

(A.43)

Also with (A.42),

η′(U∗l ) = η′(Ul) + gc

(
α− 1/2

α− 1
(h∗l − hl), 0,−

1

2(α− 1)

(
h∗l (ϕ

∗
l )

1−α − hlϕ1−α
l

))
. (A.44)

Thus the left inequality to be satisfied (A.41) can be written

−gcϕ∗l
(h∗l )

2

2
vl + gcϕl

h2
l

2
vl

+gc

(
α− 1/2

α− 1
(h∗l − hl), 0,−

1

2(α− 1)

(
h∗l (ϕ

∗
l )

1−α − hlϕ1−α
l

))
F(U∗l , U

∗
r )

+gc(z
∗ − zl)F0(U∗l , U

∗
r ) + η′(Ul)(F(U∗l , U

∗
r )− Fl) ≤ 0.

(A.45)
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Now according to (A.31), F(U∗l , U
∗
r )− Fl has only the velocity component as nonzero. The

velocity component of η′(Ul) that it is multiplied by in the last line of (A.45) is then just
vl. We then observe that the pressure difference in (A.31), multiplied by vl, will then just
cancel the first line of (A.45). In the second line of (A.45), the component F2(U∗l , U

∗
r ) can

be expressed with (A.13),

F2(U∗l , U
∗
r ) = F0(U∗l , U

∗
r )(ϕ∗l/r)

α−1, (A.46)

where the l/r notation means that it is left in case F0(U∗l , U
∗
r ) ≥ 0, and right in the case

F0(U∗l , U
∗
r ) ≤ 0. Using z∗ − zl = (∆z)+, the inequality to be satisfied (A.45) can be written

finally by factorizing F0(U∗l , U
∗
r ) as

gcF0(U∗l , U
∗
r )

(
α− 1/2

α− 1
(h∗l − hl)−

1

2(α− 1)

(
h∗l (ϕ

∗
l )

1−α − hlϕ1−α
l

)
(ϕ∗l/r)

α−1 + ∆z∗+

)
≤ 0.

(A.47)
When ∆z ≤ 0, the left factor is identically zero, thus let us assume that ∆z ≥ 0. Then
h∗r = hr, ϕ

∗
r = ϕr.

Consider first the case when ϕr ≥ ϕl. Then ϕ∗l = ϕl, h
∗
l = (hl−∆z∗+)+, and the inequality

(A.47) becomes

gcF0(U∗l , U
∗
r )

(
α− 1/2

α− 1
(h∗l − hl)−

1

2(α− 1)

(
h∗l − hl

)
(
ϕl/r
ϕl

)α−1 + ∆z∗+

)
≤ 0. (A.48)

For the case when F0(U∗l , U
∗
r ) > 0, the factor is just h∗l − hl + ∆z∗+ = 0, since h∗l cannot be

zero when F0(U∗l , U
∗
r ) > 0. Next, for the case F0(U∗l , U

∗
r ) ≤ 0, we have

α− 1/2

α− 1
(h∗l − hl)−

1

2(α− 1)

(
h∗l − hl

)
(
ϕl/r
ϕl

)α−1 + ∆z∗+ ≥ h∗l − hl + ∆z∗+ ≥ 0, (A.49)

which proves (A.48).
Consider now the case when ϕr ≤ ϕl (still with ∆z ≥ 0). Then h∗l is given by (A.20) and

ϕ∗l is given by the second line of (A.26). In the inequality (A.47), a term can be rewritten

(
h∗l (ϕ

∗
l )

1−α − hlϕ1−α
l

)
(ϕ∗l/r)

α−1 =
(
h∗l (ϕ

∗
l )

1−α − hlϕ1−α
l

)
(ϕr)

α−1, (A.50)

because of the value of ϕ∗l given by the second line of (A.26). Thus the inequality (A.47)
can be rewritten

gcF0(U∗l , U
∗
r )

(
α− 1/2

α− 1
(h∗l − hl)−

1

2(α− 1)

(
h∗l (ϕ

∗
l )

1−α− hlϕ1−α
l

)
ϕα−1
r + ∆z∗+

)
≤ 0. (A.51)

We observe that with the definition of h∗l ,

ϕl

(h∗l
hl

)1/(α−1)

≥ ϕr if and only if ∆z∗+ ≤
α− 1/2

α− 1
hl

(
1−

(ϕr
ϕl

)α−1
)
. (A.52)
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Thus when ∆z∗+ ≤ α−1/2
α−1

hl

(
1−

(
ϕr

ϕl

)α−1
)

, the value of h∗l is given by the first line of (A.20)

while the value of ϕ∗l is ϕl(h
∗
l /hl)

1/(α−1), and the left-hand side of (A.51), becomes

gcF0(U∗l , U
∗
r )

(
α− 1/2

α− 1
(h∗l − hl) + ∆z∗+

)
= 0. (A.53)

Finally when ∆z∗+ ≥ α−1/2
α−1

hl

(
1 −

(
ϕr

ϕl

)α−1
)

, the value of h∗l is given by the second line of

(A.20), while ϕ∗l = ϕr. The left-hand side of (A.51) becomes

gcF0(U∗l , U
∗
r )

(
α− 1/2

α− 1
(h∗l − hl)−

1

2(α− 1)

(
h∗l − hl(

ϕr
ϕl

)α−1
)

+ ∆z∗+

)

= gcF0(U∗l , U
∗
r )

(
h∗l − hl −

hl
2(α− 1)

(
1− (

ϕr
ϕl

)α−1
)

+ ∆z∗+

)
.

(A.54)

According to the value of h∗l given by the second line of (A.20), the expression between
parentheses is either zero if h∗l > 0, or nonnegative if h∗l = 0. In the latter case, we have
F0(U∗l , U

∗
r ) ≤ 0, thus (A.54) is nonpositive, which concludes the proof of (v).

For the consistency (vi), we have to prove two properties. The first is that for any U ,
Fl(U,U, 0) = Fr(U,U, 0) = F (U). This property is obvious given (i) and the consistency of
the homogeneous flux F . The second property is that

F 1
r (Ul, Ur,∆z)− F 1

l (Ul, Ur,∆z) = −gcϕh∆z + o(∆z), as Ul, Ur → U and ∆z → 0.
(A.55)

According to (A.31), (A.32) we have

F 1
r (Ul, Ur,∆z)− F 1

l (Ul, Ur,∆z)

= gcϕr
h2
r

2
− gcϕ∗r

(h∗r)
2

2
+ F0(U∗l , U

∗
r )gc

(−∆z)+ −∆z∗−
vr

− gcϕl
h2
l

2
+ gcϕ

∗
l

(h∗l )
2

2
−F0(U∗l , U

∗
r )gc

(∆z)+ −∆z∗+
vl

,

(A.56)

thus it is sufficient to prove that

gcϕr
h2
r

2
− gcϕ∗r

(h∗r)
2

2
+ F0(U∗l , U

∗
r )gc

(−∆z)+ −∆z∗−
vr

= gcϕh(−∆z)+ + o(∆z),

gcϕl
h2
l

2
− gcϕ∗l

(h∗l )
2

2
+ F0(U∗l , U

∗
r )gc

(∆z)+ −∆z∗+
vl

= gcϕh(∆z)+ + o(∆z).
(A.57)

Let us prove the left expansion, the right one being similar. It is sufficient to prove the
expansion in the four closed domains given by

(I) ∆z ≤ 0,

(II) ∆z ≥ 0 and ϕr ≥ ϕl,

(III) ∆z ≥ 0 and ϕr ≤ ϕl and α−1
α−1/2

∆z∗+ ≤ hl

(
1−

(
ϕr

ϕl

)α−1
)

+
,
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(IV) ∆z ≥ 0 and ϕr ≤ ϕl and α−1
α−1/2

∆z∗+ ≥ hl

(
1−

(
ϕr

ϕl

)α−1
)

+
.

In domain (I) the expansion (A.57) is trivial since the left and right-hand sides vanish.
In domain (II) we have ϕ∗l = ϕl, h

∗
l = (hl −∆z∗+)+. According to (A.17) we have ∆z∗+ =

O(∆z), thus (assuming h > 0) for sufficiently small Ul−U and ∆z, we have h∗l = hl−∆z∗+.
It follows that

gcϕl
h2
l

2
− gcϕ∗l

(h∗l )
2

2
= gcϕl(h+ o(1))∆z∗+ = gcϕh∆z∗+ + o(∆z). (A.58)

Next, since U∗r = Ur, U
∗
l = Ul + O(∆z), we have F0(U∗l , U

∗
r ) = ϕhv + o(1). If v 6= 0 then

F0(U∗l , U
∗
r )/vl = ϕh+ o(1) and it follows that

F0(U∗l , U
∗
r )gc

(∆z)+ −∆z∗+
vl

= gcϕh
(
(∆z)+ −∆z∗+

)
+ o(∆z). (A.59)

Adding this to (A.58), we get the desired second line of (A.57). In the case v = 0, (A.18)
shows that (∆z)+ −∆z∗+ = O(vl(vl − v)) and thus

F0(U∗l , U
∗
r )gc

(∆z)+ −∆z∗+
vl

= o(vl − v). (A.60)

Adding this to (A.58) we get the desired second line of (A.57), except that we have an
additional o(vl − v). This is indeed the weaker form of consistency when the numerical flux
is not quite smooth.

In domain (III) we have

h∗l = hl −
α− 1

α− 1/2
∆z∗+, ϕ∗l = ϕl

(h∗l
hl

)1/(α−1)

. (A.61)

It follows that

ϕ∗l = ϕl

(
1− 1

α− 1/2

∆z∗+
hl

+ o(∆z)

)
, (A.62)

and

gcϕl
h2
l

2
− gcϕ∗l

(h∗l )
2

2
= gc(ϕl − ϕ∗l )

(h∗l )
2

2
+ gcϕl

h2
l − (h∗l )

2

2
= gcϕh∆z∗+ + o(∆z). (A.63)

We therefore conclude in exactly the same way as in domain (II).
Finally, in domain (IV) we have

h∗l =

(
hl +

hl
2(α− 1)

(
1−

(ϕr
ϕl

)α−1
)
−∆z∗+

)

+

, ϕ∗l = ϕr. (A.64)

The inequalities defining the domain (IV) imply that ϕr − ϕl = O(∆z∗+), and therefore we
can write (ϕr

ϕl

)α−1
= 1 + (α− 1)

(ϕr
ϕl
− 1
)

+ o(∆z∗+). (A.65)
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It follows from (A.64) that

gcϕl
h2
l

2
− gcϕ∗l

(h∗l )
2

2

= gc(ϕl − ϕ∗l )
(h∗l )

2

2
+ gcϕl

h2
l − (h∗l )

2

2

= gc(ϕl − ϕr)
h2
l

2
+ gcϕlhl(hl − h∗l ) + o(∆z)

= gcϕl
(
1− ϕr

ϕl

)h2
l

2
+ gcϕlhl

(
∆z∗+ +

hl
2

(ϕr
ϕl
− 1
))

+ o(∆z)

= gcϕh∆z∗+ + o(∆z).

(A.66)

We therefore conclude in exactly the same way as in domain (II), and this ends the proof of
(vi).

Next we prove property (vii) concerning constant data ϕ. If ϕl = ϕr, then by (A.28)
ϕ∗l = ϕ∗r = ϕl = ϕr. With (A.13), we deduce that F2(U∗l , U

∗
r ) = ϕα−1

l F0(U∗l , U
∗
r ) and with

(A.31), (A.32) that F 2
l = ϕα−1

l F 0
l , F 2

r = ϕα−1
l F 0

r . It follows that the update U = (U0, U1, U2)
will also satisfy the relation U2 = ϕα−1

l U0, which proves the claim.
We finally prove the minimum principle (viii) via an interface, which means that for some

σl(Ul, Ur,∆z) < 0 < σr(Ul, Ur,∆z) we have

Ul, Ur ∈ Uk ⇒





Ul +
Fl(Ul, Ur,∆z)− F (Ul)

σl
∈ Uk,

Ur +
Fr(Ul, Ur,∆z)− F (Ur)

σr
∈ Uk,

(A.67)

where Uk is the set of states U satisfying ϕ ≥ k and k ≥ 0 is a fixed constant.
To prove (A.67), we consider Ul, Ur ∈ Uk. We now denote the components of a state U

by U = (U0, U1, U2). The property U ∈ Uk involves only the components U0 and U2 of U
and can therefore be written U2/U0 ≥ kα−1. Thus in the property on the right-hand side of
(A.67), only the components F 0

l/r and F 2
l/r of the numerical flux are involved. According to

(A.31), (A.32), these coincide with the components of F(U∗l , U
∗
r ). Thus the property (A.67)

can be written

Ul +
F(U∗l , U

∗
r )− F (Ul)

σl
∈ Uk,

Ur +
F(U∗l , U

∗
r )− F (Ur)

σr
∈ Uk,

(A.68)

or (
Ul +

F(U∗l , U
∗
r )− F (Ul)

σl

)(2)

≥ kα−1

(
Ul +

F(U∗l , U
∗
r )− F (Ul)

σl

)(0)

,
(
Ur +

F(U∗l , U
∗
r )− F (Ur)

σr

)(2)

≥ kα−1

(
Ur +

F(U∗l , U
∗
r )− F (Ur)

σr

)(0)

.

(A.69)

We observe that for any U
(
U − F (U)

σl

)(2)

= ϕα−1

(
U − F (U)

σl

)(0)

= ϕα−1hϕ
(

1− v

σl

)
. (A.70)
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Since 1− v/σl ≥ 0, it follows that for all U ∈ Uk we have

(
U − F (U)

σl

)(2)

≥ kα−1

(
U − F (U)

σl

)(0)

. (A.71)

Next, according to (A.13)

F(U∗l , U
∗
r )(2) = (ϕ∗l/r)

α−1F(U∗l , U
∗
r )(0), (A.72)

where l/r stand for “l” if F(U∗l , U
∗
r )(0) ≥ 0, and “r” in the converse case. According to

(A.28), we have (ϕ∗l/r)
α−1 ≥ kα−1 and since σl < 0, we deduce that the first inequality in

(A.69) holds whenever F(U∗l , U
∗
r )(0) ≤ 0. In the case F(U∗l , U

∗
r )(0) ≥ 0 and we can use (A.29),

giving ϕ∗l ≤ ϕl, thus
F(U∗l , U

∗
r )(2)

σl
≥ ϕα−1

l

F(U∗l , U
∗
r )(0)

σl
. (A.73)

With the identity (A.70) we conclude that

(
Ul +

F(U∗l , U
∗
r )− F (Ul)

σl

)(2)

≥ ϕα−1
l

(
Ul +

F(U∗l , U
∗
r )− F (Ul)

σl

)(0)

≥ kα−1

(
Ul +

F(U∗l , U
∗
r )− F (Ul)

σl

)(0)

.

(A.74)

This concludes the proof of the first inequality in (A.69), and the second one is similar. The
quantities σl, σr just have to satisfy

1− vl/σl ≥ 0, 1− vr/σr ≥ 0 (A.75)

and the positivity of the mass component. This ends the proof of Theorem A.1.

Remark: there is no discrete entropy inequality associated with (A.6) for arbitrary non-
increasing convex ψ .
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