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Abstract

This work is devoted to the robust analysis of theets of geometric nonlinearities on the non-
linear dynamic behavior of rotating detuned (intentionally mistuned) bladed disks in presence of
unintentional mistuning (simply called mistuning). Mistuning induces uncertainties in the com-
putational model, which are taken into account by a probabilistic approach. This paper presents
a series of novel results of the dynamic behavior of such rotating bladed disks exhibiting nonlin-
ear geometric eects. The structural responses in the time domain are analyzed in the frequency
domain. The frequency analysis exhibits responses outside the frequency band of excitation. The
con dence region of the stochastic responses allows the robustness to be analyzed with respect
to uncertainties and also allows physical insights to be given concerning the structural sensitivity.
The bladed disk structure is made up of 24 blades for which severatetit detuned patterns

are investigated with and without mistuning.

Key words: Mistuning, Detuning, Bladed disks, Dynamics, Geometric nonlinearities,
Uncertainty Quanti cation

1. Introduction

The intentional mistuning, also callettuning has been identi ed as an eient techno-
logical way for reducing the sensitivity of the forced response of bladed disks to unintentional
mistuning (simply calleanistuning, caused by the manufacturing tolerances and the small vari-
ations in the mechanical properties from blade to bladel[1, 2, 3]. The objective of the detuning
is to reduce the sensitivity of the response ampli cation induced by the mistuning. This random
ampli cation is de ned as the random ratio between the random highest dynamic response of
a given detuned bladed disk in presence of mistuning and the deterministic highest response of
the tuned bladed disk under the same excitation. It has been proposed to detune the bladed disk
structure by using partial or alternating patterns ofedent sector types. A sector is constituted
of a blade and of the corresponding part of the disk.

This technology has intensively been studied in the framework of the linear dynamic analysis
(see for instance,[4] 5] 6] [7,[8,9.] 10] 11} [12,[13, 14]), for which the mistuniagte have been
modeled using either parametric probabilistic approaches (see for instarice,| [15,/16[ 17, 18, 19]),
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or using the nonparametric probabilistic approaChl([20, 21, 22]), and for which the optimization
of alternating patterns has been studied (see for instance, [23.124] 25, 26]).

More recently, the technological improvements that include the use of more exible and
lighter materials can lead to large displacements so that the linearization of the dynamic equations
can no longer be used. In this context, the geometric nonlinearities have to be taken into account
and there is a growing interest for including geometric nonlinearities in the dynamic analyses
of detuned bladed disks. It should be noted that theces of nonlinearities on the dynamics
have been considered hy [27] for a simple generic cyclic structure exhibiting nonlineae sdi
connections (and not for nonlinear geometricagets, and furthermore, without mistuning). The
e ects of geometrical nonlinearities using the Harmonic Balance Method have been analyzed by
[28,[29] for tuned bladed disks (with neither mistuning nor detuning). The rst work concerning
the e ects of nonlinear geometrical ects of mistuned bladed disk based on a probabilistic
model without detuning can be found in[30].

It should be noted that, in the framework of linear dynamics, the introduction of intentional
mistuning induces a modi cation of the eigenfrequencies of the blades and allows the aerody-
namic coupling to be reduced [31,132) 33]. This type of result should be analyzed in nonlinear
geometrical dynamics. Nevertheless, the aerodynamic coupling is not considered in this paper.

This work is devoted to the robust analysis of theets of geometric nonlinearities on the
nonlinear dynamic behavior of rotating bladed disks that are detuned in presence of mistuning.
An ensemble of novel results are presented based on analyses performed with a stochastic com-
putational model of a bladed disk structure consisting of 24 blades.

The methodology used for obtaining these novel results and the organization of the paper are
presented below. Section 2 begins de ning the boundary value problem of the nonlinear geo-
metric dynamics for the detuned bladed disk in rotation taking into account geometriessi
gyroscopic coupling, and centrifugal stiess matrices (that are zero matrices when the rotation
speed is zero). The corresponding computational model is constructed by using the nite ele-
ment method. This computational model is referred as the nonlinear high- delity computational
model (NL-HFM). The robust analysis that is proposed cannot be performed using the NL-HFM
because the number of degrees-of-freedom is much too large for analyzing such parameterized
stochastic nonlinear dynamical system. Consequently, it is necessary to introduce an appropriate
parameterized stochastic nonlinear reduced-order model for carrying out the robust analysis.

The methodology used for the construction of this appropriate nonlinear reduced-order model
(NL-ROM) is presented. For this purposenadal basiss computed by solving the generalized
eigenvalue problem associated with the NL-HFM for which the rotation speed is zero (therefore,
without nonlinear geometrical ects, without damping, and without mistuning). A rst nonlin-
ear reduced-order model (NL-ROMF) is constructed by projecting the NL-HFM on the subspace
spanned by this modal basis.

Anothervector basids then calculated using the Proper-Orthogonal Decomposition (POD)
method [[34] 35] applied to the nonlinear solution of the NL-ROMF, which is solved in the time
domain. Note that this time solution is computed taking into account geometrieess, gyro-
scopic coupling, and centrifugal stiess matrix, for a given speed of rotation.

A projection basidor the NL-HFM is obtained by composing the modal basis with the vector
basis constructed with the POD method. The nal nonlinear reduced-order model (NL-ROM)
is then obtained by double projection of the NL-HFM that is to say, by projecting the NL-HFM
on the subspace spanned by the projection basis introduced above. At the end of this section,
we present the construction of the nonlinear stochastic reduced-order model (NL-SROM) that
is based on the nonparametric probabilistic approach of uncertainties [36] that is implemented
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in the NL-ROM. This NL-SROM describes the stochastic nonlinear dynamics of the detuned
rotating bladed disk in presence of mistuning. The NL-SROM is solved in the time domain using
the Monte-Carlo method. The random quantities of interest, related to the nonlinear stochastic
responses, are analyzed in both time and frequency domains.

Section 3 is devoted to the construction of the NL-SROM for the robust analysis of the de-
tuned bladed disk in rotation in presence of mistuning. Sections 4 to 6 deal with the robust
analysis of the 24-blades disk, including the convergence aspects.

2. Mean (or nominal) nonlinear reduced-order model of a detuned bladed disk in rotation
without mistuning

2.1. Assumptions and terminology
For the sake of clarity, one has to distinguish the following terms:

1. The tuned structure is related to the conceptual structure, which exhibits a péréeder
cyclic symmetry. For this con guration as denotedRs the geometry, the constitutive
equation of material, and the boundary conditions related to the reference sector are in-

. 2 . . : . .
variant under the— rotation around its axis of symmetry. A dynamic analysis can then be

performed by using only one reference sector with appropriate phase-lag conditions on the
boundary. In this work, the tuned bladed disk is analyzed in 3D as for the detuned bladed
disk.

2. The detuned (or intentionally mistuned) structure is related to the conceptual structure for
which there is a spatial distribution of dérent types of sectors that are characterized by
a given pattern. Here, we will only use two sector types with identical geometry and for
which the material properties of the blades areaedent. The detuned structure is de ned
by an assembly of these two sector types. Moe 24 blades, a pattern will be de ned,
for instance, by 1B6A3B3A, which consists of 12 consecutive blades of tf& of type
A, 3 of typeB, and 3 of typeA.

3. The mistuned structure is related to the real structure for which the cyclic symmetry is
broken and is de ned at the beginning of this Section. It is modeled by using the nonpara-
metric probabilistic approach of uncertaintiesl[36].

Itis assumed that:

(1) The bladed disk is made up of a linear elastic material.

(2) In the time domain, the amplitude of the external forces are assumed to loeestly large

so that the structure undergoes geometric nonlineacts induced by large displacements and
strains.

(3) The bladed disk is in rotation around its rotational axis at a constant rotation sjesis).

2.2. Nonlinear boundary value problem

We are interested in considering the nonlinear boundary value problem of the detuned bladed
disk in rotation. A total Lagrangian formulation is chosen and the nonlinear dynamic equations
are expressed in the rotating frame with respect to the reference con guration.The rotation axis of
the bladed disk is de ned d©; &3). LetR be the rotating referential cartesian coordinates system
and let O; e;; &; &) be its related basis. L& be the three-dimensional bounded open domain
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corresponding to such reference con guration and subjected to the body force(elt) =

(92(x; 1); g2(x; 1); g3(x; 1), in whichx = (X1; X2; X3) denotes the position of a given point belonging

to domainD. The boundary® is suchthatdd = [ with \ = ;. The external unit normal

to boundary@ is denoted byn = (ng;ny; n3). The boundary part corresponds to the xed
part of the structure (in the local rotating frame) whereas the boundary parsubjected to

the external surface force el@(x;t) = (G1(x;t); Ga(X; t); Ga(x;t)). Note that the external force
elds are derived from the Lagrangian transport into the reference con guration of the physical
body/surface force elds applied in the deformed con guration. We then introduce the3B

Figure 1: Scheme of the bladed disk in its reference con guration

2 ; 1)

corresponding to the rotational axis Q1) in R. From now on, the convention of summation
over repeated latin indices is used. The unknown displacement dRdi;xdenoted as(x;t) =
(ug(x; 1); u2(x; t); ug(x; 1)) and is solution of the following nonlinear boundary value problen [37].
Fori = 1;2;3, we have

rotation matrix R( )] such as

0
[RC )] = 0
0 0

o OO

@(@j Fik ki t G % = %+2 [Rlij%"’ [R]ij[R]jk(Xk+ uk);8x 2D: (2)
Fik kjinj=Gi;8x2 ; ©))
u=0;8x2 ; 4)



in which is the mass density and whereis the coe cient controlling the dissipation. In
Eq. [2), the deformation gradient tengois de ned by
@.
Fij = @: + i (®)
where j; is the second-order unit tensor such that= 1if i = j and 0 otherwise. The quantity
is the second Piola Kirchhosymmetric stress tensor for which the constitutive equation for a
linear elastic material is written as
ij = aijk Ex : (6)
In Eq. (8),ais the fourth-order elasticity tensor akds the Green strain tensor that is written as
!
-l @,0 @@ @
2 @& @& @@
It should be noted that Ed.](6) captures the nite displacements of the structure. In the present
context, it is assumed that there is no rigid body motion of the rotor and that the bladed disk
structure rotates around a xed axis. Such assumptions then allows for obtaining all the above
equations as can be shown|in|[38| 37,39, 40].

2.3. Nonlinear high- delity model (NL-HFM) for a detuned bladed disk

The nite element discretization of the weak formulation of the nonlinear boundary value
problem de ned by Eqs[(2) t§ [7) yields the following NL-HFM,

[MlG(t) + [D]+[Cq( )] u(®)+[K( Nu(t)+ () = fv); (8)
in which the @ n) matrix [K( )] is de ned by
[K( I = [Ke] + [Ke( )]+ [Kg( )5 9)

and is assumed to be positive de nite. In Hg. (8), Rievectoru(t) is the vector of the degrees-
of-freedom corresponding to the unknown displacements. The mass, damping, are$sti
(n n)real matricesli], [D], [K¢] are positive de nite, the geometric stiess§  n) real matrix
[Kg( )] is symmetric, the gyroscopic coupling ( n) real matrix Cy4( )] is skew-symmetric,
and the centrifugal stness @ n) real matrix K¢( )] is negative semi-de nite. More precisely,
matrix [Kg( )] is associated with the term[R];;[R] X« in Eq. [3), matrix Kc( )] with the term

[Rli;[R]jkux, and matrix Cqy( )] with the term 2 [RY;; @ TheR"-vectorf(t) is the external
force vector depending on time issued from the nite element discretization of the surface and
body force elds. TherR"-vectorf "' (u(t)) describes the nonlinear internal forces induced by the
geometric nonlinearities.

The corresponding linear high- delity model (L-HFM) is de ned similarly to Eq.(8) by removing
the nonlinear termiN (u(t)) and is written as

[M]a(t) + [D] + [Co( )] u(t) + [K( HJu®=£(t): (10)



2.4. Nonlinear reduced-order model (NL-ROM) for a detuned bladed disk

The objective of this Section is to construct a nonlinear reduced-order model for a detuned
bladed-disk. Such a construction requires the use of a vector basis for projecting the nonlinear
computational model. Many methods can be used for constructing such vector basis, see for
instance([41, 42, 30, 48, P29].

In this paper, the methodology proposed for constructing the NL-ROM is a novel approach,

brie y described in Section 1 and that we detail hereinafter. The construction of the NL-ROM
requires the knowledge of a consistent vector basis. Itis rst chosen of computing the vibrational
modes of the linear high delity model (L-HFM) that includes the rotation terms but for which the
damping term represented by matri¥][is removed and for which the gyroscopic coupling terms
are not considered, mainly to avoid the computation of a complex eigenvalue problem for very
large dynamical systems and to avoid the use of a complex basis for constructing the NL-ROM.
This vector basis is not an optimal one with respect to the convergence speed of the reduced-
order model since it ignores the nonlinear geometricalots and the gyroscopic coupling terms
(the damping matrix [D] does not in uence the convergence speed because damping is very
small). This intermediate NL-ROMF is nevertheless constructed in order to carefully study the
convergence of the nonlinear response related to the detuned rotating bladed-disk structure with
all the rotating terms, the nonlinear geometricatets, and the damping term. Such converged
nonlinear solution that is computed in the time domain is then used to calculate another real
vector basis using the Proper Orthogonal Decomposition method (POD-method). By combining
these two vector bases, a second NL-ROM is obtained with a reasonable size. Through this
NL-ROM, (1) the damping eect and all the rotating eects are taken into account, (2) for the
detuned rotating structure, the NL-ROM is of lower order, which is moreient than the NL-
ROMF in terms of computational costs, (3) the probabilistic model describing the mistuning can
be implemented through the nonlinear stochastic reduced-order model (NL-SROM). In addition,
it allows for decreasing the computational costs for the Monte Carlo numerical simulation using
a parallel computer.

2.4.1. First nonlinear reduced-order model (NL-ROMF) for a detuned bladed disk

The nite element model of the detuned bladed disk will exhibit a large number of degrees-
of-freedom (dofs), for instance, 1 million, yielding a large NL-HFM. Since the objective of this
work is to perform a robust analysis of this NL-HFM demanding an extensive parametric study
with respect to a subsequent number of distinct patterns, it is essential to consider a nonlinear
reduced-order model (NL-ROM). The construction of the corresponding NL-ROM requires the
knowledge of a projection basis. As explained in Sedfion 1, we have to construct a projection
basis that is performed in two steps. For the rst step, consisting in calculating a modal ba-
sis, a possible strategy would consist in solving the generalized eigenvalue problem related to
the linear, conservative, and homogeneous problem associated with érertial equatior] {8),
yielding complex eigenvectors because of the gyroscopic coupling matrix. To avoid this di
culty, the modal basis is chosen to be real and is built as follows. The eigenfrequenares
the corresponding elastic modesare obtained by solving the following generalized eigenvalue
problem, B

[KCOHI™ = M7 (11)

with = f1;::;;mg where the eigenvalues = (2 ~ )?aresuchthat& 16 ,6 6 o,

such thatT 1T [MI[ ] = [1m]-
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The rst nonlinear reduced-order model (NL-ROMF), as proposed in Sefction 1, is obtained by
. . —Mm. . .
projecting Eq.[(B) on the subspace generated by gnd is written as

u® = 19e); (12)

[M 160+ (D1+[G( DT+ [K(OITO+F ~ §) = F®; (13)
in which g(t) is the R™-vector of the generalized coordinates and whéve [, [D], [ G( )],

and [K( )] are the (n  m) reduced mass, damping, gyroscopic, andrags matrices, which
are deduced fromNl], [D], [Cg( )], and [K( )]. In Eq. (I3), theR™-vectorF (t) is the vector

of the reduced external forces depending on time. FEﬁe/ectorENL(a(t)) is the vector of the
nonlinear reduced internal forces de ned by

Fl @) = TN a)) (14)

2.4.2. Linear reduced-order model (L-ROM) for a detuned bladed disk

When the nonlinear reduced internal fordes are removed from Eq[(13), the linear
reduced-order model corresponding to EQs} (12) (13) is then denoted as L-ROM.

2.4.3. Second nonlinear reduced-order model (NL-ROM) for a detuned bladed disk
As explained in Section|1, the second step consists in using the POD-method applied to the
NL-ROMF, which allows for taking into account the ects of the gyroscopic coupling.
Equation[(IB) is solved using a Newmark scheme for which a constant time tsiepsed.
At each time step, the nonlinear algebraic equation is solved using either the xed point method
or a continuation method based on the arc-length method depending on the local nonlinearity
rate. Letn; be the number of time steps. It should be noted that the distance between two
consecutive snapshots could be chosen aswvherer is a given integer greater than or equal to
1. Nevertheless, since the POD is applied to NL-ROMF, which has a small dimension, it
is not penalizing to take = 1. Let [A] be the (n  ny) real matrix withn; > mde ned by

[Alij = qi(ti)p_t; (15)

in which the constant time stept is used as the distance between two consecutive snapshots for
the construction of the POD basis. The vector basis is made up of the eigenvectors corresponding
to largest eigenvalues of they( m) real matrix [C] de ned by

[C] = [A[A]" : (16)

It should be noted that the rank of matri][is m that is less than or equal to (if m < m,

then [C] is not positive de nite but only positive). In practice, matri€]is not computed. Its
eigenvalues and its eigenvectors are obtained by computing the singular value decomposition
of matrix [A] using an economy size algorithin_[44]. Removing the zero singular values, this
decomposition can be written as,

[A] = [WI[S]IVIT ; (17)



in which [W] is the (n ™) real matrix withm m, where V] is the (n ™) real matrix, and
where thefn M) matrix [S] contains all than non-zeros singular values sorted by decreasing
orders; > s, > > s5 > 0, which are the square-roots of the positive eigenvalues of matrix
[C]. It can also be shown that tilecolumns of matrix YV] are the corresponding eigenvectors of
matrix [C] associated with the positive eigenvalues and maWikig such thaty]" [W] = [Ix].
Let[W (m; N)] be the (n  N) matrix withN 6 m < mthat contains the eigenvectors related to the
N greatest singular values, =f1; ;Ng which is such thatyv (m;N)]™ [W (m; N)] = [In].
Finally, the projection basis, represented by time (N) real matrix [ (™N)] that will be used for
obtaining the NL-ROM, is constructed such that

[N = [T pw Ny (18)

with [ ™N]T[M][ (™N)] = [In]. The NL-ROM is then obtained by projecting the NL-HFM,
that is to say, is written as

u® =1 ™ aq@; (19)

[M 18() + ([D] + [G( D) a® + [K( ) a® + F (@) = F ©); (20)

in which q(t) is theRN-vector of the generalized coordinates, whé€¢ [)]is the N N) matrix
that is written as

[K( I = [Kel + [Ke( )]+ [Kg( )] (21)

and whereKe], [Kc( )], and [Kg( )] are the reduced elastic, centrifugal, and geometric matri-
ces. InEq.[(ZD), theN N)real matricesi ], [D], [Gy( )], and [K( )] are the reduced matrices,
which are deduced fronM], [D], [Cq( )], and [K( )]. The normalization of matrix [™N] is
such thatM ] = [In]. The RN-vectorF (t) is the generalized external forces. In Eg.(20), the

as
FN()=K® qq +K® gqqq; (22)

in which the quadratic and cubic stiess contribution&® andK® are written [45/ 46] as

K(Q) - % R(2) + R(Z) + R(Z) : (23)
with
2 o
R = Akm jk 5 sm dx (24)
1 Z
K& = 2 jkcm’ r;j' r;kl s Simdx ; (25)

inwhich' | corresponds to the entry {"™™]; . Note thattensak® has permutation-invariance

property and that tensat® has positive-de niteness property. The notatigpn means the
partial derivative ofy, with respect tox;.



3. Stochastic linear and nonlinear reduced-order models of a detuned rotating bladed disk
with mistuning

In this section, we introduce two probabilistic models for NL-ROM, yielding two nonlinear
stochastic nonlinear reduced-order models, NL-SROM1 and NL-SROM2. The NL-SROM?2 is
introduced in order to compare it with L-SROM that will be constructed as the NL-SROM2
without the nonlinear internal forces, while NL-SROM1 will be the full probabilistic model for
the nonlinear case.

3.1. Stochastic nonlinear reduced-order model NL-SROM1 of a detuned rotating bladed disk
with mistuning

The rst stochastic nonlinear reduced-order model (NL-SROML1) is based on a full prob-
abilistic model and corresponds to a probabilistic modeling of the mistuning for the detuned
rotating bladed disk. Note that only the nonlinear internal forces (including the linear elastic
part) are assumed to be uncertain and consequently, are modeled by random quantities. As previ-
ously explained, the nonparametric probabilistic approach for geometric nonlinearities|[45, 36]
is used. It involves a positive\,  Nj) real matrix KN] with N, = N(N + 1) which is written

as é R(Z)
_B [Keg [K] i
[KNT = R’ 2r9 Y (26)

in which [K¢] is the reduced elastic matrix de ned in Ef. {21) and Whe?g)ﬂ and [R(s)] are
respectively thell N2?) and N> N?2) real matrices resulting from the following reshaping
operation,

[R(Z)] J= R(Z) ; [K(g)]u =K® (27)

withl = ( 1N+ andJ=( 1)N+ . The corresponding random matrik '] is then
written as

[KNT = (LG ( Ik + [ R]; (28)

in which [Lg]isa (N  Ng) real matrix whose columns contain thg eigenvectors of matrix
[KNL] associated with the rsiNg largest eigenvalues. Such factorization allows for reducing
the size of the random matrik ( «)], as proposed ir [47]. The fulNg Ng) random matrix
[6k( )] with Ng Ng is constructed using the Maximum Entropy princigle![48, 36]. In
Eqg. (28), the Na N,) real matrix [ K] is written as

[ Rl =[K™] [LllL]"; (29)

and Ef[K N']g = [KNY] becauseEf[&k( k)]g= [In.]. The hyperparameterc allows for con-
trolling the level of uncertainties in random matrix ['*]. The random linear, quadratic, and
cubic coe cients, Ko , K@, andK® | are extracted from random matrik ['*] that have

the same block structure as its deterministic counterpart de ned irf Eg. (26). The rst stochastic
nonlinear reduced-order model, NL-SROM1, is then written as,

u® =1 ™1Qw; (30)



[M1Q()+ [DI+[C( ) QM)+ ([Kel + [Ke( )]+ [Kg( ) Q1)
+FMS QW) =F®; (1)

in whichQ(t) is theRN-valued random variable. In E{[- (31), the vector of the stochastic nonlinear

FNS@ =K@ qq +K® gqqaq: (32)

3.2. Stochastic nonlinear reduced-order model NL-SROM2 of a detuned rotating bladed disk
with mistuning

The second nonlinear stochastic reduced-order model, NL-SROM2, is de ned by Elgs. (30)
and [3]) for which two modi cations are performed. Firstly, the stochastic nonlinearity term
F N"5in Eq. [31) is replaced by the deterministic nonlinearity téftl- de ned by Eq. [22).
Secondly, another probabilistic model is introduced for the random positive-de Nite K)
matrix [K ¢], which is written as

[Kel = [Li J1Gk( Lk " (33)

in which [Ly ] is the lower triangular{l  N) real matrix, which results from the Cholesky
factorization of N N) real matrix K¢], and where Gk ( k)] is the random N N) positive-
de nite real matrix that is similarly constructed &8§( «)].

3.3. Stochastic linear reduced-order model L-SROM of a detuned rotating bladed disk with mis-
tuning
We also introduce a stochastic linear reduced-order model L-SROM, which is the NL-SROM2,
in which the nonlinear terr& NS is removed.

3.4. Observations of the nonlinear dynamical system

Observations of the nonlinear dynamical system have to be de ned for performing the robust
analysis of the detuned rotating bladed disk with or without mistuning. It is recalled that, in
presence of mistuning, the responses are random. There are several ways for de ning the ob-
servations. We have chosen one, which is coherent with all the analyses that are performed in
the frequency domain. First, we will de ne only one observation point for each blade, which
is located at its tip. This means that, the number of observation points is equal to the number
of blades. For the detuned rotating bladed disk without mistuning, we will look for the blade
number jo where the maximum related to the amplitude of the displacement occurs, over all
the blades and for the entire frequency band of analysis. It should be noted that, in presence
of mistuning, jo becomes a random variable. Nevertheless, we want to characterize the random
responses— of the detuned rotating bladed disk in presence of misturingith respect to the
deterministic response of the detuned rotating bladed disk without mistuning. Consequently, we
have chosen to keejp as the deterministic blade number for the case for which mistuning is
taken into account.

Figure[2 shows the computational model of the bladed disk for which, as previously explained,
the M observation points are located at the tip of each blade (red dots). We rst consider the
detuned rotating bladed disk without mistuning. For each tiared for the observation in blade

j, letul(t) = (uj(t); uj(t); uj(t)) be the vector whose coordinates are given in the local basis
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(e{;ei;eé). For freqL_Jency ir_1 Hz, the Fourier Transform of function7! ul(t) is written as
b'(2 )=(®(2 )by2 )02 )). We have to nd the blade numbgs such that

jo = arg_max jija’jj; (34)

=1L0M

in which jjjo’jjj is such that _ _
jiiojjj = maxijip’ (2 )jj; (35)

with Id]j(2 K2 = Pﬁzljbf((Z )j?. For the tuned rotating bladed disk (therefore, it is not detuned

and there is no mistuning), the quantjiia’jjj will be rewritten asjj,ht“”e’ﬂjj. It should be noted

that, the blade numbeg depends on the considered pattern and on the type of the analysis, which
is performed for the detuned rotating bladed disk. There are two types of analysis, the linear one
denoted by subscript L and the nonlinear one denoted by subscript NL. These subscripts will be
omitted when no confusion will be possible.

We are interested in characterizing the ampli cation levels for the nonlinear deterministic
and random cases. The random observations corresponding to the detuned-mistuned cases are
similarly denoted by replacing lowercase letters by uppercase ones. We then de ne quantities
b(2 )andB(2 ) as the deterministic and random dynamic ampli cation factor such that

@ j

b2 )="——-_2 (36)
il
02 i

B2 )= —— 2 (37)
ji""gj

Figure 2: Finite element model of the bladed disk with 24 blades in which the dot symbols (red
color) correspond to the excitation points (left gure). Zoom of the nite element model of a
sector (right gure).

3.5. Remark concerning the software implementation

It should be noted that a commercial software is used for developing the nite element model
of a given sector of the bladed-disk. All the other steps (constructing the computational model,
11



computing the vector bases, constructing the LROM, the NL-ROM, the L-SROM and the NL-
SROM, computing the linear and nonlinear deterministic and stochastic dynamical responses)
are processed using a house code. Since a house code is used, there is no problem for a direct
implementation of the NL-ROM and NL-SROM (se¢e [45] 46]).

4. Robust analysis of the detuned bladed disk in rotation in presence of mistuning using
the NL-SROM

From an industrial point of view, such a robust analysis is of particular interest when excep-
tional operating ranges are considered (severe loads or close to a utter situation). In such cases,
the geometric nonlinearities can no longer be neglected and strongly modify the dynamical re-
sponses of the structure with respect to the usual linear case. The robust analysis presented will
then correspond to such exceptional operating ranges.

4.1. Finite element model of the tuned bladed disk with 24 blades

The nite element model of the tuned bladed disk is shown in Figlre 2. TherMare24
blades and the bladed disk rotates around its cyclic axis with a constant rotation speed
2  T74rad=s (4440RPM). The material is steel, which is considered as a homogeneous and
isotropic elastic material with Young modulus 210**N m 2, Poisson's ratio 3, and mass
density 765Kg m 2. In the rotating frame, the disk is clamped at the inner radius of the
disk (see Figurg]1). The main geometric characteristics are summarized irf JTable 1. The nite

Inner disk radius 19.8 10°m
Outer disk radius 100 103m
Disk width 20 103m

Blade thickness at root sectidn 4.8 10 ®m
Blade thickness at tip section 2 10 *m

Table 1: Geometric characteristics of the bladed disk

element model of the reference sector has been carried out using tridimensional isoparametric
solid nite elements with quadratic shape functions. The nite element mesh of a reference sector
is constituted of 37 488 hexahedral nite elements with 20 nodes, 1 848 pyramidal elements with
13 nodes, and 45 864 tetrahedral elements with 10 nodes. The nite element model of the full
bladed disk is then obtained from the nite element model of the reference sector. The numerical
description of the nite element model is given in Taple 2. It should be noted that, for the linear

Structure Elements| Nodes | DOFs
Blade alone 2714 6896 | 20688
Disk sector 836 4554 13662

Full structure| 85200 | 265080 787176

Table 2: Element, nodes, and dofs of the nite element model

tuned rotating bladed disk, the eigenfrequency of the elastic mode that corresponds to the rst
exural mode of the blade with a 4-nodal diameter {s= 435Hz. Following the damping model
introduced in Eq.[(2), the Rayleigh damping model is chosen in order that the critical damping
rate be equal to 18 for the fundamental eigenfrequency.

12



4.2. De nition of the patterns for the detuned bladed disk

The computational model of the detuned bladed disk is constructed from the knowledge of
two compatible meshes of two dérent sector types denoted AsindB. The reference sector
B is obtained from sectoh by decreasing the Young modulus of the blade by 10 %; the Young
modulus of the disk remains unchanged. Fidyre 3 shows the tuned sygten24A and the
detuned on®3; = (6A6B)s.

Figure 3: Tuned systeidg = 24A (left gure) and detuned systeR3; = (6A6B), with red blade
for B and blue blade foA (right gure). For black and white printing, red color is light grey and
blue color is black.

4.3. Eigenfrequencies of the linear tuned rotating bladed disk

Figure[4 displays the Campbell diagram representing the evolution of the eigenfrequencies

of the linear tuned rotating bladed difl§ according to rotation speed. The dashed lines
represent th&O-engine order excitation characterized by functioid! EO  =60. A required
condition for an Engine Order (EO) excitation to excite a bladed-disk is that the EO frequency
coincides with the natural frequency of the bladed-disk. It is then possible to graphically detect
the possible resonant points. The intersection of the natural eigenfrequencies with the dashed
lines gives then an indication of the rotating speed yielding resonant situations of interest. The
EO excitation is a periodic force that can be given by

iM h=k EO; (38)

in which j andk are integers, and whetes the circumferential wave number corresponding to
the number of nodal diameters of the considered mode.

Figure[5 displays the graph of (h) as a function of the circumferential wave numbefor
the linear tuned rotating bladed disk (con guratiBg) for which rotation speed is 4 440P M.
For this rotation speed, we are interested in the rst 3 modes relatad=tc4, which are the
rst bending mode of blades (mode 1 at 484), the second bending mode of blades (mode 2 at
1170H2), and the rst torsion mode of blades (mode 3 at 1 4B0).

4.4. De ning the external forces (excitation)

The objective of the presented analysis is not to compute the nonlinear dynamical response
for a general physical excitation, but is to present a sensitivity study for understanding the role
played by the geometrical nonlinearects with respect to the linear counterpart. In this frame-
work, it should be noted that this choice is coherent with the fact that no aerodynamic coupling is

13
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Figure 4: Graph of 7! () de ning the Campbell diagram of the eigenfrequencies (in Hz)

of the linear tuned rotating bladed disk (patt@g) as a function of the rotation speed (in RPM),
where EO denotes the engine order, and where the vertical dashed line identi es the speed of
rotation that is considered.
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Figure 5: Graph oh 7! (h) of the eigenfrequencies of the linear tuned rotating bladed disk
(patternPy) for rotation speed= 4 440RPMas a function of the circumferential wave number
h.

taken into account. Inspired by the type of analyses performed for the linear mistuned cases, the
external forces have been chosen in order to control the circumferential wave number and also
the frequency band of excitation, which has to be siently narrow around the speci ed fre-
guency of interest. For the role of the nonlineaeets, this type of excitation allows for clearly
analyzing the transfer of energy outside the excitation frequency band (which is the objective of
the paper).

According to the Campbell diagram displayed in Fidure 4, it can be seen that the third mode
intersect the EO line correspondingE®= 20 for the considered rotating speed 4 440RPM
(rotation per minute). As a consequence, the excitation is chosen with circumferential wave

14



numberh = 4 (nodal diameter), for which Ed. (B8) is satis ed wifk k=1.

The excitation frequency band is choserBas= [1 000, 1 600]Hz, which contains the rst
two eigenfrequencies corresponding to the exural mode and the torsion mode of the blade as
shown in Figur¢ 4. In the time domain, the external force vef¢tpis de ned by,

f(t) = sog(t) f°; (39)

in which f ® is the vector representing the spatial distribution of the external forces in (N), which
depends on the circumferential wave numbgeand where the dimensionless time-functiof

g(t) is de ned onR and is constructed so that the modujg& )j of its Fourier transform

b(2 )isequalto 1 in excitation frequency baBdand equal to zero outsid&. The reference
intensity of the force applied is representeddtt) f *(N) and the level of nonlinear geometric

e ects is driven by the dimensionless parameterFor s = 0:01, the nonlinear geometrical

e ects will be negligible, fors, = 0:15, the nonlinear geometrical ects will be moderate,

and forsy = 1 the e ects will be large. Note that the valisg = 4 has also been used for the
sensitivity analysis and correspond to strongets. Figurels|6 and| 7 show the graphs of function

t 7! g(t) and the modulus of its Fourier transforn¥! jlg(2 )j. The frequency band of analysis

is B; = [0; 4 000]Hz. It should be noted that, from a computational point of view, the numerical
values ofjg(2 )jfor in BanBe are not exactly zero but der with three orders of magnitude
lower, which means that the linear dynamic response will have negligible magnitude in the band
BanBe (that will be not the case for the nonlinear dynamic response). From a numerical point of
view, functiongis truncated by choosintg; = 0:065s such thag(ti,) = 0 with a time duration

T = 0:15s. The computations are carried out with = 4096 time steps, using a sampling
frequency ¢ = 16 000Hz. The nonlinear dynamic analysis is performed in the time domain
according to Eq[(40). A Fourier transform of the time response (a deterministic time response or
a realization of the stochastic time response) is carried out and allows for anadyaosieriori

the nonlinear dynamic responses in the frequency domain (in a deterministic framework or in a
stochastic one).
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Figure 6: Zoom on the interval P:02; 0:02]s of the graph of the time-function excitation,
t 7! g(t), de nes on interval [ 0:065; 0:15]s.
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4.5. Convergence analyses with respect to the parameters that control the reductions and the
Monte-Carlo numerical simulations

4.5.1. Convergence analysis with respect to the nonlinear reduced-order model

In this section, the convergence analysis of the deterministic response of the NL-ROM is
considered for a given pattern of a detuned rotating bladed disk (without mistuning). We estimate
the optimal values of parametarsandN related to the truncation of the vector bases used for
constructing the NL-ROM (according to Sect[on 2]4.3). €2 ) be the scalar value such that

4 e
B2 )= PR P (40)

=1

When dealing with the rst reduction, involving modal matrix T], m(2 ) is denoted by
™2 ). When dealing with the nal reduction, involving the modal matrix"[N], (2 )

is denoted by™N(2 ). A rst convergence analysis is performed with respect to the number
of modes to be kept in the NL-ROMF. L&onv (m) be the function de ned by

S z

Conwvi(m) = b2 )%d: (41)
B

a

Figure[§ displays the graph of functiom7! Conwv(m) for the three dierent patterns (the tuned
patternPy = 24A and two detuned patteri®, = (AB);» andP;3 = 6B12A3B3A). A good
convergence is obtained fon = 145 that will be the retained value. A second convergence
analysis is then carried out with respectNo< m = 145 according to Eq[ (18). L&onw(m; N)

be the function de ned by

Sz
Conw(m; N) = . N2 ) 2d (42)

a
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Figure 8: Convergence analysis with respect to the ardefrthe NL-ROMF: graphs of function
m7! Conw(m) for patternsPy = 24A, P> = (AB)12, andP 13 = 6B12A3B3A.

Figure [9 displays the graph of functidh 7! Conw(m = 145 N). It can be seen that a good
approximation is obtained fdd = 55, which proves the eciency of the reduction strategy that
is proposed.
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Figure 9: Convergence analysis with respect to the didefthe NL-ROM form = 145: graphs
of functionN 7! Conw(m; N) for patternsPg = 24A, P, = (AB)12, andP13 = 6B12A3B3A.

4.5.2. Convergence analysis with respect to the numbesfidolumns of matriLg]

From the previous section, the order of the NL-ROMNis= 55. This means that the dimen-
sion of matrix KN'] de ned in Eq. [28) isN, = 3080. Random matrix "] is represented
by Egs. [[28) and (29), which depends on the nun¥gmf columns of matrix [x]. We then
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introduce the relative error functidds 7! err(Ng) such that

vV
R 2
err(Ng) = %; (43)

in whichk k- is the Frobenius norm. Figufe]10 displays the grapN@f7! err(Ng). A good
convergence is obtained fdl; = 500, which allows for reducing the size of the random matrix

[Gk( k)] used in Eq.[(ZB).
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Figure 10: Convergence analysis with respect to the number of collgref matrix [L]:
graph of functiorNg 7! err(Ng) in log-scale.

4.5.3. Convergence analysis of the NL-SROM with respect to the number of Monte-Carlo simu-
lations
In this section, parametens, N, andNg are such thatn = 145,N = 55, andNg = 500. The
dispersion parametek is xed to the value 0L. Let

¥ |
we )= P )P (44)
=1
be the random variable corresponding to Eq] (40) for the stochastic case. The stochastic equa-
tion (37) is solved by using the Monte-Carlo numerical simulation withealizations denoted
by 1; ; n. LetW(2; -)be the realization- of the random variabl®/(2 ). The con-

vergence analysis with respectngis then carried out studying the functiog 7! Conw(n)
de ned by
14 o Z

Conu(ng = - W@ (45)

s g

In order to limit the CPU-time for performing the robust analysis of the detuned systems in
presence of mistuning, we choose the valuegtb be 500, which corresponds to a reasonable
compromise with respect to the level of convergence.
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Figure 11: Convergence analysis with respect to the numbef realizations for the Monte-
Carlo numerical simulation of the NL-SROM: graph of function7! Conw(ng).

5. Nonlinear deterministic analysis of nonlinear tuned and detuned rotating bladed disks
without mistuning

In all this section, we consider the nonlinear tuned rotating bladed disk and the nonlinear
detuned one without mistuning, which are analyzed using the NL-ROMF and the NL-ROM.

5.1. Sensitivity analysis of the deterministic responses for the nonlinear tuned rotating bladed
disk with respect togs
This external-forces sensitivity analysis is performed using the NL-ROMF with145 for
the nonlinear tuned rotating bladed disk (pattBgn= 24A). The objective is to determine the
value of parametes, for which the geometric nonlinear ects occur in the dynamic response.
This analysis is performed by quantifying the enekgy outside the excitation frequency band
Be (that is to say, in the bar;nB.) such that

aR .

. BB, M2 %) °d

inL(S0) = —&R > . (46)
5, B2 %) 2d

Figure[12 displays the graph of functi@s 7! in_(S). It can be seen that geometric nonlinear

e ects appear fogg > 0:10. Figur displays the graph of functiof! jjn'°(2 )jj constructed

with the NL-ROMF for sy equal to 004 (response belonging to the quasi-linear regime of the
nonlinear response), and equal t8%) 111, and 40 (response belonging to the nonlinear regime

of the nonlinear response). The left top gure clearly shows a dynamic response that remains
in the linear regime (there is no response out@ge On the other hand, subsequent contribu-
tions with unexpected resonances appear ouBida the frequency ban8,nB, as soon asg
increases.

5.2. Linear and nonlinear dynamic analyses in the time domain using the L-ROM and NL-ROM
In this section, the linear and nonlinear dynamic responses of the tuned con guration (pattern
Po = 24A) and three detuned con gurations (pattefs = (4A2B)4, P11 = B4AB18A, Pys =
19



10°

T
1072
10 :
10°®
0 1 2 3 4

Figure 12: Sensitivity analysis with respect to paramsjeising the NL-ROMF for the nonlinear
tuned rotating bladed disk (pattelfg = 24A): graph of functionsy 7! in (So)-
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Figure 13: Sensitivity analysis with respect to paramegesf the response computed with the
NL-ROMF and analyzed in the frequency domain: graphs of functi@hjjn’°(2 )jjfor s =
0:04 (left top gure), sy = 0:25 (right top gure),s = 1:11 (left down gure), andsy = 4.0
(right down gure). The light yellow zone corresponds to the excitation frequency Band

3A3B3A15B) are analyzed. Figu@4 displays the graph of functiah ué‘;’L(t) for patterns

(Po, Ps, P11, P2s) corresponding to a linear computation performed with the L-ROM de ned

in Sectio. Figure 15 displays the graph of uJZ?NL(t) for patterns Po, Pg, P11, P2s)
corresponding to the nonlinear computation performed with the NL-ROM. By comparing the
nonlinear results with the linear ones, it can be seenghat1 yields high nonlinear geometric

e ects that mitigate the amplitude of the responses and show "irregular” responses, suggesting
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numerous resonances contributing outside d&nd
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Figure 14: Zoom on the time interval 0:01; 0:1] s of the linear dynamic analysis in the time
domain performed with the L-ROM: graph of functiory! u“’ . (t) de ned on the time interval

[ 0:05; 1:5] sfor the pattern® (left top gure), Pg (right top) P11 (left down), andP,s (right
down).

5.3. Analysis the nonlinear dynamic time responses in the frequency domain

A Fourier transform is then performed on the time responses constructed with the L-ROM
(linear) and the NL-ROM (nonlinear), allowing the spectrum of the responses to be analyzed in
the frequency band of analydig = [0; 4 000]Hz We are interested in the dynamic ampli cation
factorb(2 ) (de ned by Eq. [36) with respect to the tuned con guration. Fidurg 16 displays the
graphs of functions 7! b (2 ) (linear) and 7! by (2 ) (nonlinear) for the tuned rotating
bladed disk (pattery) and for the detuned rotating bladed disks (pattétgsP11, P2s). By
comparing the linear responses with the nonlinear ones, it can be seen the steotgaf the
nonlinearities outside the frequency band of excitaBgrand that new resonances occur below
and above this frequency baBd. Such phenomena has previously been observed [30, 49] in the
turbomachinery context. In order to better understand the discrepancy of the detuned nonlinear
dynamic responses with respect to the tuned one§, |¢R ) be the upper«) and the lower
() envelopes of the dynamic ampli cation factors. Figliré 17 displays the graphs of functions

7" b2 )and 7! b‘h‘jfe"(Z ) corresponding to the nonlinear computations performed
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Figure 15: Zoom on the time interval 0:01; 0:1] s of the nonlinear dynamic analysis in the time
domain performed with the NL-ROM: graph of functibid! u'z‘fNL(t) de ned on the time interval

[ 0:05;1:5] sfor the pattern®q (left top gure), Pg (right top), P1; (left down), andP 5 (right
down).

with the NL-ROM. It can be seen that the nonlinear dynamic response is very sensitive to the
detuning, especially outside baBd. At a given frequency, the ampli cation factor can strongly
di er from one pattern to another one.

6. Analysis of the stochastic linear and nonlinear tuned and detuned rotating bladed disks
with mistuning

In all this section we consider the nonlinear tuned rotating bladed disk and the nonlinear
detuned one in presence of mistuning, which are analyzed using the NL-SROM1, NL-SROM2,
and L-SROM de ned in Sectionl 3.

6.1. Sensitivity analysis with respect to parametgfos the tuned and detuned rotating bladed
disks in presence of mistuning

The objective is to quantify and to give explanations concerning tleets of the level of
uncertainties related to the level of mistuning. In that sense, a parametric analysis is carried
out with respect to (i) the dispersion parametgrthat controls the level of uncertainties in
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Figure 16: Frequency analysis of the time responses computed with the NL-ROM: graphs of
functions 7! b (2 ) (red smooth thin lines) and7! by, (2 ) (blue irregular thick lines) for
patternsP, (left top gure), Pg (right top), P11 (left down), andP 45 (right down). The excitation
frequency band, is in light grey area.

the computational model and (ii) paramesgr A comparison is performed between the lin-
ear stochastic responses computed with L-SROM and the nonlinear stochastic responses com-
puted with NL-SROM2. LeBmay(so) be the real-valued random variable de ned®yaq(so) =
maxg_kU*(2 ; so)k depending orsy. Letbinma(So) be the real number depending apnsuch
that ProbéDJmax(so) bimax(So)g  0:95. Figur displays the functicg 7! bimax(So) com-
puted with the stochastic models L-SROM and NL-SROMZ2 for= 0:1 and for the patternBq
(tuned) andPg (detuned). It can be seen that the propagation of uncertainties for the nonlinear
geometrical eects (NL-SROM2) is smaller than for the linear case (L-SROM). This attenuation
is more important whiley is increasing, that is to say when the nonlineagets increase. More-
over, Figur displays the graph of the con dence regionﬂfjj@'o(z )jj corresponding to a
probability level 095 for both patternP g (tuned) andPs (detuned) computed using NL-SROM2
for three external-forces intensitigg= 0:01, 5 = 0:15, andsy = 1 corresponding to negligible,
moderate, and large geometric nonlineaeets. It can be seen that feg = 0:01, the response
in the frequency domain is clearly located in excitation frequency Bansimilarly to the linear
case. For the medium and high valuessgfgeometric nonlinear eects yield unexpected reso-
nances that occur outsidg, especially, around 484z (mode 1 de ned in Sectiop 4.3), which
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corresponds to the rst bending mode of the blade and 3¥9Qvhich corresponds to a com-
bination of elastic modes. In addition, the general level of responses outsiddBpamdease
with 55. Concerning frequency band of excitatiBg, it can be seen that the second bending
mode of blade (mode 2 around 1 1M@de ned in Sectiorj 43) is relatively stable in frequency
with respect tosy while the rst torsion mode of blade (mode 3 at around 1 #20de ned in
Sectior{ 4.B) tends to vanish when the nonlinear geometects increase. Furthermore, it can
be noticed that the width of the con dence region is not constant with respect to the frequency.
LetBL(2 ; k) be the random variable depending qn de ned by Eq. [(3}). and constructed
using the L-SROM. LeBﬁ ( k) be the random variable de ned by

Bl (k)= szngBL(Z yOK)

which corresponds to the maximum dynamic ampli cation factor over the excitation frequency
band. We then denote qu?l ( k) the value ofBﬁ ( k) depending onk and such that

ProbdB} ( k) bi™(«)g 0:95:

Figure displays the graph of function 7! bt;l k) for seven patterns of con gurations:
tuned pattertPo and detuned ond?;,, P3, Ps, Pg, P12, andP3; de ned in Appendix A. The re-

sults obtained are coherent with those published in [25], especially, for each pattern, a maximum
is obtained for a small mistuning (small value ).

6.2. Stochastic analysis of nonlinear tuned and detuned rotating bladed disks in presence of
mistuning for patterns

In this section, we present the results obtained using NL-SROM1 for the nonlinear tuned and
detuned rotating bladed disks in presence of mistuning.
LetBnL(2 ; k) be the random variable depending an de ned by Eq.[(3F), and constructed
using the NL-SROML1. For two values ok controlling the mistuning level, Figufe 14 =
0:03) and Figuré 42 = 0:1) display the con dence region of random variallg_(2 ; «),
estimated with a probability level of:@5, for con gurationsPq (tuned), and foPg, P11, and
P25 (detuned de ned in Appendix A). These gures allow for estimating the robustness of the
responses with respect to the level of uncertainties as a function of the considered patterns. Nev-
ertheless, the rst torsion mode for= 4 (mode 3 around 1498z de ned in Sectior 4.3 located
in Be is very sensitive to the mistuning, as already mentioned for the linear case in $ection 6.1.
It can be seen that the nonlinear stochastic response of the mistuned-detuned bladed disk is par-
ticularly complex. It should also be noted, as in Secfion 6.1, that unexpected resonances occur
outside the excitation frequency band as soon as the level of nonlinearities is signi cant.

6.3. Stochastic analysis of nonlinear tuned and detuned rotating bladed disks in presence of
mistuning for46 patterns

The analysis that we have presented in Se¢tioh 6.2 is revisited considering all the 46 patterns
de ned in Appendix A. For simplifying the presentation of the results, the 46 patterns (the tuned
pattern and the 45 detuned patterns, all in presence of mistuning) are considered as 46 realizations
of a random mechanical system. L@'L(Z ) be the random ampli cation factor de ned by
Eq. [37) of this random mechanical system, estimated using the NL-SROMX fer0:1. In
practice, the con dence region associated with a probability level:@6 @f random variable
Bal (2 ) is estimated in concatenating all the Monte-Carlo realizations computed for each one
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of the 46 patterns. Figufe P3 displays (in linear and log scales) the con dence region of the
deterministic ampli cation factob‘;“[‘ed(z ) for the tuned rotating bladed disk without mistuning
and the random variabm"'_(z ) for all the 46 patterns de ned in Appendix A, which includes,
as previously mentioned, the tuned pattBgin presence of mistuning. We use the same type
of analysis as the one that we have presented in Séctipn 6.2. This gure shows that the values of
the random ampli cation factor, which occur outside excitation frequency IBans signi cant
and is sensitive to uncertainties. It should be notedbﬁ?ﬁd(z ) is included in the con dence
region. Moreover, the analysis of Figlirg 23 shows that the robustness of the stochastic response
around the two main resonances located in H&nid signi cantly higher than outsidBe, while
noting that there are relatively high levels outsiig(in linear, there is no response outside the
bandBg). In the low-frequency band [@000]Hz (not excited by the external forces), there are
mistuned con gurations for which the amplitude level outsBieis four times lower than the
one inBe. Nevertheless, it should be noted that the levels of responses (induced by the nonlinear
geometric eects), which occur outside baid, depend on the bladed disk, and that these levels
could be larger than in the frequency baddfor other bladed disks.

These results lead us to split the frequency band of anaBysis 3 sub-frequency bands to
better analyze the ampli cation factor. We then de ne the following barig; = [0; 1 000]Hz,
Bmed = [1000 1300]Hz, andBhigh = [1300,4000]Hz. Note that ban®Bmeq is included in
frequency band of excitatioBe and that bandBign overlaps band, with the common fre-
guency band [1 30 600]Hz. This partition of the frequency band of analysis has been intro-
duced in order to analyze the ampli cation of the resonances in each sub-frequency band. Let
flow; med highgbe the set of the three strings of characters such that, for®&lodr; med highg
the bandBpangdenotes one of the bamBikw, Bmed, andBhign.

Let ByL(2 ; k) be the random ampli cation factor de ned by Ed. {37), computed using
NL-SROML1. Let

By "™ k)= max Bu(2 ; «)

band

be the random variable that corresponds to the maximum dynamic ampli cation factor over
frequency bandpana We then denote bigy' **"{ ) the value ofB},”*"{ «) depending on
k and such that

ProbdB: " «) bl ™" «)g 0:95: (47)

For anyone of the 46 patterns, we are interested in plotting the graphs of functioi®$

b ™Y W), k 7' BEY( ), and « 7! byt ™M9"( k), which describe the evolution of the
maximum ampli cation factor for each con guration according to the dispersion paramgeter
However, to maintain a sucient readability of the gures, we only plot the lower and upper
envelopes of the 46 con gurations. These two envelopes de ne a region in which all the 46
con gurations belong. Figurds PA, 25, and 26 show the graphs for each frequencyBaand,

Biow: Or Bhigh. In the caption of each one of these three gures, the patterns corresponding to
the lower and upper envelopes will be indicated. Figuie 24 shows that there is a weak sensitiv-
ity of the envelopes with respect to the mistuning level represented by the valye Bfattern

P34, Which corresponds to the upper envelope, yields the largest dynamic ampli cation factor in
bandBneq, Whereas patterR;, which corresponds to the lower envelope, has the lowest dynamic
ampli cation factor. In Figure§ 25 ar{d 6, it can be seen that the envelopes are sensitive to the
level of mistuning represented by, and that a very high dynamic ampli cation factor can be
obtained, for instance patteRypgs (upper envelope foBiow) and patterrPg (upper envelope for
Bnigh). Note that these high dynamic ampli cation factors are due to the choice of the reference.
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If this reference was chosen as the linear tuned system, then this ampli cation dynamic factor
would be in nite. Presently, the reference has been chosen as the nonlinear tuned system without
mistuning.

7. CONCLUSION

We have presented a robust analysis of theats of geometric nonlinearities on the nonlin-
ear dynamic behavior of rotating bladed disks that are detuned in presence of mistuning. This
mistuning induces uncertainties that are taken into account by a probabilistic approach in the
computational model. The results obtained allow for increasing the knowledge in the area of the
nonlinear stochastic dynamic of the detuned rotating bladed disks. It has been demonstrated that
the responses obtained in the frequency band outside the band of excitation can be signi cant.
The envelopes of the dynamic ampli cations factors among the investigated patterns show that
the nonlinear dynamic response is sensitive to the detuning in presence of mistuning. The results
highlight the indirect excitation of the rotating bladed disks through the geometric nonlinearities
outside the excitation frequency band. The optimization with respect to all the possible con gu-
rations de ned by the patterns, with the objective to nd the pattern that minimizes the random
dynamic ampli cation factor, remains a problem that demands large computer resources in term
of CPU time. The complexity of the results obtained for the 46 con gurations studied, seems to
show that such a discrete honconvex optimization problem on a set of con gurations having a
huge number of patterns, is dcult. Nevertheless, although a nonexhaustive study optimization
could not be made, we have shown that there were detuned con gurations that minimize the
dynamic ampli cation factor in presence of mistuning.
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A. Table of patterns

Pattern numbe Arrangement
Po 24A
P1 (5A1B),4
P, (AB)12
P3 (4A4B);
Pa 4A2B3A2B5A2B3A2B
Ps (3A3B)4
Ps (4A2B)4
P7 AB2A2B(AB),2A2B2AAB2B(AB),
Ps 2ABA2B2A3B(AB),2AB3A3B
Po (2A2B)6
P1o 4A4B(2A2B),2A6B
P11 B4AB18A
P12 12A12B
P13 6B12A3B3A
P14 3B15A3B3A
Pis 6A3B6A9B
Pis (3B6A),3B3A
P17 3A6B3A12B
Pis 3B12A6B3A
P1g 18A6B
P2o 3B12A6B3A
P21 6B9AGB3A
P22 6A3B3A12B
P23 9A3B6A6B
P24 14A9B
Pos 3A3B3A15B
P26 15B9A
P27 3B6A12B3A
P2s 3A21B
P29 3A3B(3A6B),
P30 (3A3B),3A9B
P31 (6A6B),
P32 3B9A9B3A
P33 3B21A
P34 6A6B3A9B
P3s 18A6B
P36 3B12A3B6A
P37 3B6A3B3A6B3A
Pas 6A8B3A6B
P39 9A3B3A9B
Pao 3B9A3B3A3B3A
P41 3B6A6B3A3B3A
P42 3B9AGB6A
Pas 27 (3A3B)4
Paa (3A9B),
Pas (9A3B),
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Figure 17: Graphs of functions7! by, (2 ) (black irregular thick lines) and 7! b}\j‘fe"(z )
(redgrey irregular thin line) corresponding to the uppeJ é&nd the lower () envelopes of the
dynamic ampli cation factor among the investigated patterns. Linear scale (top gure) and log

scale (down gure) 30
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Figure 18: For ¢ = 0:1, graphs of functionsy 7! bimax(So) such that Prob‘@lmax(so)
bmax(So)g  0:95: tuned rotating bladed didRg (top gure) and detuned rotating bladed disk
Pe (down gure). Calculation with L-SROM (refdrey line with crosses) and with NL-SROM2
(blug/black line with circles). 31
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Figure 19: For « = 0:1, con dence region (yellovgrey region) of 7!jiB"(2 )jj correspond-

ing to a probability level @5, computed using NL-SROM?2 fd? (left gures) andPg (right
gures), and for three values of parametgr s, = 0:01 (top gures),sy = 0:15 (central gures),
andsy = 1 (down gures). The dashed-line is the response of the deterministic mean (nominal)
model. The vertical grey region corresponds to excitation frequency Band
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Figure 20: Graph of functionk 7! b[;l k) for tuned patterPy and detuned ond3;, P3, Ps,
Ps, P12, andP3; de ned in Appendix A.

Figure 21: For ¢ = 0:03, con dence region (yelloygrey region) of the random ampli cation
factor, ByL(2 ), estimated with a probability level of: @ using NL-SROM1, for the tuned
con guration Pg (left top gure), and for the detuned con gurationBg (right top), P15 (left
down), andP 5 (right down). The dashed-line is the nominal ampli cation fadiQr (2 ). The
vertical grey region corresponds to excitation frequency l&and
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Figure 22: For ¢ = 0:1, con dence region (yellovgrey region) of the random ampli cation
factor, By (2 ), estimated with a probability level of: @ using NL-SROM1, for the tuned
con guration P (left top gure), and for the detuned con gurationBg (right top), P11 (left
down), andP 5 (right down). The dashed-line is the nominal ampli cation fadiQr(2 ). The
vertical grey region corresponds to excitation frequency ti&and
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Figure 23: For ¢ = 0:1, con dence region (yellovgrey region) of the random ampli cation
factor, Bﬁ',‘_(z ), related to the 46 patterns, estimated with a probability level@8 Qsing NL-
SROM1. The dashed-line is the ampli cation facﬂo&‘[‘e"(z ) of the tuned system without
mistuning. The thick solid line is the medi@%value of random vari@je2 ). The vertical
grey region corresponds to excitation frequency bBpd Linear scale (left gure), log scale
(right gure)



Figure 24: For ban®eq lower (thin solid line) and upper (thick solid line) envelopes of the
regions containing the 46 graphs of functiops7! by meq ) for the 46 patterns. The upper
envelope corresponds to pattétgs and the lower one t&;.

Figure 25: For band,,,, lower (thin solid line) and upper (thick solid line) envelopes of the
regions containing the 46 graphs of functions7! by low ) for the 46 patterns. The upper
envelope corresponds to pattétps and the lower one t83;.
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Figure 26: For ban®ign, lower (thin solid line) and upper (thick solid line) envelopes of the
regions containing the 46 graphs of functiors7! by ""( ) for the 46 patterns. The upper

envelope corresponds to patt&tgpand the lower one tes.

37



	Introduction
	Mean (or nominal) nonlinear reduced-order model of a detuned bladed disk in rotation without mistuning

