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Kinetic transition networks of local minima and transition states are able to capture the dynamics
of numerous systems in chemistry, biology and materials science. However, extracting observables
is numerically challenging for large networks and will in general be sensitive to additional compu-
tational discovery. To have any measure of convergence for observables, these sensitivities must be
regularly calculated. We present a matrix formulation of the discrete path sampling framework for
kinetic transition networks, deriving expressions for branching probabilities, transition rates, and
waiting times. Using the concept of the quasistationary distribution a clear hierarchy of expres-
sions for network observables is established, from exact results to steady state approximations. We
use these results in combination with the graph transformation method to derive the sensitivity
with respect to perturbations of the known kinetic transition network, giving explicit terms for the
pairwise sensitivity, and discussing the pathwise sensitivity. These results provide guidelines for
converging the network with respect to additional sampling, focusing on the estimates obtained for
the overall rate coefficients between product and reactant states. We demonstrate this procedure
for two atomic clusters representative of single and double-funnel landscapes.

I. INTRODUCTION

The dynamics of a condensed phase system can often
be represented as transitions between local minima in the
potential energy landscape. When local minima are suf-
ficiently deep that the system thermalizes before escape,
interminima transitions are Markovian,? permitting a
linear master equation representation of the dynamics.
Transition rates k = κω0 exp(−β∆F ) are decomposed
into a dynamical prefactor κω0 and a free energy barrier

∆F = F †ji − Fi between a given local minimum i and
the local free energy maximum on the j ← i minimum
free energy path, known as the transition state.? ? ? The
simplest transition state theory assumes that trajectories
that pass the transition state do not recross and free en-
ergies can be calculated in the harmonic approximation.
The set of all minima and transition states, characterized
by their free energies, form a kinetic transition network
(KTN).? ? ? ?

As the escape time from a minimum i scales as

exp(β(minj F
†
ji − Fi)), construction and analysis of a

KTN can, in principle, be much more efficient than direct
molecular dynamics simulation. In practice, the number
of local minima is exponential in system size,? ? mean-
ing that it may be computationally challenging to sample
the thermodynamically important minima and numeri-
cally challenging to reliably extract observables from the
landscape? .

The variety of strategies to build KTNs can be con-
sidered a subclass of rare event simulation techniques
that focus on identifying transition states. Starting with
some set of minima produced from experimental insight
or global optimisation? ? ? we can search for transi-
tion pathways from each minimum, using single-ended
methods, or seek connections between two minima, us-

ing double-ended methods.

For the purposes of KTN construction, double-ended
searches are typically static methods that find path-
ways by minimising a continuous or discrete chain of
configurations connecting two specified states. Popu-
lar approaches include the string,? nudged elastic band
(NEB),? ? and doubly-nudged elastic band (DNEB)? ?

methods. The DNEB approach has been extended to treat
distant initial and final states where many intermediate
minima may be involved, resulting in pathways includ-
ing multiple transition states. Here we employ a missing
connection algorithm? along with hybrid eigenvector-
following to refine the transition states accurately.? ? ? ?

There are also dynamical double-ended methods, such as
milestoning,? transition path sampling,? ? and forward
flux sampling,? amongst others.? ? ?

Single-ended search methods can be roughly classi-
fied into unbiased dynamical approaches, such as tem-
perature accelerated dynamics? ? ? and parallel replica
dynamics with state recognition,? ? potential bias-
ing dynamical approaches, such as hyperdynamics?

and metadynamics,? and geometry optimisation meth-
ods such as hybrid eigenvector-following (the dimer
method)? ? ? ? and the closely related activation-
relaxation technique,? ? ? which use curvature infor-
mation to find transition states directly. In dynamical
single-ended methods transition rates can be estimated
directly if the process of interest can actually be sim-
ulated with meaningful statistics.? ? ? ? Some further
discussion of these methods can be found in a recent
review.?

For any chosen construction method, the resulting
KTN will always be finite, meaning that predictions
will change when additional computational effort is ex-
pended to grow the network. This problem is well
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recognized;? ? ? ? previous work has focused on single-
ended searches using high temperature molecular dynam-
ics, as the Poisson distribution of rare event escape times
allows the benefit of additional computational effort to
be quantified. Recently, one of us has used the Pois-
son law to derive a monotonically increasing Bayesian
estimator of statewise sampling completeness.? This ap-
proach was combined with a KTN to determine where
additional sampling should be performed to maximise the
predictive time horizon as efficiently as possible, yielding
a autonomous global sampling strategy.

Single-ended search strategies are particularly useful
for exploring complex but locally single funnel free energy
landscapes,? such as those in defect transport,? where
the modeling goal is to build a KTN to study the long
time evolution.

However, many problems in materials science, protein
folding, and numerous other fields have competing global
structures, giving rise to multi-funnel potential and free
energy landscapes.? ? In this setting, the modeling goal
is to build a KTN to capture the kinetics, via multi-
ple complex pathways, between these potentially dis-
tant funnels. Whilst single ended search methods may
eventually find these connections, double-ended strate-
gies such as DNEB are in practice much more efficient, as
putative pathways between basins can be rapidly found,
then additional sampling performed to refine and ex-
plore around the key paths. The discrete path sam-
pling (DPS) framework? ? ? can exploit both single- and
double-ended methods to expand a KTN. Observables,
such as average traversal times or effective transition
rates, are then expressed as averages over all possible
pathways. To simplify the resulting expressions local
equilibrium is usually assumed for the reactants;? ? ? in
the present contribution we will compare this approach
with a direct treatment of the large, sparse matrices that
encode the underlying master equation.? ? As we de-
tail below, these matrices regularly suffer from severe
conditioning issues due to the exponential sensitivity of
transition rates, motivating the development of the graph
transformation technique? ? to iteratively remove states,
producing lower rank and better conditioned KTN matri-
ces with identical observables. Typically, the renormal-
isation is continued until the desired observables can be
simply extracted. Whilst numerically stable, this com-
plete renormalisation is undesirable for sensitivity analy-
sis, as we wish to specify which (pairs of) minima should
be subject to further sampling in order to converge the
observable of interest.

In this contribution, we unify the various approaches
to calculating KTN observables and look in detail at the
their sensitivity to additional sampling effort, in the form
of double-ended transition pathway searches. In section
?? we define the terminology used to describe a KTN
and introduce the master equation, before introducing
the graph transformation method in §??. We then de-
rive exact results for KTN observables as a function of
transition matrices before and after an arbitrarily com-

plete graph transformation in section ??. Invoking the
concept of the quasistationary distribution,? ? ? we find
a clear hierarchy of approximations and provide a precise
equivalence to the various results of DPS. Much of the
working is assigned to appendices for clarity of exposi-
tion.

In §?? we show how the graph transformation method
is used to produce a partially renormalised, well condi-
tioned KTN, which retains the ensemble of found reac-
tion pathways, and we identify the total branching prob-
ability (or the sum of all committor probabilities) as the
observable we use for the sensitivity analysis. This analy-
sis is presented in section ??, with explicit expressions for
changes in the total branching probability of the renor-
malised KTN following additional connections found dur-
ing a double-ended saddle search between an arbitrary
state pair. We show that the matrix of all possible pair-
wise sensitivities can be rapidly calculated following two
linear solves involving the renormalised KTN. The opti-
mal deployment of sampling tasks using these pairwise
sampling tasks is discussed briefly in section ??, and ap-
proximate confidence bounds on the resulting KTN ob-
servables are analyzed in section ??. Further develop-
ment of confidence bounds will be the subject of future
work. Finally, in section ?? we apply our framework to
simulate the sampling the KTN of Lennard-Jones clusters
that exhibit single and double-funnel landscapes, show-
ing how our observable converges.

II. KINETIC TRANSITION NETWORKS

A kinetic transition network (KTN) is constructed
from a set of metastable states and the transition states
or rates that connect them. The states are considered
sufficiently metastable that local equilibrium is achieved
before escape and thus the state-to-state dynamics are
Markovian,? providing the master equation representa-
tion that is used as the starting point for DPS.? ? ? In
this section, we define our notation and introduce the
master equation in terms of large, typically sparse ma-
trix products.

Consider a tripartition of the set of all minima S =
A ∪ B ∪ I into two (possibly directly connected) regions
A,B containing NA, NB minima respectively, and an in-
tervening region I containing NI minima. We assume
that A and B are metastable, a statement which will be
made precise when considering KTN observables. With-
out loss of generality, we focus on transitions from B to
A, which we denote as A ← B. Let IX be the identity
matrix in RNX×NX , i.e. of dimension equal to the num-
ber of minima in region X , and 1X ∈ RNX a row vector
of ones of the same dimension. Before reaching equi-
librium, the probability density vector PX ∈ RNX in a
region X ∈ {A,B, I} evolves according to the master
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equation?

ṖX = −DXPX +
∑

Y∈{A,B,I}

KXYPY , (1)

where KXY ∈ RNX×NY is a (rectangular) matrix of all the
minimum-to-minimum rates Y → X , and DX ∈ RNX×NX

is a diagonal matrix whose entries are the total escape
rate from each state in X . Conservation of probability
requires

∑
X∈{A,B,I} 1X ṖX = 0, for any probability den-

sity, which in turn implies that

1XDX =
∑

Y∈{A,B,I}

1YKYX . (2)

Assuming detailed balance holds, the probability distri-
bution PX will relax exponentially to the equilibrium
occupation probabilities πX for all the component min-
ima. It is useful to define the normalised restricted
equilibrium distributions π̂X = πX /1XπX , such that
1X π̂X = 1. Hence a component, such as π̂b, is the equi-
librium conditional probability that the system is asso-
ciated with local minimum b given that we are in re-
gion B. These conditional probabilities appear in all the
rate constant formulations previously derived in the DPS
framework,? ? ? ? ? as discussed below.

We now introduce the branching probability Bij =
P(j → i|j) that the next step of a Markov jump pro-
cess will be j → i. The branching probability plays a key
role in DPS? ? ? and kinetic Monte Carlo simulations.?

In terms of the transition rates defined above, branch-
ing probability matrices are given by BXY ≡ KXYD

−1
Y .

Due to the (assumed) Markovinity of the state-to-state
dynamics, just as [BXX ]ij gives the probability of reach-
ing i ∈ X from j ∈ X in one jump, the sum∑

l

[BXX ]il[BXX ]lj = [B2
XX ]ij , (3)

gives the probability of reaching i from j in exactly two
jumps within X . More generally, we consider the sum of
all possible path probabilities, conditional on not leaving
X . Making the eigendecomposition BXX =

∑
l λlv

R
l ⊗

vLl it is straightforward to show the total probability of
all X → X paths (with recrossings) reads

GX ≡
∞∑
n=0

Bn
XX =

∑
l

vRl ⊗ vLl
1− λl

= [IX −BXX ]
−1
, (4)

where we define the matrix GX to simplify later expres-
sions and ⊗ is the diadic (outer) product; for two vectors
a, b the outer product is the matrix a⊗b with elements
[a ⊗ b]ij = aibj . This inversion is nonsingular (λl < 1)
when escape from X is possible.

The Green’s matrices (??) are very useful when de-
riving KTN observables for transitions between A and
B; in particular, the Green’s matrix GI provides a com-
pact manner to write the branching probability BIXY of
leaving Y ∈ {A,B} in one jump, executing a path of

arbitrary (possibly zero) length within I and ending in
X ∈ {A,B}. This result reads

BIXY ≡ BXY + BXIGIBIY , (5)

where BXY allows for the possibility of a direct X ← Y
jump, bypassing I. As in previous work,? we distinguish
quantities that implicitly account for intervening minima
by the superscript I, which immediately defines another
key quantity in DPS, the committor vector:

CAB = 1AB
I
AB ∈ RNB , (6)

with component [CAB ]b ≡ CAb the probability of leaving
state b ∈ B in the first jump, then reaching A before B.

The compound branching probabilities BIAB and BIBB
will play a central role when deriving the main KTN ob-
servables in this work. Indeed, the total committor prob-
ability 1BC

A
B will be the objective function for our con-

vergence analysis. However, we will see in later sections
that evaluation of the Green’s matrices GX routinely suf-
fer from severe conditioning issues due to the exponential
sensitivity of transition rates,? meaning that direct so-
lution is numerically unstable. To overcome these issues
we use the graph transformation (GT) method,? ? ? ?

detailed in the next section.

III. THE GRAPH TRANSFORMATION
METHOD

The graph transformation (GT) method? ? ? ? is a
deterministic technique to remove a state l ∈ S, giving a
new state space S \ l with renormalised branching proba-
bilities and escape times. If the current branching prob-
ability matrix is BS , where by definition

∑
i[BS ]il = 1

for all l ∈ S, the GT procedure to remove a state l to
give S \ l is?

[BS ]ij → [BS\l]ij = [BS ]ij +
[BS ]il[BS ]lj
1− [BS ]ll

,

[D−1S ]jj → [D−1S\l]jj = [D−1S ]jj +
[D−1S ]ll[BS ]lj

1− [BS ]ll
. (7)

Whilst self-transitions l → l are initially zero (i.e. we
start with [BS ]ll = 0), such ‘self transition’ terms emerge
after repeated application of the GT renormalisation,
representing the branching probability to paths solely
on removed states that start and end on a state l. In-
cluding degenerate rearrangements? ? rescales the ini-
tial branching probabilities and waiting times, leaving
the ratios unchanged.? The original GT procedure ex-
cluded self-transitions from the possible events.? ? The
branching probabilities and waiting times then scale by
a common factor, and the expected waiting time for es-
cape is unaffected.? However, when self-transitions are
included in the events we obtain a direct connection to
committor probabilities.?
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The GT method was specifically designed? ? ? as an
alternative to matrix representations of Markov chain
observables to overcome the numerical conditioning is-
sues described above. In particular, when [BS ]ll be-
comes very close to unity, evaluation of the denominator
1 − [BS ]ll induces floating point error. The GT method
overcomes this problem by exploiting a state-by-state re-
moval scheme, replacing 1 − [BS ]ll with the equivalent
term

∑
i6=l[BS ]il, which does not suffer from these is-

sues. The GT approach has indeed been shown to have
far superior numerical stability to direct linear algebra
solutions across a wide range of systems,? and has been
exploited to overcome trapping in kinetic Monte Carlo
simulations.?

A matrix generalization of the GT method has recently
been analyzed,? where blocks of states are removed si-
multaneously instead of individually. In fact, the renor-
malisation procedure can preserve branching probabili-
ties and waiting times for removal of any subsets of states
in any sequence. Specifically, suppose that we start with
states I∪Z and wish to remove all states belonging to I.
Equation (??) gives the sum of the products of branch-
ing probabilities for all paths starting at z1, ending at z2,
with z2, z1 ∈ Z and any number of steps in the I region
in between the end points:[

BIZZ
]
z2z1
≡ [BZZ + BZIGIBIZ ]z2z1 . (8)

We can therefore conserve the probability associated with
these paths using the renormalised branching probability
matrix BIZZ with the elements defined above in RNZ×NZ .

The expected waiting time for a single step transition
between z1 and z2 can be obtained by summing the wait-
ing time [D−1Z ]zz or [D−1I ]ii for each state z ∈ Z or i ∈ I
along a given path, then performing a weighted average
over all paths using the product of branching probabili-
ties. Here we assuming Markovian transitions within the
KTN, so that the expected time to traverse each path
is simply the sum of the expected escape times for each
state. To achieve this averaging, we define? ? ?

B̃XY ≡ BXY exp(ζD−1Y ), G̃I ≡
[
II − B̃II

]−1
, (9)

where X ,Y ∈ {I,Z}, which weights each step by the cor-
rect waiting time when taking a derivative with respect to
ζ and then setting ζ = 0. Since branching probabilities
must sum to one over all possible connections we have
1I = 1ZBZI + 1IBII , so that 1ZBZI = 1I(II −BII)
and hence 1I = 1ZBZIGI . In Appendix ?? we pro-
vide a summary of other useful relations between these
quantities.

We can use these identities to simplify the expression
for the expected waiting time for a transition from any
state z ∈ Z to any another state in Z via an arbitrary
number of steps between states in I. This waiting time
becomes the expected escape time from z when the I
states are renormalised away and is given by the z com-
ponent of (see Appendix ?? for a full derivation). Here

we note that 1ZB
I
ZZ = 1Z , so the sum of path weights in

question for any component of Z is unity, so the expected
escape times are:

1Z [DIZ ]−1 ≡1Z
∂

∂ζ

(
B̃IZZ

) ∣∣∣
ζ=0

=1Z
∂

∂ζ

(
B̃ZZ + B̃ZIG̃IB̃IZ

) ∣∣∣
ζ=0

=1ZD
−1
Z + 1ID

−1
I GIBIZ (10)

which defines the renormalised waiting times 1Z [DIZ ]−1.
Hence the expected waiting times associated with direct
transitions between Z states when the I states are re-
moved are conserved if we replace the original values by
the diagonal elements of [DIZ ]−1. The renormalisation
conserves the path probabilities as branching ratios be-
tween all Z states exactly, but not individual first passage
times. As for the previous derivation of state-by-state
renormalisation, the sum over end points in Z conserves
the escape time.

The renormalisation only changes values for Z states
that are first or second neighbours of I states, but the
formulae can be be applied for all Z. We will also obtain
the same results if we remove sets of states in any order,
so long as the final state space is the same. In particular,
we recover the results in equation (??) if we remove a
single state. Furthermore, we can partition Z arbitrarily,
for example, into product and reactant portions, which
we indicate by Z = A∪B. We then obtain renormalised
branching probabilities and escape times:BAA BAI BAB

BIA BII BIB
BBA BBI BBB

→ BIZZ =

[
BIAA BIAB
BIBA BIBB

]
, (11)

1A [DA]
−1

1I [DI ]
−1

1B [DB]
−1

→ 1Z
[
DIZ
]−1

=

[
1A
[
DIA
]−1

1B
[
DIB
]−1

]
.

The components of 1B
[
DIB
]−1

correspond to the renor-

malised escape times τIb in previous work;? we will use
them again in §??.

As we shall see, the flexibility to remove blocks of
states and conserve the branching probabilities and wait-
ing times of interest is useful for analysis, but suffers from
the same numerical issues as those that the state-by-state
GT method overcomes.

In the next section we derive some formally exact re-
sults from the full Markov chain (??), then show how
these may be generalized to produce expressions for the
waiting time and branching probabilities found in pre-
vious work. The extended GT results described above
will then be used to study how reaction rates emerge in
a KTN. We note here that the renormalisation proce-
dure conserves the escape time for a transition within
the remaining state space, while approximations involv-
ing steady state assumptions for I states do not. Never-
theless, the steady state approximation can be useful for
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analysis: it has been exploited in DPS,? ? and the same
formulae result from a coarse-graining approach.?

IV. EXACT OBSERVABLES FOR A KTN

When A and B are metastable, A ↔ B transitions
will be rare and typically followed by long periods in the
product region. It is therefore meaningful to ask for the
expected waiting time to reach, say A, given that we
prepare the initial distribution in B, i.e. PI(0) = 0I and
PA(0) = 0A.

The A ← B waiting time can be evaluated exactly by
studying an artificial system where all transitions out of
A are set to zero, i.e. KXA = 0. Whilst this system
then clearly violates detailed balance (as all trajectories
will eventually end in A for a connected network), the
dynamics before reaching A are unperturbed. In this
limit the dynamics in I ∪ B follow a master equation
analogous to (??)[

ṖI
ṖB

]
=

[
KII −DI KIB

KBI KBB −DB

] [
PI
PB

]
, (12)

where all quantities are exactly as defined in (??), mean-
ing transitions to A are encoded only in the diagonal ma-
trices DI and DB. With no further approximations it is
possible to evaluate the expected waiting time to reach A
conditional on starting in B analytically, i.e. with initial
conditions PX (0) such that 1BPI(0) = 0, 1APA(0) = 0
and 1BPB(0) = 1. The probability density for the wait-
ing time τ is simply the probability flux out of I ∪ B:

P(τ ∈ [t, t+ dt]) = −(1IṖI + 1BṖB)dt, (13)

The integral of this density is the total change of proba-
bility in I ∪B in the limit t→∞, which is clearly unity.
We can therefore express the expected waiting time as?

〈τ∗A←B〉 ≡
∫∞
0
tP (τ ∈ [t, t+ dt])∫∞

0
P (τ ∈ [t, t+ dt])

, (14)

=

[
1I
1B

]> [
DI −KII −KIB
−KBI DB −KBB

]−1 [
0I

PB(0)

]
,

where the second line arrives by considering the evolution
equation (??). We derive this result in appendix ??,
verifying that the denominator of the first line above is
−1, and then solve the matrix inversion analytically to
give

〈τ∗A←B〉 =
[
1ID

−1
I GIBIB + 1BD

−1
B
]
GIBPB(0)

=1B[DIB]−1GIBPB(0), (15)

where the Green’s matrix GIB is defined as

GIB =
[
IB −BIBB

]−1
(16)

i.e. the Green’s matrix corresponding to the compound
branching probability of all possible non-reactive paths
starting and ending in B without reaching A. The matrix
BIBB corresponds to the definition in equation (??) and
motivates the notation employed for GIB.

A. Exact waiting time from pathwise averages

To make a connection with previous work on KTN ob-
servables, we wish to interpret the matrix expression (??)
in terms of weighted averages over all possible paths con-
necting B to A. These path weights form the starting
point for all the mean first passage time and rate constant
derivations in DPS theory based upon the graph trans-
formation renormalisation approach.? ? ? In particular,
we previously wrote the product of branching probabil-
ities for any discrete path ξ as Wξ.

? Element b of the
vector 1AB

I
ABG

I
B is then identified with the sum of path

weights Wξ over a ∈ A and paths ξ ∈ a ← b. Since
[GIB]b′b gives the sum of all probabilities for paths start-
ing at b ∈ B and ending in b′ ∈ B without reaching A,
and [BIAB]ab′ is the probability of reaching a ∈ A from
b′ summed over all paths that do not return to B, the
product is the sum of probabilities over all possible a← b
paths. Every element of this vector is unity: by conserva-

tion of probability 1AB
I
AB = 1B−1BB

I
BB = 1B

[
GIB
]−1

,
giving

1AB
I
ABG

I
B = 1B

[
GIB
]−1

GIB = 1B, (17)

which in turn implies that CABG
I
BPB(0) = 1 for any ini-

tial condition. To obtain the expected waiting time we
follow the procedure of §??, and in appendix ?? we show
that the exact waiting time can be written

〈τ∗A←B〉 =
∂

∂ζ

(
1AB̃

I
ABG̃

I
B

) ∣∣∣
ζ=0

PB(0)

= 1B[DIB]−1GIBPB(0), (18)

which connects the expected waiting time to the sums
of path weights. Here we identify the components[
1AB

I
ABG

I
B
]
b

with the waiting times TAb in previous

work.?

B. Exact waiting time using the GT method

The exact waiting time (??) can also be obtained us-
ing the graph transformed branching probabilities (??)
and escape times ??, with KXA = 0, to form a reduced
Markov chain executing dynamics in a state space BI the
same size as B, which subsumes excursions into I before
eventual absorption in A. The I superscript indicates
that all the I minima have been renormalised away, as
above.

The transition rate matrix between renormalised states
in i, j ∈ BI is given by KIBB = BIBBD

I
B, i.e. the branch-

ing probability multiplied by the total escape rate. The
absorbing master equation (??) in I ∪ B is then trans-
formed to a renormalised master equation in BI evolving
via KIBB −DIB; using the definition (??) of GIB the evo-
lution equation for PBI (t) becomes

ṖBI (t) = −
[
GIB
]−1

DIBPBI (t). (19)
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Employing the same procedure as employed to derive the
exact waiting time (??) in Appendix ??, we can write the
exact waiting time of (??) as

〈τ∗A←B〉 = 1B
[
DIB
]−1

GIBPBI (0), (20)

which is identical to the exact result of (??) for the full
system when PBI (0) = PB(0), consistent with the defini-
tions in (??) and (§??). The required initial condition in
BI to reproduce the exact waiting time when PI(0) 6= 0I
is given in appendix ??. The notation BI for the proba-
bilities is used to emphasise that although (??) has exact
escape statistics to A, the GT procedure changes the na-
ture of the remaining state space. The exact waiting time
of the full (or reduced) model is the expected time spent
in I ∪ B (or BI) before reaching A, which is clearly not
equal to the expected time spent in B. The state space
BI therefore has the same rank as B, but evolves with
branching probabilities and escape times that account for
all possible sojourns into I. This distinction is important
when defining the metastability of B and transition rates
kA←B, as we see in the next section.

C. Defining an exact transition rate

The matrix formalism allows us to define exact expres-
sions for the expected waiting time and branching prob-
abilities for any initial condition and energy landscape;
the metastability of A and B determine the utility, not
the accuracy, of (??) and (??). However, the existence
of a constant reaction rate kA←B on a suitable observa-
tion time scale is more subtle, as it is only well defined
(i.e. has a constant value) when the decay into A follows
single exponential kinetics. A weak condition for such
kinetics is metastability in I ∪ B; a stronger condition is
metastability in B alone.

In this section, we first derive the conditions for an ex-
act transition rate, dependent on metastability in I ∪ B,
before seeing how this relates to previous work.

When I ∪ B is metastable, the rate matrix in (??) will
have a spectral gap. More precisely, if we write the eigen-
decomposition of the rate matrix as

M =

[
KII −DI KIB

KBI KBB −DB

]
= −

∑
l

νlw
R
l ⊗wL

l ,

(21)
single exponential decay from I ∪B will emerge if the or-
dered eigenvalues, numbering from zero, satisfy 0 < ν0 �
ν1 < ν2...., i.e. have a simple spectral gap ν0 � ν1. To
verify this limit, we solve for the probability distribution
in the eigenbasis. Writing PI∪B(t) ≡ [PI(t),PB(t)], we
find the multiexponential solution

PI∪B(t) =
∑
l

exp(−tνl)
(
wL
l PI∪B(0)

)
wR
l , (22)

which will decay to a projection along the slowest eigen-
mode wR

0 on a timescale (ν1 − ν0)−1. The limiting dis-
tribution in I ∪ B, conditional on not being absorbed, is

therefore

lim
t→∞

PI∪B(t)

1I∪BPI∪B(t)
=

wR
0

1I∪BwR
0

≡ π̂QSDI∪B , (23)

where the superscript QSD signifies that we have de-

fined the quasistationary distribution πQSDI∪B = wR
0 for

I ∪ B. The QSD is defined as the limiting distribu-
tion in a region with absorbing boundaries conditional
on not being absorbed, a natural and useful generaliza-
tion of the local equilibrium distribution for metastable
states.? ? Importantly, if prepared in the QSD, basin es-
cape statistics are single exponential, as we demonstrate
below. For any eigenspectrum, i.e. any degree of metasta-
bility, any initial conditions will decay to the QSD on a
timescale (ν1− ν0)−1. The spectral gap condition means
that the escape time scale for the slowest mode, ν−10 ,
is much longer than the time required to establish the
relative probabilities corresponding to the QSD, namely
(ν1−ν0)−1 When we have simple metastability, ν0 � ν1,
KTN observables approach single exponential kinetics on
this timescale, giving an exact escape rate of

− lim
t→∞

1I∪BṖI∪B(t)

1I∪BPI∪B(t)
= ν0 ≡ k∗A←B. (24)

The exact waiting time (??) retains dependence on the
initial conditions PI∪B(0). Using the eigendecomposi-
tion (??) we can rewrite the formula for 〈τ∗A←B〉 involving
the inverse matrix obtained in Appendix ?? as

〈τ∗A←B〉 = 1I∪B
∑
l

ν−1l wR
l

(
wL
l PI∪B(0)

)
. (25)

Note that the eigenvalues of the rate matrix M in (??)
are ≤ 0, and the minus sign is chosen so that νl ≥ 0. This
sign cancels the minus sign in the first line of Appendix
C equation (??) to give (??). When ν0 � ν1 the first
term dominates and we can use (??) to replace 1I∪Bw

R
0

〈τ∗A←B〉 = ν−10

(
wL

0 PI∪B(0)
)

(1I∪Bw
R
0 ) +O(ν0/ν1)

=
1

k∗A←B

wL
0 PI∪B(0)

wL
0 π̂

QSD
I∪B

+O(ν0/ν1), (26)

which is the inverse rate multiplied by the ratio of pro-
jections onto the slowest mode for the initial distribution

and the QSD. Hence 〈τ∗A←B〉 = 1/k∗A←B ≡ 〈τ
∗,QSD
A←B 〉 if we

simply prepare the system in the QSD, with PI∪B(0) =

π̂QSDI∪B .
Furthermore, when I ∪ B is very metastable, i.e. as

the decay rate to A vanishes (KAI → 0,KAB → 0),
the slowest eigenvalue ν0 will also tend to zero. In this
limit wR

0 , and by definition πQSD, will be proportional
to the invariant local equilibrium distribution of (??),
which before any GT renormalisation is simply πI∪B.
Since ṖI∪B(t) = MPI∪B(t) = 0I∪B for any PI∪B(t)
we also know that the corresponding left eigenvector wL

0

is proportional to 1I∪B. The orthonormality relation
wL
pw

R
q = δpq provides the constants of proportionality
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as wR
0 = πI∪B/w

L
0 πI∪B and wL

0 = 1I∪B/1I∪Bw
R
0 =

1I∪B/1I∪Bπ
QSD. The limiting form for wL

0 holds even
when the limiting form for πQSD is no longer the lo-
cal equilibrium distribution due a GT renormalisation, a
point we return to below. The proportionality of wL

0 to
1I∪B is sufficient to give 〈τ∗A←B〉 → 1/k∗A←B by substi-
tution in (??), as expected for single exponential decay.

The same result, again consistent with (??), is ob-
tained by calculating the expected waiting time from
PI∪B(t) given by (??), given the system has not decayed
to A after a time t. This waiting time, which corresponds

to 〈τ∗,QSDA←B 〉 defined above, would typically be measured
in experiment. Using the notation of (??) and multiex-
ponential expansion (??) we find

〈τ∗,QSDA←B 〉 ≡ lim
t→∞

∫∞
t

(t′ − t)P (τ ∈ [t′, t′ + dt′])∫∞
t
P (τ ∈ [t′, t+ dt′])

=
1

k∗A←B
,

(27)

meaning we can identify 〈τ∗,QSDA←B 〉 as the correct inverse
rate k∗A←B when decay to A is simple exponential. This
result requires t sufficiently large to retain only the first
term in (??), and ν0t sufficiently small to be neglected.

Whilst the expressions (??) and (??) are formally ex-
act, as discussed above the rate matrix (??) suffers from
significant numerical conditioning issues meaning that in
practice evaluation of k∗A←B is rarely possible.

To proceed, we apply an identical analysis to the
graph transformed evolution equation (??), which re-
duces I ∪ B to BI , the set of renormalised B minima,
whilst retaining the exact waiting time (??). As above,
when BI is metastable the rate matrix in (??) will have a
spectral gap. The eigendecomposition of the transformed
rate matrix reads

−
[
GIB
]−1

DIB = −
∑
l

νIl z
R
l ⊗ zLl , (28)

and single exponential decay from BI will again emerge
if the ordered eigenvalues satisfy 0 < νI0 � νI1 < νI2 .....
In this limit we can identity the renormalised QSD, the
limiting distribution in B, as

lim
t→∞

PBI (t)

1BPBI (t)
=

zR0
1BzR0

≡
πQSDBI

1Bπ
QSD
BI

= π̂QSDBI , (29)

which gives a renormalised escape rate

− lim
t→∞

1BṖBI (t)

1BPBI (t)
= νI0 ≡ k

∗,I
A←B. (30)

To compare k∗,IA←B to k∗A←B, the exact waiting time (??)
can be written in a form closely resembling (??)

〈τ∗A←B〉 = 1B
∑
l

(νIl )−1zRl
(
zLl PBI (0)

)
, (31)

which will again be dominated by the first term when BI
is metastable, giving

〈τ∗A←B〉 =
1

k∗,IA←B

zL0PBI (0)

zL0 π̂
QSD
BI

+O(νI0 /ν
I
1 ) (32)

In the highly metastable limit, when the probability flux

out of BI vanishes, we have again zL0 → 1B/(1Bπ
QSD
BI )

and thus 〈τ∗A←B〉 → 1/k∗,IA←B, meaning that k∗,IA←B =
k∗A←B.

In this limit πQSDBI → πBI , the invariant distribution
of the transformed rate equation (??) when decay to A
is vanishing. Importantly, πBI is not equal to πB, the
Boltzmann distribution in B, which will become relevant
when comparing the exact rate to previous approxima-
tions.

The correspondence between the QSD rate k∗A←B,

equation (??), and the transformed QSD rate k∗,IA←B,
equation (??), can also be obtained as for (??) by cal-
culating the expected waiting time conditional on not
decaying to A,

〈τ∗,QSDA←B 〉 ≡ lim
t→∞

1B
[
DIB
]−1

GIBPBI (t)

1BPBI (t)
=

1

k∗,IA←B
. (33)

Comparing the two equivalent exact results for the ex-
pected waiting time, we see that the transformed QSD

rate k∗,IA←B (which we can calculate) and the exact QSD
rate k∗A←B (which is typically impossible to calculate) are

equal in the metastable limit. Hence k∗,IA←B can be con-
sidered an exact rate in the vast majority of cases, as the
GT transformation is typically required only to calculate
KTN observables in the highly metastable (rare event)
limit, where we have demonstrated exponentially accu-

rate correspondence between the GT QSD rate k∗,IA←B
and the formally exact, but typically incalculable, QSD
transition rate k∗A←B. We also show in the next section
that it is only in this limit, when these rates agree with
the transition rate defined as the exact reference in pre-
vious work, that they also agree with each other.

To facilitate the comparison to previous results for the
transition rate, we end this section by deriving an equiv-
alent expression for the transformed QSD rate (??). As

discussed above, the QSD projects out k∗,IA←B from the
transformed rate matrix, equation (??). Substituting for

ṖBI (t) from this equation and using πQSDBI for PBI (t) in
the numerator and denominator of (??) gives

k∗,IA←B =
1B
[
GIB
]−1

DIBπ
QSD
BI

1Bπ
QSD
BI

. (34)

By the conservation of branching probabilities and the
committor definition (??) we have CAB = 1AB

I
AB =

1B
[
GIB
]−1

(see also (??) above). We can therefore ex-
press the transformed QSD transition rate in the sugges-
tive form

k∗,IA←B = CABD
I
Bπ̂

QSD
BI . (35)

Equation (??) is a very useful result, an expression for
the KTN transition rate that is exact in the metastable
limit where a transition rate is well defined, in a form
that we can relate to existing approximations identified
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in previous work as kSSA←B for steady state (SS)? and
kNSSA←B non-steady state (NSS)? , as detailed in the next
section.

We note that the exact rate in (??) can be consid-
ered a sum over the branching probabilities CAB for each
reactive trajectory in B (i.e. those that reach A before
returning to B) weighted by the total escape rate and
QSD weight for the corresponding renormalised state in
BI . This formulation is consistent with the probability
distribution for reactive trajectories.? ? We also note the
similarity to formulae based on the flux over a dividing
surface.? ? ? ?

D. Comparison of the exact rate to previous work

The steady state approximation used in the original
DPS derivation? ? assumes that the intervening region
I is in a steady state, ṖI = 0, and that the A,B distri-
butions are in local equilibrium, PX (t) = π̂XPX (t) for
X = A,B. In appendix ?? we show that the transition
rate in this approximation is given by

kSSA←B = CABDBπ̂B =
∑
b∈B

[CAB ]b[π̂B]b
τb

, (36)

where the final expression uses τb = 1/[DB]bb = [D−1B ]bb,
the expected waiting time for a transition out of mini-
mum b, demonstrating that kSSA←B is precisely that de-
rived in previous work.? Through comparison with (??)
we see that the effect of the steady state approximation
is to replace the GT renormalised escape times 1/[DIB]bb
with 1/[DB]bb and the normalised QSD π̂QSDBI is replaced
by the local equilibrium occupation probability π̂B. This
result amounts to assuming that traversal of the I region
is instantaneous, and that the presence of nonzero escape
rates from B affects the limiting distribution (which is the
content of the QSD). We expect that the latter assump-
tion is acceptable for sufficiently metastable basins, but
this first assumption is typically accurate only for simple
landscapes.

The non-steady state (NSS) formula for the transi-
tion rate was derived in previous work by considering
transitions within the state space of A ∪ B after renor-
malising away the I minima one-by-one.? If we de-
note the corresponding rate constants by an I super-
script, and treat all the transitions as competing Poisson
processes, then the expected waiting time for a transi-
tion from b to A ∪ B is the renormalised value τIb =
1/(KIAb + KIBb) and we identify the committor proba-
bility CAb = KIAb/(K

I
Ab + KIBb), which is obtained from

the renormalised branching probability.? ? The required
rate is then KIAb = CAb /τ

I
b and we obtained a mean rate

constant by averaging over the local equilibrium distri-
bution in B:? ?

kNSSA←B =
∑
b∈B

[CAB ]b[π̂B]b
[τI ]b

. (37)

[τI ]b is component b of the vector of expected escape
times produced by GT. In §?? we showed that these ex-
pected times can be written as τI = 1B[DIB]−1. The
NSS escape rate then reads

kNSSA←B = CABD
I
Bπ̂B. (38)

which is the exact rate (??) derived above with the nor-

malised QSD π̂QSDBI replaced by the local equilibrium
conditional probabilities π̂B. The NSS is thus a signifi-
cant improvement on the SS rate, as we only assume that
the local equilibrium π̂B is a good approximation to the

transformed QSD π̂QSDBI . Here we note that the matrix

DIB is always considered to be diagonal, with non-zero
elements defined in terms of the reciprocal waiting times
from the elements of the diagonal matrix that appear in
1BD

I
B.

We have seen in the previous section that in the highly

metastable limit, the QSD π̂QSDBI → π̂BI , the invariant
distribution for the transformed rate matrix (??). When
there is no metastability in I we expect the approxima-

tion π̂BI ' π̂B to be accurate, and thus kNSSA←B ' k∗,IA←B,
which in turn will be equal to k∗A←B. However, if there
is significant metastability in I it is possible that π̂BI

could be different from π̂B, inducing error in kNSSA←B.
Finally, we consider the rate obtained from the wait-

ing time TAb, which is calculated by graph transfor-
mation removal of all I minima and all other sources
b′ 6= b in B, using local equilibrium conditional occupa-
tion probabilities:?

kFA←B ≡
∑
b∈B

[π̂B]b
TAb

. (39)

Here, TAb is the waiting time for a transition from b to
A, including revisits to b, obtained from the renormalised
branching probabilities and escape time (see Appendix
??). kNSSA←B agrees with kFA←B in (??) if the B minima
are in rapid local equilibrium compared to the time scale
for transitions to A.? Alternatively, considering the first-
step relation? we can prove that TAb = τIb /C

A
b if TAb is

the same for all b, and the two rate formulations in (??)
and (??) are then equivalent (Appendix ??).

In the present QSD framework we can also show that
(??) will agree with k∗A←B if the system relaxes to the

highly metastable limit of the QSD, π̂QSDBI → π̂BI . Fur-
thermore, if this limiting distribution π̂BI ' π̂B, then
kFA←B ' kNSSA←B.

To see this correspondence we use our exact waiting
time expression (??) for an initial condition [PB]b′(0) =
δbb′ to write

TAb =
[
1B
[
DIB
]−1

GIB

]
b
. (40)

However, we know that the system will decay to the QSD
for any initial condition if the basin is metastable. In this
limit the first term in the series for equation (??) gives

TAb → (k∗A←B)−1
[
zL0
]
b

(
1Bπ

QSD
BI

)
. (41)
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In the highly metastable limit πQSDBI → πBI , we know

zL0 → 1B/(1BπBI ), meaning that

TAb → (k∗,IA←B)−1 ⇒ kFA←B → k∗,IA←B. (42)

In addition, using the exact waiting time expression
(??) for the full I ∪ B rate matrix (??), analogous ma-
nipulations yield kFA←B → k∗A←B, showing that in the

metastable limit, kFA←B, k∗A←B and k∗,IA←B are all in agree-
ment.

Hence, a well defined transition rate emerges when we
allow the initial conditions to relax to the QSD, and
all previous results are recovered by first assuming that
the QSD becomes the local equilibrium distribution be-
fore any additional assumptions. The difference between
the QSD and the local equilibrium view arises from the
treatment of the region as isolated, or with an absorbing
boundary. In both cases the limiting distribution cor-
responds to the eigenvalue of the rate matrix with the
smallest magnitude (zero for local equilibrium). The cal-
culated rates will agree when the region defined as reac-
tants in the experiment is sufficiently metastable, so that
a local equilibrium setup can be achieved.

In previous work we considered rates obtained from
averaging over kinetic Monte Carlo runs as the exact ref-
erence for any given initial distribution, and referred to
this rate as kkMC

A←B. However, since the exact rate can be
calculated in other ways we prefer the notation k∗A←B,
which is not associated with any particular numerical
approach. We finally note that an absorbing boundary
condition has previously been used in combination with
master equation dynamics to guide the construction of a
kinetic transition network by defining boundary states.?

V. PATH-BASED GT REGULARIZATION FOR
SENSITIVITY

To recover a numerically tractable system upon which
sensitivity analysis can be performed we use the GT
method to remove states from I which do not partici-
pate or significantly influence a given reaction pathway,
leaving a reduced set of states P ⊂ I with renormalised
branching probabilities. We thus remove I \P, i.e. those
in I but not in A ∪ B ∪ P through the GT method.
All branching probabilities and waiting times remain un-
changed; the branching probability matrix will reduce in
rank, thus typically becoming more amenable to linear
algebra manipulations, though it will in general become
less sparse. The precise definition of which states (local
minima) to retain in P is flexible; indeed, the definition
is free to change arbitrarily throughout the computation.
In previous applications that remove states one-by-one,
it proved much more efficient to remove I states with
the fewest connections first.? ? In the present work, a
natural choice is to select all states in I that either lie
on or are directly connected to at least one known re-
action pathway. Following the notation convention for

BIXY the GT procedure detailed in (??) yields renor-

malised branching probability matrices BAI → B
I\P
AP ,

BIB → B
I\P
PB , BII → B

I\P
PP , and BAB → B

I\P
AB , where

the latter matrix does not change dimension, but the en-
tries are renormalised.

With corresponding renormalisations for the waiting
times as in §??, defined as the inverse of the total es-

cape rate D
I\P
Y , we also obtain renormalised rate matri-

ces through K
I\P
XY ≡ B

I\P
XY D

I\P
Y . The branching proba-

bility matrix from B to A can be exactly expressed in an
identical form to equation (??), namely

BIAB = B
I\P
AB + B

I\P
AP GPB

I\P
PB , (43)

where GP ≡
[
IP −B

I\P
PP

]−1
. This formulation naturally

defines the solution matrices X ∈ RNP×NB and Y ∈
RNA×NP that solve the renormalised linear equations[

IP −B
I\P
PP

]
X ≡ B

I\P
PB , (44)

to give BIAB = B
I\P
AB + B

I\P
AP X, or equivalently

Y
[
IP −B

I\P
PP

]
≡ B

I\P
AP , (45)

to give BIAB = B
I\P
AB + YB

I\P
PB . We present both X and

Y in anticipation of results below.
Equation (??) is the central object of analysis in this

contribution, as all other network observables can be cal-
culated in the manner detailed in section ??. In the next
section we derive the general convergence and sensitiv-
ity criteria with respect to the introduction of additional
transition rates in the network. In particular, we focus
on a scalar contraction of (??), the total branching prob-
ability, using the committor vector defined in equation
(??):

CAB ≡ CAB1
>
B ≡ 1AB

I
AB1

>
B . (46)

Crucially, although only states in A ∪ B ∪ P are explic-
itly enumerated in (??), the sensitivity of BIAB to the
introduction of additional transitions involving states in
I \ P will still be present in the effective transition rates
of the renormalised network. However, kinetically impor-
tant states should be retained in P to focus the sensitiv-
ity analysis. A detailed analysis of the optimal strategy
to determine P on-the-fly will be the subject of a future
contribution. In the following analysis, we assume a suit-
able P has been chosen, and derive explicit terms for the
sensitivity to the introduction of new transitions between
previously unconnected states in A ∪ B ∪ P.

VI. SENSITIVITY AND CONVERGENCE

Additional sampling will usually produce new minima
and transition states, changing network properties such
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as BIAB and overall rates. A key goal of this paper is to
derive expressions for the sensitivity of such quantities to
additional sampling, thereby allowing the construction of
some measure of convergence. This is a difficult problem
as the kinetic transition network is a complex object; rate
convergence is in principle a global optimisation prob-
lem. Furthermore, any sensitivity measure will neces-
sarily depend on the chosen sampling strategy,? which
determines the nature of the additional (possibly redun-
dant) information returned by additional sampling tasks.

In this work, we consider use of the OPTIM? program to
perform double-ended transition state searches between
candidate state pairs (l,m) via the doubly-nudged elastic
band (DNEB) method.? In this procedure, initial path-
ways are found by launching DNEB searches for ‘direct’
pairs (l,m), where l ∈ A and m ∈ B, which will in general
return indirect pathways with many intervening minima
in I. This will then affect the graph transformed KTN
for A ∪ P ∪ B.

Our goal is to derive a pathwise local sampling sen-
sitivity measure, once some initial B ↔ A pathways
are found, which can both propose target pairs (l,m) ∈
A ∪ P ∪ B for additional DNEB tasks and estimate the
expected change in network observables upon the incor-
poration of new sampling data. If the expected changes
can be bounded, a convergence measure then becomes
possible.

In general, there often be additional criteria that can
reduce the number of candidate (l,m) pairs for sensitiv-
ity and convergence measures, based on e.g. the distance
in configuration space, or some other metric such as the
change in bonding topology. This does not preclude the
possibility of l ↔ m pathways, only the existence of di-
rect l↔ m transitions. Furthermore, in the steady state
approximation for intervening minima I, and thus neces-
sarily the renormalised region P ⊂ I, kA←B is unchanged
to first order by additional transitions entirely within A
or B, and BAB is unchanged by transitions within A.
Whilst the discovery of new A,B states and their connec-
tions to P could also be considered, we will focus here on
transitions corresponding to B → P, P → P and P → A.

If a DNEB search returns an indirect pathway where all
the intervening minima are new, the sensitivity expres-
sion is equivalent to that for the discovery of a direct
transition (with some effective rate). However, in the
general case, especially as sampling reaches local conver-
gence, it is more likely that searches will produce indirect
pathways involving already discovered minima, modify-
ing a range of branching probabilities. Locality criteria
for pair selection will likely reduce the possible number
of intervening minima, but in general the central compli-
cation to deriving a sensitivity measure remains: a sam-
pling task starting from a given pair (l,m) will in general
yield an indirect pathway with multiple intervening min-
ima, producing matrix modifications δKXY that affect a
larger number of states.

Before analysing the exact form of the δK
I\P
XY matri-

ces following a DNEB search, we look at the most gen-

eral expression for the change in BIAB as defined in (??),
and thus the total branching probability CAB as defined
in (??), under additional sampling. We employ compo-
nent form below where ambiguity could arise. Using (??)

and the identity [D
I\P
X ]ij = δij [1XD

I\P
X ]i, the change in

D
I\P
X under a general perturbation is

[δD
I\P
X ]ij = δij

∑
Y

[
1YδK

I\P
YX

]
i
, (47)

giving a change in branching probabilities of[
δB
I\P
XY

]
ij

=
[
δK
I\P
XY

]
ij

[
D
I\P
Y

]−1
jj

−
[
K
I\P
XY

]
ij

[
δD
I\P
Y

]
jj

[
D
I\P
Y

]−2
jj
. (48)

To propagate these changes to BIAB defined in (??) we
need to calculate δGP . For any matrix M, apply-
ing the chain rule to δ(M−1M) = 0 yields δ(M−1) =
−M−1 δMM−1. For the renormalised Green’s function
GP , for a given δB

I\P
PP we have

GP =
[
IP −B

I\P
PP

]−1
⇒ δGP = GPδB

I\P
PP GP . (49)

This gives a total change in BIAB of

δBIAB =δB
I\P
AB + δB

I\P
AP GPB

I\P
PB + B

I\P
AP GPδB

I\P
PB

+ B
I\P
AP GPδB

I\P
PP GPB

I\P
PB , (50)

where we revert to matrix products for clarity of presen-
tation. In terms of the solution matrices X and Y defined
in (??) and (??), we can write δBIAB in the compact form

δBIAB = δB
I\P
AB +δB

I\P
AP X+YδB

I\P
PB +YδB

I\P
PP X, (51)

which motivates the linear algebra formulation. The to-
tal branching probability CAB therefore undergoes a total
change

δCAB = 1AδB
I\P
AB 1>B + 1AδB

I\P
AP x + yδB

I\P
PB 1>B

+ yδB
I\P
PP x (52)

where x = X1>B and y = 1AY are each obtained with
a single linear solve. In the following we focus on the
sensitivity to new transitions which affect A ← P ← B
paths, i.e. those that pass through P, meaning that we

assume 1AδB
I\P
AB 1>B = 0 in the following expressions for

δCAB . It is straightforward to include this contribution to
the general sensitivities (??).

A. Sensitivity to any direct or pseudo-direct
transition

When a sampling task returns a direct transition be-
tween (l,m), the rate matrix modifications δKXY have
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a simple closed form. Furthermore, this closed form is
also valid when the sampling task returns an indirect
transition where all intermediate states were previously
unknown, a case we label ‘pseudo-direct’. With a for-
ward (l → m) rate of kU , the reverse (m → l) rate is
defined to be φmlkU . Before any GT renormalisation,
detailed balance implies φml = [πY ]l/[πX ]m, i.e. the ra-
tio of components of the steady state Boltzmann distri-
bution. The GT renormalisation I → P will in general
modify the stationary distribution as the effective rates
between states changes. Using the renormalised rate ma-

trices K
I\P
XY , we estimated the change in the steady state

distribution by using the Boltzmann distributions πA,πB
and πP of the retained states as a preconditioner for an
iterative minimization. Whilst this effect could give large
changes if only sparsely connected, high energy states are
retained during the GT procedure, as we typically retain
highly connected, low energy states (those that partici-
pate in reaction pathways), the proportional changes in
the φlm were extremely small, meaning that we use the
Boltzmann distributions to estimate the φml. The mod-
ification to the existing rate matrix is therefore given by

[δmlYXK
I\P
YX ]ij = kUδimδjl, l ∈ X ,m ∈ Y

[δmlYXK
I\P
XY ]ij = φmlkUδilδjm, l ∈ X ,m ∈ Y (53)

[δmlXXK
I\P
XX ]ij = kUδimδjl + φmlkUδilδjm, l,m ∈ X ,

where δmlYX is the finite difference operator for l ∈ X ,m ∈
Y. In (??), kU is a ‘test rate’ that represents the ex-
pected value of the as yet undiscovered transition rate.
When using local saddle point search routines driven
by high temperature molecular dynamics? it is possible
to derive monotonically increasing Bayesian estimators
for sampling completeness,? which can be used to esti-
mate kU . However, when minima and saddle points are
found using geometry optimisation procedures, such as
DNEB calculations, sampling completeness estimators are
not available. In the numerical examples below we dis-
cuss various approaches to determining an appropriate
kU , the simplest being an expected upper bound based
on prior knowledge of the system under study, such as
kU = 10 THz for thermally activated processes in metals.

The rate matrix modifications given by (??) cause
changes δmlBYX in the branching probabilities as de-
tailed in (??). Inserting these into (??) gives the total
propagated change δmlYXCAB for a single direct transition
pathway (l,m) ∈ (X ,Y). We will derive explicit expres-
sions these direct transitions in the three cases of interest:
(l,m) ∈ (P,P), (B,P) and (P,A).

Whilst the first term in (??) accounts for possible
changes due to direct connections bypassing P, our fo-
cus is on the remaining terms that gauge the effect of
changes in the structure of the intervening region of the
network. For all valid candidate pairs we can obtain a
predicted change in the branching probability through
(??) and thus rank all pairs as candidates for a double-
ended saddle search. However, this approach applies for

a direct or pseudo-direct pathway. As a result, before
giving explicit expressions for direct transitions we will
first consider indirect paths.

B. Sensitivity to an indirect transition

In the general case a sampling task targeting (l,m) ∈
X ,Y will produce a pathway through M intervening
minima p1, p2, . . . , pM . Considering a general summa-
tion δK =

∑
n δKn, with all superscripts suppressed for

brevity, we note that the change in branching probabili-
ties is a linear sum to first order:

δB =
∑
n

δKnD
−1 −K diag (1δKn)D−2 =

∑
n

δBn,

(54)
where we have used δ(D−1) = diag(1δK)D−2 to first or-
der, with diag(1δK) the diagonal matrix with elements
given by the components of the vector [1δK]j =

∑
i δkij ,

the total change in escape rate from minimum j. If new
intervening minima pi are found, the dimensions of B,
K and D must reflect the final dimension of the space
after the new path is added to the database. We can
therefore decompose the change in total escape rate into
contributions from direct transitions. As the change in
total branching probability is linear in the δBXY , the
first order propagated change to network observables for
indirect transitions will then simply be the sum of the
propagated changes due to the composite direct transi-
tions. Hence, to investigate the effect of indirect transi-
tions it is sufficient to evaluate and rank all of the direct
transitions in the manner described above, which is the
task of the next section.

C. Sensitivity to direct transitions

Details are collected in Appendix ??. The final ex-
pressions for changes in the scalar committor probability
are

(l,m) ∈ (P,P) δm←lPP CAB =kU ([y]m − [y]l) [D−1P x]l

(l,m) ∈ (B,P) δmlAPCAB =kU
(

[y]m − [yB
I\P
PB ]l

)
[D−1B ]ll

− kUφml[y]m[D−1P x]m

(l,m) ∈ (P,A) δmlAPCAB =kU (1− [y]l) [D−1P x]l,
(55)

where δm←lPP is a one-sided difference operator, which in-
cludes only the changes due to the l → m path. As ex-
pected, self-transitions l = m in P, which are permitted
after renormalisation, do not affect the committor prob-
ability. The result for δmlAPCAB is independent of m ∈ A
because of the sum over A states in the definition of the
committor vector in (??).

The convergence of these changes in the committor is
investigated below for two benchmark systems involving
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atomic clusters of N atoms bound by the Lennard-Jones
potential, LJN , using the regularization techniques devel-
oped above. We have tested the sensitivity expressions
by removing known rates and looking at the predicted
and actual change in branching probabilities. In all these
tests excellent agreement was found, demonstrating the
self-consistency of our approach.

VII. SELECTION, DISTRIBUTION AND
ALLOCATION OF SAMPLING TASKS

When an accurate sensitivity can be evaluated for all
candidate direct transitions, their influence on network
properties can be ranked according to the change in the
scalar committor value δmlCAB . With a given compu-
tational budget, DNEB calculations can then be assigned
according to this ranking. However, this approach may
not ensure optimal computational efficiency; it is likely
that the number of DNEB images needed to represent a
pathway will scale approximately linearly with the dis-
tance between candidate minima, increasing the compu-
tational cost. A possible strategy is to weight the ranking
according to the number Nim of DNEB images that would
be assigned for the task, and consider δmlCAB /Nim, to re-
flect the fact that multiple less sensitive transitions may
yield better computational return than a single sensitive
transition between distant minima.

As a DNEB calculation is a formally deterministic pro-
cess, once a given pair (l,m) has been targeted for sam-
pling it should be removed from all future selections,
i.e. set δmlCAB = 0. However, we note that many strate-
gies could yield multiple pathways on repeated DNEB
searches between the same two minima. For example,
multiple initial pathways could be attempted or stochas-
tic forces or energetic penalty functions could be applied
during the DNEB minimization. In this case, multiple
DNEB requests could return different results and therefore
the δmlCAB should be reevaluated each sampling cycle, or
multiple DNEB requests could be assigned to a given pair
in one cycle.

VIII. CONSTRUCTION OF CONFIDENCE
INTERVALS FOR CA

B

The local sensitivity analysis detailed here clearly can-
not solve the global problem of whether there is some
other distant set of unexplored pathways that will dras-
tically change the A ↔ B kinetics. Rather, we aim to
make some statement on the convergence of the transi-
tion rate associated with the current database of sampled
pathways.

The sensitivity metric works well if the to-be-
discovered transition is either a direct connection be-
tween two known states, or an indirect connection in-
volving only newly discovered states; in either case, by
postulating an upper bound kU on the to-be-discovered

transition rate between (l,m) an upper bound on the ab-
solute change in the branching probabilities is obtained,
to first order. We use the absolute change to emphasise
that this does not mean additional connections necessar-
ily increase CAB .

Our convergence measure for the path finding search
procedure involves upper and lower confidence intervals
σ± for the branching probability CAB . This sensitiv-
ity machinery was combined with two estimators of the
network structure, namely the expected value of newly
discovered transition rates, kU above, and the connec-
tion sparsity ξ. Rigorous, monotonic estimators of un-
seen rates have been developed in dynamic sampling
strategies,? where the dynamical trajectories provide a
well defined probability law for discovering transitions.
In the present context, where a database of stationary
points is harvested using geometry optimisation, no such

law exists, meaning that the rate estimator k̂U (defined
below) will be nonmonotonic, with uncontrolled fluctu-
ations upon the incorporation of new sampling data. A
sensible strategy in this scenario is to consider multiple
estimators in parallel, using the collective information to
guide decisions on convergence. In this final section we
test some preliminary estimators, demonstrate the sensi-
tivity framework that is a main object of this paper; fu-
ture work will concentrate on the optimal form of estima-
tion and thus how to deduce more rigorous convergence
bounds. The present contribution gives the computa-
tional framework upon which such convergence concepts
can be tested.

Our estimator k̂U has one hyperparameter, a postu-
lated maximum unknown rate kUmax, which we set to
kUmax = ω0 exp(−3), where ω0 = 5 in reduced units for
the LJ potential. This value corresponds to an energy
barrier of 3/β, around the limit of the rare event regime.
Future work will investigate the dependence on the final
sensitivities to estimates of kUmax, and when it is benefi-
cial to spend more effort in the estimation. In addition,
we measure the logarithmic mean and variance of the ob-
served rates, correcting for differences in the free energy
of initial and final states through

k̃ij ≡
1

βh
exp

[
−β(F †ij −max(Fi, Fj))

]
, (56)

〈(ln k̃)n〉 =
∑

rates ij

(ln k̃ij)
n/Nrates (57)

where F †ij = F †ji is the saddle point free energy, β =
1/kBT, with kB the Boltzmann constant and T the tem-
perature, meaning that F †ij − max(Fi, Fj) is the lower
free energy barrier for the ij transition. We consider the
first and second moments, corresponding to n = 1 and 2
in constructing the rate estimator below.

The logarithmic mean 〈ln k̃〉 was chosen to account for
the wide range in observed rates; it can be considered as
estimating the average free energy barrier. Nevertheless,
only if the distribution is suitably well peaked should
this mean value be taken as informative. As a result, our
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preliminary estimator k̂U for the newly discovered rates
reads

k̂U = kUmax +
(
e〈ln k̃〉 − kUmax

)
exp

(
1− 〈(ln k̃)2〉/〈ln k̃〉2

)
,

(58)

meaning that a large geometric variance in the observed
rates suppresses the influence of the geometric mean ob-

served rate e〈ln k̃〉.
The sensitivity analysis assigns an expected change

δmlXYCAB to the branching probabilities upon the discovery
of a new transition for every possible transition m ↔ l
in the network, where m ∈ X , l ∈ Y apart from already
sampled pairs, where we set the sensitivity to zero.

Our first estimator bounds σtot
± are therefore simply

the sum of all possible positive or negative changes:

σtot
+ ≡

∑
δCA

B>0

δmlXYCAB , σtot
− ≡

∑
δCA

B<0

|δmlXYCAB |, (59)

giving the projected change σtot ≡ σtot
+ − σtot

− . We can
also define the maximal bounds σ1

± due to the discovery
of a single transition as

σ1
+ ≡ max δmlXYCAB , σ1

− ≡ |min δmlXYCAB |, (60)

giving the total single change σ1 ≡ σ1
+ − σ1

−.
However, real transition networks are typically very

sparse, meaning the total bounds σtot
± could be very large

as many possible transitions do not exist. We therefore
also estimate the network sparsity ξ, which gives the ap-
proximate probability that a search should return a suc-
cessful connection. We estimate ξ with

ξ̂ =
Ntrans
N2
states

+

(
ξ0 −

Ntrans
N2
states

)
exp

(
− NDNEB

Nthresh

)
, (61)

the number of found transition states, minima, and DNEB
searches, respectively, and Nthresh is a hyperparameter
controlling the influence of empirical data, here set to
5000.

The first use of ξ is simply to multiply the total
bounds σtot

± , giving the reduced bounds ξσtot
± and pro-

jected change ξσtot. We can also use the sparsity to
estimate the number of further connections. Assuming
independence, the probability of finding m connections
is simply ξm(1 − ξ), giving an expected number of con-
nections 〈m〉 = ξ/(1 − ξ). We combine this expression
with the average changes to give our last investigated

bounds σξ±, defined as

σξ+ ≡
(

ξ

1− ξ

) ∑
δCA

B>0 δ
ml
XYCAB∑

δCA
B>0 1

, (62)

and similarly for σξ− with the constraint δCAB < 0. Fi-
nally, we note that only using the first order derivative
to predict changes in a nonlinear quantity is clearly inac-
curate when the predicted changes in the argument, here

k̂U , are very large. However, higher derivatives would re-
quire multiple linear solves, which imposes a prohibitive
computational cost.

IX. VALIDATION TESTS ON LJ13 AND LJ38

To test the sampling protocol described in this work,
an ‘exactly known’ rate matrix was constructed using the
LJ13 and LJ38 energy landscapes from the Cambridge
Landscape Database.? As is well known, LJ13 has a sin-
gle funnel landscape, whilst LJ38 has a double funnel
landscape? ? ? ? with two competing morphologies, cor-
responding to two free energy minima at low tempera-
tures.

As the LJ13 cluster has a single funnel landscape, the
definition of A and B is somewhat arbitrary. The B basin
was taken as the global potential energy minimum plus
one connected state, and A was taken as the highest min-
imum plus one connected state. Alternative choices were
also considered. With only one state in each basin the ki-
netics are dominated by a single pathway and converged
to within numerical accuracy in just two iterations. For
larger basins the direct transition dominated, again giv-
ing extremely rapid convergence. With two states in each
basin a more useful test system was obtained, so we focus
on these results.

The LJ13 landscape is well conditioned even for β = 10
in Lennard-Jones units, meaning that we can set P = I,
i.e. with no renormalisation. To simulate DNEB connec-
tion attempts for a pair (i, j), Dijkstra’s shortest path
algorithm? as implemented in scipy? was applied to
an unweighted, undirected graph created from the ref-
erence rate matrix. The use of an unweighted graph is
to simulate the fact that the DNEB algorithm has an en-
ergy penalty for the length of the path, and is unlikely
to find the fastest path between two distant states in one
iteration.

The ‘sampled’ rate matrix initially contained all A →
A and B → B connections, a single known B → A path
and, for each state on the path, the result of a simu-
lated single ended saddle search, which returned at most
four connecting states. To create an initial B → A path
we used the simulated DNEB routine described above; the
initial sampled set contained around 20 states.

To give a high data resolution in figure ?? the sensi-
tivity analysis was used to identify, each cycle, the two
most sensitive state pairs that had not been previously
sampled. If these simulated searches returned no new
results, the next two most sensitive pairs were consid-
ered, and so on, until at least one new transition state
was found. In practice, as discussed above, it is likely
beneficial to sample many more pairs simultaneously; a
detailed investigation of the optimal deployment will be
the subject of future work.

At the top of figure ?? we present the results from this
test procedure with the convergence metrics described
above. The metrics exhibit a large number of positive
‘spikes’ in the committor probability, due to the possibil-
ity of a high transition rate to A. Such large sensitivities
will invariably be sampled in the next cycle, whereupon
if they are found to not exist the prediction returns to es-
sentially the same value as before. To regularise the out-
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LJ13 cluster, = 10, Initial Path: Simulated DNEB
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FIG. 1. Convergence tests on LJ13 at β = 10, where B is the global potential energy minimum plus a single connected state,
and A is the highest minimum plus a single connected state. The initial pathway was chosen to be that with the fewest jumps,
simulating a DNEB search. The DNEB search coverage is approximated as the ratio of attempted DNEB searches to total possible
connections, which is fairly high in these toy examples as no attempt to filter admissible transitions was made.
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FIG. 2. Convergence test on a subset of the interbasin committor probability for the LJ38 landscape, with two competing
morphologies, without any renormalisation, leaving a subset of 1250 states. CA

B is defined between the lowest minima in each
funnel, with β = 10.
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FIG. 3. Convergence test on a subset of the interbasin committor probability for LJ38 landscape, using the graph transformation
method to yields a renormalised system with 1250 states, but a much higher connection density. As before, CA

B is defined between
the lowest minima in each funnel, with β = 10.

put against these isolated fluctuations we applied a short
window filter, typically the minimum absolute bound val-

ues |σtot,1,φ
± | over a small number of cycles. This smooth-

ing is reasonable because the spikes occur much less fre-
quently as more data is accumulated, the averaging win-
dow is very short, and the predictions immediately before
and after a spike are largely unchanged.

As shown in the figures, this smoothing significantly

enhances the interpretability of the sampling data, with
the majority of spikes filtered out. Sampling the most
sensitive connections quickly yields the correct branch-
ing probability, but much more sampling is required to
be confident of convergence; in particular the total sen-
sitivity σtot

+ is very slow to converge, but the sparsity

estimator ξ̂ implies convergence is reached earlier. The
individual sensitivities converge much more quickly, as
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expected. After more sampling cycles the confidence in-
tervals contain all changes in the estimates of CAB , and
the projected values are also stable.

The two funnel landscape of the LJ38 cluster gives nat-
ural definitions for the A and B basins. The B region was
chosen to be the global minimum truncated octahedron,
whilst the A region was chosen to be the lowest minimum
in the icosahedral funnel. The minimum free energy path
for β = 10 (again in LJ units) has 28 intermediate states
with a large effective barrier height, representing a re-
alistic test of the sensitivity framework developed here
for a rare event. The sampling was initially restricted to
a artificially truncated subnetwork of 1250 minima that
contained the minimum energy pathway, meaning that
again P = I. We note that the interconversion rates for
the different morphologies are usually summed over sets
of local minima in each funnel.? ? ? ? However, this step
is not important for the present benchmarking, where we
can consider the convergence of any chosen rate constant
as a function of the database. As for the LJ13 exam-
ple, a useful convergence measure can be obtained when
applying a small smoothing window.

Importantly, the single transition bounds σ1,φ
± converge

much more quickly than the total expectation bounds
σtot
± , indicating that the existing landscape requires a

new pathway to significantly change the branching prob-
ability. This result demonstrates how multiple conver-
gence metrics can help inform measures of convergence;
future work will incorporate these ideas within a Bayesian
framework.

Finally, we also applied the same methodology to the
full LJ38 system, using the graph transformation method
to yields P ⊂ I, with 1250 states in total. Whilst the
effective rank is the same as the truncated example, the
resulting KTN has a much higher density of connections
due to the greater number of pathways, meaning that
convergence is much slower. In all of these toy exam-
ples we have made no attempt to filter the possibility
of a connection existing between a given pair of minima
based on knowledge of the existing KTN nor structural
or energetic properties of the minima pair under consid-
eration, meaning that our metrics consider all possible
interstate connections. Optimal strategies for applying
the GT renormalisation and estimating the probability
that a given minima pair will yields a new connection
will be the subject of another contribution.

X. CONCLUSIONS

In this contribution we have developed a linear alge-
bra formulation for calculating waiting times and rates
corresponding to a kinetic transition network, to develop
a tractable scheme for judging the convergence with re-

spect to sampling. We have first provided expressions
for the observables within a hierarchy of approximations,
starting with a steady state assumption for intervening
minima, and local equilibrium for the reactants. We
establish the equivalence of the resulting matrix/vector
representations and formulae previously derived by con-
sidering sums over pathways directly. The extension to
exact rates and waiting times further enables us to con-
nect results based on a local equilibrium in the reactant
space to the quasi-stationary distribution, which corre-
sponds to the limiting case for an absorbing boundary at
the products. The linear algebra results are fully consis-
tent with previous results, and provide additional insight,
as well as a more efficient way to compute some of the
properties of interest. In particular, we derive formulae
to estimate the sensitivity of branching matrices, com-
mittor probabilities, and hence rates when new network
connections are hypothesised. These sensitivity measures
can be used to direct the sampling strategy to converge
the database if stationary points with respect to rates.

To test convergence we have applied the sensitivity
calculations to existing databases for two atomic clus-
ters bound by the Lennard-Jones potential, namely LJ13

with a single funnel landscape corresponding to efficient
relaxation to the global minimum, and LJ38, where two
morphologies compete to give a double funnel landscape
that causes broken ergodicity, and structural interconver-
sion constitutes a rare event. Starting from small subsets
of each database, we use the sensitivity indices to pro-
pose new searches for connections between local minima,
and simulate their discovery using the known connectiv-
ity of the full databases. In each case the sensitivities
and bounds on the committor probability initially exhibit
large fluctuations, which decrease as the sampling pro-
gresses. The bounds converge rapidly to the correct val-
ues, demonstrating that this framework should provide
a powerful tool for constructing and converging kinetic
transition networks in new systems. This approach is
generally applicable throughout molecular and condensed
matter science, and we envisage future applications to
problems ranging from atomic and molecular clusters,
through biophysics, to condensed matter.
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Appendix A: Glossary of Useful Formulae

Here we summarise various results that are useful for the derivations. Note that the identities for B and G matrices
do not hold for the corresponding B̃ and G̃ versions.

Compound branching probabilities and renormalised waiting time:

BA←B = BAB + BAIGIBIB ≡ BIAB,

BB←B = BBB + BBIGIBIB ≡ BIBB,

GB←B = (IB −BB←B)−1 = (IB − (BBB + BBIGIBIB))
−1 ≡ GIB (A1)

1ID
−1
I GIBIB + 1BD

−1
B ≡ 1B[DIB]−1.

Here BA←B is the probability corresponding to all possible paths that leave B and reach A via any number of steps
in I without returning to B; BB←B is the probability corresponding to all possible paths that leave B and return to
B via any number of steps in I without reaching A. The G matrices sum over all paths consisting of any number of
steps defined by simple or compound branching matrices. Hence GB←B is the sum of probabilities for all non-reactive
paths. The quantities identified with an I superscript also correspond to the values used in graph transformation
renormalisation after all the intervening minima in the I region are removed.

Identities involving G matrices:

GX = (IX −BXX )−1, GX = IX + GXBXX , GX = IX + BXXGX , BXXGX = GXBXX ,

∂ζ

(
G̃X

) ∣∣∣
ζ=0

= GX∂ζ

(
B̃XX

) ∣∣∣
ζ=0

GX . (A2)

G matrix derivative for simple branching matrices:

∂ζ

(
G̃X

) ∣∣∣
ζ=0

= GXD
−1
X GX −D−1X GX = (GX − IX )D−1X GX = GXBXXD

−1
X GX . (A3)

Committor probabilities:

CAB = 1AB
I
AB = 1B

[
GIB
]−1

so Cab =
[
BIAB

]
ab
, CAb =

[
1B
[
GIB
]−1]

b
, and Cb

′

b =
[
BIBB

]
b′b

(A4)

for minima b, b′ ∈ B and a ∈ A.
Identities related to conservation of probability:

1X =
∑

Y∈A,B,I
1YBYX ⇒

∑
Y6=X

1YBYXGX = 1X ,

1ABA←B + 1BBB←B = 1B,

1ABA←BGB←B = 1B

1ABA←BGB = 1BG
−1
B←BGB (A5)

Appendix B: Derivation of equation (??)

The expected waiting time for a transition from any state z ∈ Z to any another state in Z via an arbitrary number
of steps between states in I, as presented in (??), is given by the z component of

1Z
∂

∂ζ

(
B̃IZZ

) ∣∣∣
ζ=0

= 1Z
∂

∂ζ

(
B̃ZZ + B̃ZIG̃IB̃IZ

) ∣∣∣
ζ=0

=1ZBZZD
−1
Z + 1ZBZID

−1
I GIBIZ + 1ZBZI

∂

∂ζ

(
G̃I

) ∣∣∣
ζ=0

BIZ + 1ZBZIGIBIZD
−1
Z

=1ZBZZD
−1
Z + 1ZBZID

−1
I GIBIZ + 1ZBZIGIBIID

−1
I GIBIZ + 1IBIZD

−1
Z

=(1ZBZZD
−1
Z + 1IBIY )D−1Z + 1ZBZID

−1
I GIBIZ + 1IBIID

−1
I GIBIZ

=1ZD
−1
Z + (1ZBZI + 1IBII)D−1I GIBIZ = 1ZD

−1
Z + 1ID

−1
I GIBIZ ≡ 1Z [DIZ ]−1. (B1)

The sum of path weights out of every component of Z is unity because 1ZBZZ = 1Z , so we obtain the average escape
times from the above construction.
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The derivative G̃I , used above, can be obtained by differentiating the series form
∑∞
n=0

(
B̃II

)n
, or using

∂

∂ζ
G̃I

∣∣∣
ζ=0

G−1I = −GI
∂

∂ζ
G̃−1I

∣∣∣
ζ=0

, (B2)

and G̃−1I = II − B̃II , to obtain ∂
∂ζ G̃I |ζ=0 = GID

−1
I GI − D−1I GI = (GI − II)D−1I GI = GIBIID

−1
I GI (see

Appendix ?? for a summary of useful relations between these quantities).

Appendix C: Derivation of matrix expression for exact waiting time

Writing equation (??) in the more compact form ṖI∪B = MPI∪B and a row vector of ones of dimension corre-
sponding to I ∪ B as 1I∪B we can show

1I∪BM = −1A (KAI ,KAB) , (C1)

and hence

P (τ ∈ [t, t+ dt]) = −1I∪BṖI∪B dt = −1I∪BMPI∪B dt = 1A (KAI ,KAB)PI∪B dt. (C2)

Integrating the master equation (??) formally to give PI∪B(t) = exp (Mt)PI∪B(0) and performing the integrals in
equation (??) gives

〈τ∗A←B〉 = −1A (KAI ,KAB)M−2PI∪B(0)

1A (KAI ,KAB)M−1PI∪B(0)
. (C3)

Using equation (??) we can simplify the above expression, since

1I∪B = −1A (KAI ,KAB)M−1

we have 1A (KAI ,KAB)M−1PI∪B(0) = −1I∪BPI∪B(0) = −1 (C4)

for the given initial conditions. Hence

〈τ∗A←B〉 = −1I∪BM−1PI∪B(0)

= − (1I ,1B)

[
KII −DI KIB

KBI KBB −DB

]−1 [
0I

PB(0)

]
= − (1I ,1B)

[
(BII − II)DI BIBDB

BBIDI (BBB − IB)DB

]−1 [
0I

PB(0)

]
= (1I ,1B)

{[
G−1I −BIB
−BBI G−1B

] [
DI 0IB
0BI DB

]}−1 [
0I

PB(0)

]
=
[
1ID

−1
I ,1BD

−1
B
] [ G−1I −BIB
−BBI G−1B

]−1 [
0I

PB(0)

]
, (C5)

where G−1X = I−BXX .
To proceed, we consider the linear system[

G−1I −BIB
−BBI G−1B

] [
xI
xB

]
=

[
0I

PB(0)

]
⇒ 〈τ∗A←B〉 = 1ID

−1
I xI + 1BD

−1
B xB, (C6)

We can solve for xI and xB analytically by first expanding the matrix vector product as

G−1I xI −BIBxB = 0I , ⇒ xI = GIBIBxB,

G−1B xB −BBIxI = PB(0), ⇒ xB =
[
G−1B −BBIGIBIB

]−1
PB(0). (C7)

We then recover the equation (??) directly.
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Appendix D: Derivation of exact passage time expressions

Here we follow §?? and consider the waiting time associated with a sum over all paths that start in B and reach any
minimum in A via any number of steps in the I region with returns to B allowed. The path weight can be factorised
into a component to account for non-reactive paths starting and finishing in B via any number of steps in I, and then
a reactive path from B to A via the I region:

〈τ∗A←B〉 = ∂ζ

(
1AB̃

I
ABG̃

I
B

) ∣∣∣
ζ=0

PB(0). (D1)

This formulation gives the average waiting time for each component in B because the path weights sum to unity in
each case: from equation (??) we have 1AB

I
ABG

I
B = 1B. Then from equation (??) we have

∂ζ1AB̃
I
AB
∣∣
ζ=0

+ ∂ζ1BB̃
I
BB
∣∣
ζ=0

= 1B[DIB]−1.

We now use the chain rule, the derivative ∂ζG̃
I
B
∣∣
ζ=0

= GIB∂ζB̃
I
BB
∣∣
ζ=0

GIB, and 1AB
I
ABG

I
B = 1B from conservation of

probability (Appendix ??) to rewrite (??) as

〈τ∗A←B〉 =
[
1A∂ζB̃

I
AB
∣∣
ζ=0

+ 1AB
I
ABG

I
B∂ζB̃

I
BB
∣∣
ζ=0

]
GIBPB(0)

=
[
1A∂ζB̃

I
AB
∣∣
ζ=0

+ 1B∂ζB̃
I
BB
∣∣
ζ=0

]
GIBPB(0)

= 1B[DIB]−1GIBPB(0), (D2)

in agreement with (??), where 1B[DIB]−1 = 1BD
−1
B + 1ID

−1
I GIBIB.

Appendix E: Initial condition in BI to reproduce exact waiting time for an arbitrary initial condition in I ∪ B

Following (??), the exact waiting time for any initial condition in I ∪ B reads

〈τ∗A←I∪B〉 ≡
[
1I
1B

]> [
DI −KII −KIB
−KBI DB −KBB

]−1 [
PI(0)
PB(0)

]
, (E1)

which is identical to (??) except now PI(0) 6= 0I . Recall the exact PI(0) = 0I result (??) or (??) can be written

〈τ∗A←B〉 = 1B
[
DIB
]−1

GIBPB(0). Rearranging (??) gives the analogous result

〈τ∗A←I∪B〉 = 1B
[
DIB
]−1

GIB [PB(0) + BBIGIPI(0)] + 1ID
−1
I GIPI(0)

= 1B
[
DIB
]−1

GIBPB(0)

with PB(0) = PB(0) +
[
KBI +

[
GIB
]−1

DIB (zB ⊗ 1I)
]
D−1I GIPI(0). (E2)

where zB is any vector that satisfies 1BzB = 1. This freedom is not surprising as this term accounts for all paths
that decay to A without passing through B. We thus see that the exact waiting time for arbitrary initial condition in
I ∪ B can be recovered in the GT renormalised Markov chain with an initial condition PBI (0) = PB(0). Requiring
1BPB(0) = 1 for a probability distribution in BI yields

1BPB(0) = 1BPB(0) +
[
1BBBIGI +

(
1B
[
GIB
]−1

DIBzB

)
1ID

−1
I GI

]
PI(0) = 1

⇒ 1B
[
GIB
]−1

DIBzB =
1− 1BPB(0)− 1BBBIGIPI(0)

1BD
−1
I GIPI(0)

. (E3)

As 1BzB = 1, zB can be thought of as a probability distribution in BI , meaning 1B
[
GIB
]−1

DIBzB is the flux to A for
PBI = zB by comparison with the evolution equation (??). Similarly, the denominator on the right can be interpreted
as the waiting time for escape to A for paths that never pass through BI , while the numerator is the corresponding
total probability for such paths.

Finally, BBIGIPI(0) is probability mass from I that passes through B before reaching A, the product of the
compound probability GIPI(0) of all paths that stay in I multiplied by the branching probability BBI = KBID

−1
I

into B. The exact GT result for the waiting time shows the initial distribution in BI is PB(0) plus a renormalised

branching probability for probability in I, namely with effective rates KBI → KBI +
[
GIB
]−1

DIBwB ⊗ 1I , which

accounts for the flux into A from paths that do not enter BI .
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Appendix F: Derivation of steady state transition rate and waiting time

The steady state approximation assumes that the intervening region is in local equilibrium with ṖI = 0 on the
timescale of transitions between A,B. This assumption is reasonable when A,B are sufficiently metastable. The
approximation of a steady state in I yields the equality

DIPI = [II −BII ]
−1

[BIADAPA + BIBDBPB] . (F1)

In addition, the original SS DPS derivation assumes that both A and B are populated with local restricted equilibrium
distributions

PA(t)→ π̂APA(t), PB(t)→ π̂BPB(t). (F2)

We therefore obtain a reduced evolution equation for PA (with the obvious analogue for B)

ṖA = 1A [BAA − IA]DAπ̂APA + 1ABABDBπ̂BPB + 1ABAIDIPI

= 1A
[
BIAA − IA

]
DAπ̂APA + 1AB

I
ABDBπ̂BPB, (F3)

where the branching probabilities BIXY are defined in (??). The steady state A ← B rate into A from B can be read
directly from (??), giving

kSSA←B = 1AB
I
ABDBπ̂B = CABDBπ̂B. (F4)

The last equality uses the committor definition (??) to recover (??).
As noted in §??, the above expression for the rate associates a waiting time for each path that only accounts for

the escape time from the initial B minimum.

Appendix G: First step analysis for equivalence of (??) and (??)

In the state space after removal of all I minima and b′ 6= b in B the renormalised waiting time and branching
probabilities, denoted τFb , PF

Ab and PF
bb in previous work,? correspond to steps from b to any a ∈ A or back to b. TAb

is then obtained as

TAb = τFb P
F
Ab(1 + 2PF

bb + 3(PF
bb)

2 + . . .) = τFb P
F
Ab/(1− PF

bb)
2 = τFb /P

F
Ab. (G1)

From the first-step relation?

TAb1 = τIb1 +
∑
b∈B

TAb[BIBB]bb1 , (G2)

adding and subtracting TAb1 on the right we find

TAb1 = τIb1 +
∑
b∈B

[BIBB]bb1(TAb − TAb1) +
∑
b∈B

[BIBB]bb1TAb1 so CAb1TAb1 = τIb1 +
∑
b∈B

Cbb1(TAb − TAb1).

Hence TAb1 = τIb1/C
A
b1

if TAb is the same for all b, and the two rate formulations in (??) and (??) agree.
For completeness we now demonstrate how the first-step relation is encoded in the matrix formulation that is the

principal representation of the present contribution. With TAb =
[
1B[DIB]−1GIB

]
b

we have∑
b∈B

TAb[BIBB]bb1 =
[
1B[DIB]−1GIBB

I
BB
]
b1

=
[
1B[DIB]−1

(
GIB − IB

)]
b1

=
[
1B[DIB]−1GIB

]
b1
−
[
1B[DIB]−1

]
b1

= TAb1 − τ Ib1 , as required. (G3)

Appendix H: Sensitivity to direct transitions

1. Sensitivity to direct P → P transitions

For the case (l,m) ∈ (P,P) we have to consider sensitivity to both the l ← m perturbation and the m ← l
perturbation. If we define the ‘one-sided’ difference operator δm←lPP as only accounting for the l → m perturbation,
from detailed balance we can write

δmlPPCAB = δm←lPP CAB + φmlδl←mPP CAB . (H1)
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The rate matrix modification from (??) reads

[δmlPPK
I\P
PP ]ij = kU

(
δimδjl + (φml − δlm)δjmδil

)
, (H2)

with all other modifications zero. This gives branching probability modifications of

general form : δmlPPB
I\P
XP = δm←lPP B

I\P
XP + φmlδl←mPP B

I\P
XP . (H3)

So [δm←lPP B
I\P
PP ]ij = kU

(
δim − [B

I\P
PP ]il

)
[D−1P ]llδjl, (H4)

[δm←lPP B
I\P
AP ]ij = −kU [B

I\P
AP ]il[D

−1
P ]llδjl, (H5)

δm←lPP B
I\P
PB = 0, (H6)

where we emphasise that δm←lPP B
I\P
XP is the modification only for l → m. Note the index swap in the second term of

(??) to capture the reverse m→ l contribution with rate kUφml.
The ‘one-sided’ sensitivity of the total branching probability can then be written

δm←lPP CAB = 1Aδ
m←l
PP B

I\P
AP x + yδm←lPP B

I\P
PP x

= kU
(

[y]m −
[
yB
I\P
PP + 1AB

I\P
AP

]
l

)
[D−1P x]l,

= kU ([y]m − [y]l) [D−1P x]l, (H7)

where the last in equality uses equation (??), which implies that yB
I\P
PP + 1AB

I\P
AP = y.

2. Sensitivity to direct B → P transitions

For (l,m) ∈ (B,P) we have the rate and branching probability matrix modifications

[δmlPBK
I\P
PB ]ij = kUδimδjl, (H8)

[δmlPBK
I\P
XP ]ij = 0, (H9)

[δmlPBB
I\P
PB ]ij = kU

(
δim − [B

I\P
PB ]il

)
[D−1B ]llδjl, (H10)

[δmlPBB
I\P
XP ]ij = −kUφml[B

I\P
XP ]im[D−1P ]mmδjm, (H11)

where X = A,P, and thus the final sensitivity, with l ∈ B,m ∈ P, is

δmlPBCAB =kU
(

[y]m − [yB
I\P
PB ]l

)
[D−1B ]ll

− kUφml[y]m[D−1P x]m (H12)

3. Sensitivity to direct P → A transitions

For (l,m) ∈ (P,A) we have the rate matrix modifications

[δmlAPK
I\P
AP ]ij = kUδimδjl, (H13)

[δmlAPK
I\P
PA ]ij = kUφmlδilδjm, (H14)

giving in turn

[δmlAPB
I\P
AP ]ij = kU

(
δim − [B

I\P
AP ]il

)
[D−1P ]llδjl, (H15)

[δmlAPB
I\P
PP ]ij = −kU [B

I\P
PP ]il[D

−1
P ]llδjl, (H16)

[δmlAPB
I\P
PB ]ij = 0 (H17)

and thus the final sensitivity, with l ∈ P,m ∈ A, of

δmlAPCAB =kU (1− [y]l) [D−1P x]l, (H18)

which we note is independent of m ∈ A, as expected due to the form of the committor vector CAB defined in (??),
with a sum over all A states.


