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Abstract

This work is devoted to the robust analysis of the e� ects of geometric nonlinearities on the non-
linear dynamic behavior of rotating detuned (intentionally mistuned) bladed disks in presence of
unintentional mistuning (simply called mistuning). Mistuning induces uncertainties in the com-
putational model, which are taken into account by a probabilistic approach. This paper presents
a series of novel results of the dynamic behavior of such rotating bladed disks exhibiting nonlin-
ear geometric e� ects. The structural responses in the time domain are analyzed in the frequency
domain. The frequency analysis exhibits responses outside the frequency band of excitation. The
con�dence region of the stochastic responses allows the robustness to be analyzed with respect
to uncertainties and also allows physical insights to be given concerning the structural sensitivity.
The bladed disk structure is made up of 24 blades for which several di� erent detuned patterns
are investigated with and without mistuning.

Key words: Mistuning, Detuning, Bladed disks, Dynamics, Geometric nonlinearities,
Uncertainty Quanti�cation

1. Introduction

The intentional mistuning, also calleddetuning, has been identi�ed as an e� cient techno-
logical way for reducing the sensitivity of the forced response of bladed disks to unintentional
mistuning (simply calledmistuning), caused by the manufacturing tolerances and the small vari-
ations in the mechanical properties from blade to blade [1, 2, 3]. The objective of the detuning
is to reduce the sensitivity of the response ampli�cation induced by the mistuning. This random
ampli�cation is de�ned as the random ratio between the random highest dynamic response of
a given detuned bladed disk in presence of mistuning and the deterministic highest response of
the tuned bladed disk under the same excitation. It has been proposed to detune the bladed disk
structure by using partial or alternating patterns of di� erent sector types. A sector is constituted
of a blade and of the corresponding part of the disk.

This technology has intensively been studied in the framework of the linear dynamic analysis
(see for instance,[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]), for which the mistuning e� ects have been
modeled using either parametric probabilistic approaches (see for instance, [15, 16, 17, 18, 19]),
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or using the nonparametric probabilistic approach ([20, 21, 22]), and for which the optimization
of alternating patterns has been studied (see for instance, [23, 24, 25, 26]).

More recently, the technological improvements that include the use of more �exible and
lighter materials can lead to large displacements so that the linearization of the dynamic equations
can no longer be used. In this context, the geometric nonlinearities have to be taken into account
and there is a growing interest for including geometric nonlinearities in the dynamic analyses
of detuned bladed disks. It should be noted that the e� ects of nonlinearities on the dynamics
have been considered by [27] for a simple generic cyclic structure exhibiting nonlinear sti� ness
connections (and not for nonlinear geometrical e� ects, and furthermore, without mistuning). The
e� ects of geometrical nonlinearities using the Harmonic Balance Method have been analyzed by
[28, 29] for tuned bladed disks (with neither mistuning nor detuning). The �rst work concerning
the e� ects of nonlinear geometrical e� ects of mistuned bladed disk based on a probabilistic
model without detuning can be found in [30].

It should be noted that, in the framework of linear dynamics, the introduction of intentional
mistuning induces a modi�cation of the eigenfrequencies of the blades and allows the aerody-
namic coupling to be reduced [31, 32, 33]. This type of result should be analyzed in nonlinear
geometrical dynamics. Nevertheless, the aerodynamic coupling is not considered in this paper.

This work is devoted to the robust analysis of the e� ects of geometric nonlinearities on the
nonlinear dynamic behavior of rotating bladed disks that are detuned in presence of mistuning.
An ensemble of novel results are presented based on analyses performed with a stochastic com-
putational model of a bladed disk structure consisting of 24 blades.

The methodology used for obtaining these novel results and the organization of the paper are
presented below. Section 2 begins de�ning the boundary value problem of the nonlinear geo-
metric dynamics for the detuned bladed disk in rotation taking into account geometric sti� ness,
gyroscopic coupling, and centrifugal sti� ness matrices (that are zero matrices when the rotation
speed is zero). The corresponding computational model is constructed by using the �nite ele-
ment method. This computational model is referred as the nonlinear high-�delity computational
model (NL-HFM). The robust analysis that is proposed cannot be performed using the NL-HFM
because the number of degrees-of-freedom is much too large for analyzing such parameterized
stochastic nonlinear dynamical system. Consequently, it is necessary to introduce an appropriate
parameterized stochastic nonlinear reduced-order model for carrying out the robust analysis.

The methodology used for the construction of this appropriate nonlinear reduced-order model
(NL-ROM) is presented. For this purpose, amodal basisis computed by solving the generalized
eigenvalue problem associated with the NL-HFM for which the rotation speed is zero (therefore,
without nonlinear geometrical e� ects, without damping, and without mistuning). A �rst nonlin-
ear reduced-order model (NL-ROMF) is constructed by projecting the NL-HFM on the subspace
spanned by this modal basis.

Anothervector basisis then calculated using the Proper-Orthogonal Decomposition (POD)
method [34, 35] applied to the nonlinear solution of the NL-ROMF, which is solved in the time
domain. Note that this time solution is computed taking into account geometric sti� ness, gyro-
scopic coupling, and centrifugal sti� ness matrix, for a given speed of rotation.

A projection basisfor the NL-HFM is obtained by composing the modal basis with the vector
basis constructed with the POD method. The �nal nonlinear reduced-order model (NL-ROM)
is then obtained by double projection of the NL-HFM that is to say, by projecting the NL-HFM
on the subspace spanned by the projection basis introduced above. At the end of this section,
we present the construction of the nonlinear stochastic reduced-order model (NL-SROM) that
is based on the nonparametric probabilistic approach of uncertainties [36] that is implemented
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in the NL-ROM. This NL-SROM describes the stochastic nonlinear dynamics of the detuned
rotating bladed disk in presence of mistuning. The NL-SROM is solved in the time domain using
the Monte-Carlo method. The random quantities of interest, related to the nonlinear stochastic
responses, are analyzed in both time and frequency domains.

Section 3 is devoted to the construction of the NL-SROM for the robust analysis of the de-
tuned bladed disk in rotation in presence of mistuning. Sections 4 to 6 deal with the robust
analysis of the 24-blades disk, including the convergence aspects.

2. Mean (or nominal) nonlinear reduced-order model of a detuned bladed disk in rotation
without mistuning

2.1. Assumptions and terminology

For the sake of clarity, one has to distinguish the following terms:

1. The tuned structure is related to the conceptual structure, which exhibits a perfectM-order
cyclic symmetry. For this con�guration as denoted asP0, the geometry, the constitutive
equation of material, and the boundary conditions related to the reference sector are in-

variant under the
2�
M

rotation around its axis of symmetry. A dynamic analysis can then be

performed by using only one reference sector with appropriate phase-lag conditions on the
boundary. In this work, the tuned bladed disk is analyzed in 3D as for the detuned bladed
disk.

2. The detuned (or intentionally mistuned) structure is related to the conceptual structure for
which there is a spatial distribution of di� erent types of sectors that are characterized by
a given pattern. Here, we will only use two sector types with identical geometry and for
which the material properties of the blades are di� erent. The detuned structure is de�ned
by an assembly of these two sector types. ForM = 24 blades, a pattern will be de�ned,
for instance, by 12B6A3B3A, which consists of 12 consecutive blades of typeB, 6 of type
A, 3 of typeB, and 3 of typeA.

3. The mistuned structure is related to the real structure for which the cyclic symmetry is
broken and is de�ned at the beginning of this Section. It is modeled by using the nonpara-
metric probabilistic approach of uncertainties [36].

It is assumed that:
(1) The bladed disk is made up of a linear elastic material.
(2) In the time domain, the amplitude of the external forces are assumed to be su� ciently large
so that the structure undergoes geometric nonlinear e� ects induced by large displacements and
strains.
(3) The bladed disk is in rotation around its rotational axis at a constant rotation speed
 (rad=s).

2.2. Nonlinear boundary value problem

We are interested in considering the nonlinear boundary value problem of the detuned bladed
disk in rotation. A total Lagrangian formulation is chosen and the nonlinear dynamic equations
are expressed in the rotating frame with respect to the reference con�guration.The rotation axis of
the bladed disk is de�ned as(O;e3). LetR be the rotating referential cartesian coordinates system
and let (O;e1; e2; e3) be its related basis. LetD be the three-dimensional bounded open domain

3



corresponding to such reference con�guration and subjected to the body force �eldg(x; t) =
(g1(x; t); g2(x; t); g3(x; t)), in whichx = (x1; x2; x3) denotes the position of a given point belonging
to domainD. The boundary@D is such that@D = � [ � with � \ � = ; . The external unit normal
to boundary@D is denoted byn = (n1; n2; n3). The boundary part� corresponds to the �xed
part of the structure (in the local rotating frame) whereas the boundary part� is subjected to
the external surface force �eldG(x; t) = (G1(x; t);G2(x; t);G3(x; t)). Note that the external force
�elds are derived from the Lagrangian transport into the reference con�guration of the physical
body/surface force �elds applied in the deformed con�guration. We then introduce the (3� 3)

Figure 1: Scheme of the bladed disk in its reference con�guration

rotation matrix [R(
 )] such as

[R(
 )] =

2
666666664

0 � 
 0

 0 0
0 0 0

3
777777775

; (1)

corresponding to the rotational axis (0;0;1) in R. From now on, the convention of summation
over repeated latin indices is used. The unknown displacement �eld inR is denoted asu(x; t) =
(u1(x; t); u2(x; t); u3(x; t)) and is solution of the following nonlinear boundary value problem [37].
For i = 1;2;3, we have

@
@x j

�
Fik� k j

�
+ � gi � ��

@ui

@t
= �

@2 ui

@t2
+ 2� [R] i j

@u j

@t
+ � [R] i j [R] jk (xk + uk) ; 8x 2 D ; (2)

Fik� k j n j = Gi ; 8x 2 � ; (3)

ui = 0; 8x 2 � ; (4)
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in which � is the mass density and where� is the coe� cient controlling the dissipation. In
Eq. (2), the deformation gradient tensorF is de�ned by

Fi j =
@ui

@x j
+ � i j ; (5)

where� i j is the second-order unit tensor such that� i j = 1 if i = j and 0 otherwise. The quantity
� is the second Piola Kirchho� symmetric stress tensor for which the constitutive equation for a
linear elastic material is written as

� i j = ai jk` Ek` : (6)

In Eq. (6),a is the fourth-order elasticity tensor andE is the Green strain tensor that is written as

Ei j =
1
2

 
@ui

@x j
+

@u j

@xi
+

@us

@xi

@us

@x j

!
: (7)

It should be noted that Eq. (6) captures the �nite displacements of the structure. In the present
context, it is assumed that there is no rigid body motion of the rotor and that the bladed disk
structure rotates around a �xed axis. Such assumptions then allows for obtaining all the above
equations as can be shown in [38, 37, 39, 40].

2.3. Nonlinear high-�delity model (NL-HFM) for a detuned bladed disk

The �nite element discretization of the weak formulation of the nonlinear boundary value
problem de�ned by Eqs. (2) to (7) yields the following NL-HFM,

[M] ü(t) +
�
[D] + [Cg(
 )]

�
�u(t) + [K(
 )] u(t) + f NL(u(t)) = f(t) ; (8)

in which the (n � n) matrix [K(
 )] is de�ned by

[K(
 )] = [Ke] + [Kc(
 )] + [Kg(
 )] ; (9)

and is assumed to be positive de�nite. In Eq. (8), theRn-vectoru(t) is the vector of then degrees-
of-freedom corresponding to the unknown displacements. The mass, damping, and sti� ness
(n� n) real matrices [M], [D], [Ke] are positive de�nite, the geometric sti� ness (n� n) real matrix
[Kg(
 )] is symmetric, the gyroscopic coupling (n � n) real matrix [Cg(
 )] is skew-symmetric,
and the centrifugal sti� ness (n� n) real matrix [Kc(
 )] is negative semi-de�nite. More precisely,
matrix [Kg(
 )] is associated with the term� [R] i j [R] jkxk in Eq. (2), matrix [Kc(
 )] with the term

� [R] i j [R] jkuk, and matrix [Cg(
 )] with the term 2� [R] i j
@u j

@t
. TheRn-vectorf(t) is the external

force vector depending on time issued from the �nite element discretization of the surface and
body force �elds. TheRn-vectorf NL(u(t)) describes the nonlinear internal forces induced by the
geometric nonlinearities.
The corresponding linear high-�delity model (L-HFM) is de�ned similarly to Eq.(8) by removing
the nonlinear termf NL(u(t)) and is written as

[M] ü(t) +
�
[D] + [Cg(
 )]

�
�u(t) + [K(
 )] u(t)= f(t) : (10)
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2.4. Nonlinear reduced-order model (NL-ROM) for a detuned bladed disk

The objective of this Section is to construct a nonlinear reduced-order model for a detuned
bladed-disk. Such a construction requires the use of a vector basis for projecting the nonlinear
computational model. Many methods can be used for constructing such vector basis, see for
instance [41, 42, 30, 43, 29].

In this paper, the methodology proposed for constructing the NL-ROM is a novel approach,
brie�y described in Section 1 and that we detail hereinafter. The construction of the NL-ROM
requires the knowledge of a consistent vector basis. It is �rst chosen of computing the vibrational
modes of the linear high �delity model (L-HFM) that includes the rotation terms but for which the
damping term represented by matrix [D] is removed and for which the gyroscopic coupling terms
are not considered, mainly to avoid the computation of a complex eigenvalue problem for very
large dynamical systems and to avoid the use of a complex basis for constructing the NL-ROM.
This vector basis is not an optimal one with respect to the convergence speed of the reduced-
order model since it ignores the nonlinear geometrical e� ects and the gyroscopic coupling terms
(the damping matrix [D] does not in�uence the convergence speed because damping is very
small). This intermediate NL-ROMF is nevertheless constructed in order to carefully study the
convergence of the nonlinear response related to the detuned rotating bladed-disk structure with
all the rotating terms, the nonlinear geometrical e� ects, and the damping term. Such converged
nonlinear solution that is computed in the time domain is then used to calculate another real
vector basis using the Proper Orthogonal Decomposition method (POD-method). By combining
these two vector bases, a second NL-ROM is obtained with a reasonable size. Through this
NL-ROM, (1) the damping e� ect and all the rotating e� ects are taken into account, (2) for the
detuned rotating structure, the NL-ROM is of lower order, which is more e� cient than the NL-
ROMF in terms of computational costs, (3) the probabilistic model describing the mistuning can
be implemented through the nonlinear stochastic reduced-order model (NL-SROM). In addition,
it allows for decreasing the computational costs for the Monte Carlo numerical simulation using
a parallel computer.

2.4.1. First nonlinear reduced-order model (NL-ROMF) for a detuned bladed disk
The �nite element model of the detuned bladed disk will exhibit a large number of degrees-

of-freedom (dofs), for instance, 1 million, yielding a large NL-HFM. Since the objective of this
work is to perform a robust analysis of this NL-HFM demanding an extensive parametric study
with respect to a subsequent number of distinct patterns, it is essential to consider a nonlinear
reduced-order model (NL-ROM). The construction of the corresponding NL-ROM requires the
knowledge of a projection basis. As explained in Section 1, we have to construct a projection
basis that is performed in two steps. For the �rst step, consisting in calculating a modal ba-
sis, a possible strategy would consist in solving the generalized eigenvalue problem related to
the linear, conservative, and homogeneous problem associated with the di� erential equation (8),
yielding complex eigenvectors because of the gyroscopic coupling matrix. To avoid this di� -
culty, the modal basis is chosen to be real and is built as follows. The eigenfrequencies� � and
the corresponding elastic modes' � are obtained by solving the following generalized eigenvalue
problem,

[K(
 )] ' � = � � [M] ' � ; (11)

with � = f1; :::;mg, where the eigenvalues� � = (2� � � )2 are such that 0< � 1 6 � 2 6 � � � 6 � m,
and where the elastic modes' 1; : : : ;' m are stored in the (n � m) real modal matrix [�

m
] that is

such that [�
m
]T [M] [ �

m
] = [Im].
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The �rst nonlinear reduced-order model (NL-ROMF), as proposed in Section 1, is obtained by
projecting Eq. (8) on the subspace generated by [�

m
] and is written as

u(t) = [�
m
] q(t) ; (12)

[ M ] q̈(t) + ([ D ] + [ Cg(
 )]) �q(t) + [ K(
 )] q(t) + F
NL �

q(t)
�

= F (t) ; (13)

in which q(t) is theRm-vector of the generalized coordinates and where [M ], [ D ], [ Cg(
 )],
and [K(
 )] are the (m � m) reduced mass, damping, gyroscopic, and sti� ness matrices, which
are deduced from [M], [D], [Cg(
 )], and [K(
 )]. In Eq. (13), theRm-vectorF (t) is the vector

of the reduced external forces depending on time. TheRm-vectorF
NL

(q(t)) is the vector of the
nonlinear reduced internal forces de�ned by

F
NL

(q(t)) = [�
m
]T FNL([�

m
] q(t)) : (14)

2.4.2. Linear reduced-order model (L-ROM) for a detuned bladed disk

When the nonlinear reduced internal forcesF
NL

are removed from Eq. (13), the linear
reduced-order model corresponding to Eqs. (12) and (13) is then denoted as L-ROM.

2.4.3. Second nonlinear reduced-order model (NL-ROM) for a detuned bladed disk
As explained in Section 1, the second step consists in using the POD-method applied to the

NL-ROMF, which allows for taking into account the e� ects of the gyroscopic coupling.
Equation (13) is solved using a Newmark scheme for which a constant time step� t is used.

At each time step, the nonlinear algebraic equation is solved using either the �xed point method
or a continuation method based on the arc-length method depending on the local nonlinearity
rate. Letnt be the number of time steps. It should be noted that the distance between two
consecutive snapshots could be chosen asr � t wherer is a given integer greater than or equal to
1. Nevertheless, since the POD is applied to NL-ROMF, which has a small dimensionm � n, it
is not penalizing to taker = 1. Let [A] be the (m� nt) real matrix withnt > m de�ned by

[A] i j = qi(t j)
p

� t ; (15)

in which the constant time step� t is used as the distance between two consecutive snapshots for
the construction of the POD basis. The vector basis is made up of the eigenvectors corresponding
to largest eigenvalues of the (m� m) real matrix [C] de�ned by

[C] = [A][A]T : (16)

It should be noted that the rank of matrix [C] is m that is less than or equal tom (if m < m,
then [C] is not positive de�nite but only positive). In practice, matrix [C] is not computed. Its
eigenvalues and its eigenvectors are obtained by computing the singular value decomposition
of matrix [A] using an economy size algorithm [44]. Removing the zero singular values, this
decomposition can be written as,

[A] = [W][S][V]T ; (17)
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in which [W] is the (m � m) real matrix withm � m, where [V] is the (nt � m) real matrix, and
where the (m� m) matrix [S] contains all them non-zeros singular values sorted by decreasing
orders1 > s2 > � � � > sm > 0, which are the square-roots of the positive eigenvalues of matrix
[C]. It can also be shown that themcolumns of matrix [W] are the corresponding eigenvectors of
matrix [C] associated with the positive eigenvalues and matrix [W] is such that [W]T [W] = [Im].
Let [W (m; N)] be the (m� N) matrix withN 6 m < mthat contains the eigenvectors related to the
N greatest singular valuess� , � = f1; � � � ; Ng, which is such that [W (m; N)]T [W (m; N)] = [IN].
Finally, the projection basis, represented by the (m� N) real matrix [� (m;N)] that will be used for
obtaining the NL-ROM, is constructed such that

[� (m;N)] = [�
m
] [W (m;N)] ; (18)

with [� (m;N)]T [M] [ � (m;N)] = [IN]. The NL-ROM is then obtained by projecting the NL-HFM,
that is to say, is written as

u(t) = [� (m;N)] q(t) ; (19)

[M ] q̈(t) + ( [D] + [Cg(
 )] ) �q(t) + [K(
 )] q(t) + F NL(q(t)) = F (t) ; (20)

in whichq(t) is theRN-vector of the generalized coordinates, where [K(
 )] is the (N� N) matrix
that is written as

[K(
 )] = [Ke] + [Kc(
 )] + [Kg(
 )] ; (21)

and where [Ke], [Kc(
 )], and [Kg(
 )] are the reduced elastic, centrifugal, and geometric matri-
ces. In Eq. (20), the (N� N) real matrices [M ], [D], [Cg(
 )], and [K(
 )] are the reduced matrices,
which are deduced from [M], [D], [Cg(
 )], and [K(
 )]. The normalization of matrix [� (m;N)] is
such that [M ] = [IN]. The RN-vectorF (t) is the generalized external forces. In Eq. (20), the
RN-vectorF NL(q(t)) of the nonlinear internal forces are written, for allq = (q1; : : : ;qN) in RN,
as

F NL
� (q) = K (2)

��
 q� q
 + K (3)
��
� q� q
 q� ; (22)

in which the quadratic and cubic sti� ness contributionsK (2)
��
 andK (3)

��
� are written [45, 46] as

K (2)
��
 =

1
2

�
bK

(2)
��
 + bK

(2)
�
� + bK

(2)

��

�
; (23)

with

bK
(2)
��
 =

Z



a jk`m ' �

j;k ' �
s;` ' 


s;m dx ; (24)

K (3)
��
� =

1
2

Z



a jk`m ' �

r; j ' �
r;k ' 


s;` ' �
s;m dx ; (25)

in which' �
j corresponds to the entry [� (m;N)] j� . Note that tensorK (2)

��
 has permutation-invariance

property and that tensorK (3)
��
� has positive-de�niteness property. The notationyr; j means the

partial derivative ofyr with respect tox j .
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3. Stochastic linear and nonlinear reduced-order models of a detuned rotating bladed disk
with mistuning

In this section, we introduce two probabilistic models for NL-ROM, yielding two nonlinear
stochastic nonlinear reduced-order models, NL-SROM1 and NL-SROM2. The NL-SROM2 is
introduced in order to compare it with L-SROM that will be constructed as the NL-SROM2
without the nonlinear internal forces, while NL-SROM1 will be the full probabilistic model for
the nonlinear case.

3.1. Stochastic nonlinear reduced-order model NL-SROM1 of a detuned rotating bladed disk
with mistuning

The �rst stochastic nonlinear reduced-order model (NL-SROM1) is based on a full prob-
abilistic model and corresponds to a probabilistic modeling of the mistuning for the detuned
rotating bladed disk. Note that only the nonlinear internal forces (including the linear elastic
part) are assumed to be uncertain and consequently, are modeled by random quantities. As previ-
ously explained, the nonparametric probabilistic approach for geometric nonlinearities [45, 36]
is used. It involves a positive (Na � Na) real matrix [KNL ] with Na = N(N + 1) which is written
as

[KNL ] =

2
666664

[Ke] [ eK
(2)

]

[eK
(2)

]T 2 [eK
(3)

]

3
777775 ; (26)

in which [Ke] is the reduced elastic matrix de�ned in Eq. (21) and where [eK
(2)

] and [eK
(3)

] are
respectively the (N � N2) and (N2 � N2) real matrices resulting from the following reshaping
operation,

[eK
(2)

] � J = bK
(2)
�
� ; [eK

(3)
] IJ = K (3)

��
� ; (27)

with I = (� � 1)N + � andJ = (
 � 1)N + � . The corresponding random matrix [K NL ] is then
written as

[K NL ] = [LK ][GK(� K)][ LK ]T + [� eK] ; (28)

in which [LK ] is a (Na � NG) real matrix whose columns contain theNG eigenvectors of matrix
[KNL ] associated with the �rstNG largest eigenvalues. Such factorization allows for reducing
the size of the random matrix [GK(� K)], as proposed in [47]. The full (NG � NG) random matrix
[eGK(� K)] with NG � Na is constructed using the Maximum Entropy principle [48, 36]. In
Eq. (28), the (Na � Na) real matrix [� eK] is written as

[� eK] = [KNL ] � [LK ][ LK ]T ; (29)

andEf[K NL ]g = [KNL ] becauseEf[eGK(� K)]g = [ING ]. The hyperparameter� K allows for con-
trolling the level of uncertainties in random matrix [K NL ]. The random linear, quadratic, and
cubic coe� cients, [K e] �� , K (2)

��
 , andK (3)
��
� , are extracted from random matrix [K NL ] that have

the same block structure as its deterministic counterpart de�ned in Eq. (26). The �rst stochastic
nonlinear reduced-order model, NL-SROM1, is then written as,

U(t) = [� (m;N)] Q(t) ; (30)

9



[M ] Q̈(t) +
�
[D] + [Cg(
 )]

�
�Q(t) + ([K e] + [Kc(
 )] + [Kg(
 )]) Q(t)

+ F NLS (Q(t)) = F (t) ; (31)

in whichQ(t) is theRN-valued random variable. In Eq. (31), the vector of the stochastic nonlinear
internal forcesF NLS(Q(t)) is written, for allq = (q1; : : : ;qN) in RN, as

F NLS
� (q) = K (2)

��
 q� q
 + K (3)
��
� q� q
 q� : (32)

3.2. Stochastic nonlinear reduced-order model NL-SROM2 of a detuned rotating bladed disk
with mistuning

The second nonlinear stochastic reduced-order model, NL-SROM2, is de�ned by Eqs. (30)
and (31) for which two modi�cations are performed. Firstly, the stochastic nonlinearity term
F NLS in Eq. (31) is replaced by the deterministic nonlinearity termF NL de�ned by Eq. (22).
Secondly, another probabilistic model is introduced for the random positive-de�nite (N � N)
matrix [K e], which is written as

[K e] = [LK e
] [GK(� K)] [ LK e

]T ; (33)

in which [LK e
] is the lower triangular (N � N) real matrix, which results from the Cholesky

factorization of (N � N) real matrix [Ke], and where [GK(� K)] is the random (N � N) positive-
de�nite real matrix that is similarly constructed as [eGK(� K)].

3.3. Stochastic linear reduced-order model L-SROM of a detuned rotating bladed disk with mis-
tuning

We also introduce a stochastic linear reduced-order model L-SROM, which is the NL-SROM2,
in which the nonlinear termF NLS is removed.

3.4. Observations of the nonlinear dynamical system

Observations of the nonlinear dynamical system have to be de�ned for performing the robust
analysis of the detuned rotating bladed disk with or without mistuning. It is recalled that, in
presence of mistuning, the responses are random. There are several ways for de�ning the ob-
servations. We have chosen one, which is coherent with all the analyses that are performed in
the frequency domain. First, we will de�ne only one observation point for each blade, which
is located at its tip. This means that, the number of observation points is equal to the number
of blades. For the detuned rotating bladed disk without mistuning, we will look for the blade
number j0 where the maximum related to the amplitude of the displacement occurs, over all
the blades and for the entire frequency band of analysis. It should be noted that, in presence
of mistuning, j0 becomes a random variable. Nevertheless, we want to characterize the random
responses— of the detuned rotating bladed disk in presence of mistuning— with respect to the
deterministic response of the detuned rotating bladed disk without mistuning. Consequently, we
have chosen to keepj0 as the deterministic blade number for the case for which mistuning is
taken into account.
Figure 2 shows the computational model of the bladed disk for which, as previously explained,
the M observation points are located at the tip of each blade (red dots). We �rst consider the
detuned rotating bladed disk without mistuning. For each timet and for the observation in blade
j, let u j(t) = (u j

1(t); u j
2(t); u j

3(t)) be the vector whose coordinates are given in the local basis

10



(ej
1; ej

2; ej
3). For frequency� in Hz, the Fourier Transform of functiont 7! u j(t) is written as

bu j(2�� ) = (bu j
1(2�� );bu j

2(2�� );bu j
3(2�� )). We have to �nd the blade numberj0 such that

j0 = arg max
j=1;:::;M

jjjbu j jjj ; (34)

in which jjjbu j jjj is such that
jjjbu j jjj = max

�
jjbu j(2�� )jj ; (35)

with kbu j(2�� )k2 =
P 3

k=1 jbu j
k(2�� )j2. For the tuned rotating bladed disk (therefore, it is not detuned

and there is no mistuning), the quantityjjjbu j jjj will be rewritten asjjjbutunedjjj. It should be noted
that, the blade numberj0 depends on the considered pattern and on the type of the analysis, which
is performed for the detuned rotating bladed disk. There are two types of analysis, the linear one
denoted by subscript L and the nonlinear one denoted by subscript NL. These subscripts will be
omitted when no confusion will be possible.

We are interested in characterizing the ampli�cation levels for the nonlinear deterministic
and random cases. The random observations corresponding to the detuned-mistuned cases are
similarly denoted by replacing lowercase letters by uppercase ones. We then de�ne quantities
b(2�� ) andB(2�� ) as the deterministic and random dynamic ampli�cation factor such that

b(2�� ) =
jjbu j0(2�� )jj

jjjbutunedjjj
; (36)

B(2�� ) =
jjbU

j0
(2�� )jj

jjjbutunedjjj
: (37)

Figure 2: Finite element model of the bladed disk with 24 blades in which the dot symbols (red
color) correspond to the excitation points (left �gure). Zoom of the �nite element model of a
sector (right �gure).

3.5. Remark concerning the software implementation
It should be noted that a commercial software is used for developing the �nite element model

of a given sector of the bladed-disk. All the other steps (constructing the computational model,
11



computing the vector bases, constructing the LROM, the NL-ROM, the L-SROM and the NL-
SROM, computing the linear and nonlinear deterministic and stochastic dynamical responses)
are processed using a house code. Since a house code is used, there is no problem for a direct
implementation of the NL-ROM and NL-SROM (see [45, 46]).

4. Robust analysis of the detuned bladed disk in rotation in presence of mistuning using
the NL-SROM

From an industrial point of view, such a robust analysis is of particular interest when excep-
tional operating ranges are considered (severe loads or close to a �utter situation). In such cases,
the geometric nonlinearities can no longer be neglected and strongly modify the dynamical re-
sponses of the structure with respect to the usual linear case. The robust analysis presented will
then correspond to such exceptional operating ranges.

4.1. Finite element model of the tuned bladed disk with 24 blades
The �nite element model of the tuned bladed disk is shown in Figure 2. There areM = 24

blades and the bladed disk rotates around its cyclic axis with a constant rotation speed
 =
2� � 74rad=s (4 440RPM). The material is steel, which is considered as a homogeneous and
isotropic elastic material with Young modulus 2� 1011 N� m� 2, Poisson's ratio 0:3, and mass
density 7 650Kg� m� 3. In the rotating frame, the disk is clamped at the inner radius of the
disk (see Figure 1). The main geometric characteristics are summarized in Table 1. The �nite

Inner disk radius 19.8� 10� 3 m
Outer disk radius 100� 10� 3 m

Disk width 20 � 10� 3 m
Blade thickness at root section 4.8 � 10� 3 m
Blade thickness at tip section 2 � 10� 3 m

Table 1: Geometric characteristics of the bladed disk

element model of the reference sector has been carried out using tridimensional isoparametric
solid �nite elements with quadratic shape functions. The �nite element mesh of a reference sector
is constituted of 37 488 hexahedral �nite elements with 20 nodes, 1 848 pyramidal elements with
13 nodes, and 45 864 tetrahedral elements with 10 nodes. The �nite element model of the full
bladed disk is then obtained from the �nite element model of the reference sector. The numerical
description of the �nite element model is given in Table 2. It should be noted that, for the linear

Structure Elements Nodes DOFs
Blade alone 2 714 6 896 20 688
Disk sector 836 4 554 13 662

Full structure 85 200 265 080 787 176

Table 2: Element, nodes, and dofs of the �nite element model

tuned rotating bladed disk, the eigenfrequency of the elastic mode that corresponds to the �rst
�exural mode of the blade with a 4-nodal diameter is� 1 = 435Hz. Following the damping model
introduced in Eq. (2), the Rayleigh damping model is chosen in order that the critical damping
rate be equal to 10� 2 for the fundamental eigenfrequency� 1.
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4.2. De�nition of the patterns for the detuned bladed disk
The computational model of the detuned bladed disk is constructed from the knowledge of

two compatible meshes of two di� erent sector types denoted asA andB. The reference sector
B is obtained from sectorA by decreasing the Young modulus of the blade by 10 %; the Young
modulus of the disk remains unchanged. Figure 3 shows the tuned systemP0 = 24A and the
detuned oneP31 = (6A6B)2.

Figure 3: Tuned systemP0 = 24A (left �gure) and detuned systemP31 = (6A6B)2 with red blade
for B and blue blade forA (right �gure). For black and white printing, red color is light grey and
blue color is black.

4.3. Eigenfrequencies of the linear tuned rotating bladed disk
Figure 4 displays the Campbell diagram representing the evolution of the eigenfrequencies

� � of the linear tuned rotating bladed diskP0 according to rotation speed
 . The dashed lines
represent theEO-engine order excitation characterized by function
 7! EO� 
 =60. A required
condition for an Engine Order (EO) excitation to excite a bladed-disk is that the EO frequency
coincides with the natural frequency of the bladed-disk. It is then possible to graphically detect
the possible resonant points. The intersection of the natural eigenfrequencies with the dashed
lines gives then an indication of the rotating speed yielding resonant situations of interest. The
EO excitation is a periodic force that can be given by

j M � h= k� EO; (38)

in which j andk are integers, and whereh is the circumferential wave number corresponding to
the number of nodal diameters of the considered mode.

Figure 5 displays the graph of� � (h) as a function of the circumferential wave numberh for
the linear tuned rotating bladed disk (con�gurationP0) for which rotation speed is 4 440RPM.
For this rotation speed, we are interested in the �rst 3 modes related toh = 4, which are the
�rst bending mode of blades (mode 1 at 484Hz), the second bending mode of blades (mode 2 at
1 170Hz), and the �rst torsion mode of blades (mode 3 at 1 490Hz).

4.4. De�ning the external forces (excitation)
The objective of the presented analysis is not to compute the nonlinear dynamical response

for a general physical excitation, but is to present a sensitivity study for understanding the role
played by the geometrical nonlinear e� ects with respect to the linear counterpart. In this frame-
work, it should be noted that this choice is coherent with the fact that no aerodynamic coupling is
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Figure 4: Graph of
 7! � � (
 ) de�ning the Campbell diagram of the eigenfrequencies (in Hz)
of the linear tuned rotating bladed disk (patternP0) as a function of the rotation speed (in RPM),
where EO denotes the engine order, and where the vertical dashed line identi�es the speed of
rotation that is considered.
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Figure 5: Graph ofh 7! � � (h) of the eigenfrequencies� � of the linear tuned rotating bladed disk
(patternP0) for rotation speed
 = 4 440RPMas a function of the circumferential wave number
h.

taken into account. Inspired by the type of analyses performed for the linear mistuned cases, the
external forces have been chosen in order to control the circumferential wave number and also
the frequency band of excitation, which has to be su� ciently narrow around the speci�ed fre-
quency of interest. For the role of the nonlinear e� ects, this type of excitation allows for clearly
analyzing the transfer of energy outside the excitation frequency band (which is the objective of
the paper).

According to the Campbell diagram displayed in Figure 4, it can be seen that the third mode
intersect the EO line corresponding toEO= 20 for the considered rotating speed
= 4 440RPM
(rotation per minute). As a consequence, the excitation is chosen with circumferential wave
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numberh = 4 (nodal diameter), for which Eq. (38) is satis�ed withj = k= 1.
The excitation frequency band is chosen asBe = [1 000;1 600]Hz, which contains the �rst

two eigenfrequencies corresponding to the �exural mode and the torsion mode of the blade as
shown in Figure 4. In the time domain, the external force vectorf(t) is de�ned by,

f(t) = s0 g(t) f s ; (39)

in which f s is the vector representing the spatial distribution of the external forces in (N), which
depends on the circumferential wave numberh, and where the dimensionless time-functiont 7!
g(t) is de�ned onR and is constructed so that the modulusjbg(2�� )j of its Fourier transform
bg(2�� ) is equal to 1 in excitation frequency bandBe and equal to zero outsideBe. The reference
intensity of the force applied is represented byg(t) f s (N) and the level of nonlinear geometric
e� ects is driven by the dimensionless parameters0. For s0 = 0:01, the nonlinear geometrical
e� ects will be negligible, fors0 = 0:15, the nonlinear geometrical e� ects will be moderate,
and for s0 = 1 the e� ects will be large. Note that the values0 = 4 has also been used for the
sensitivity analysis and correspond to strong e� ects. Figures 6 and 7 show the graphs of function
t 7! g(t) and the modulus of its Fourier transform� 7! jbg(2�� )j. The frequency band of analysis
is Ba = [0;4 000]Hz. It should be noted that, from a computational point of view, the numerical
values ofjbg(2�� )j for � in BanBe are not exactly zero but di� er with three orders of magnitude
lower, which means that the linear dynamic response will have negligible magnitude in the band
BanBe (that will be not the case for the nonlinear dynamic response). From a numerical point of
view, functiong is truncated by choosingtini = � 0:065ssuch thatg(tini) = 0 with a time duration
T = 0:15s. The computations are carried out withnt = 4 096 time steps, using a sampling
frequency� e = 16 000Hz. The nonlinear dynamic analysis is performed in the time domain
according to Eq. (20). A Fourier transform of the time response (a deterministic time response or
a realization of the stochastic time response) is carried out and allows for analyzinga posteriori
the nonlinear dynamic responses in the frequency domain (in a deterministic framework or in a
stochastic one).
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Figure 6: Zoom on the interval [� 0:02; 0:02] s of the graph of the time-function excitation,
t 7! g(t), de�nes on interval [� 0:065; 0:15] s.
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Figure 7: Graph of function� 7! jbg(2�� )j in log scale.

4.5. Convergence analyses with respect to the parameters that control the reductions and the
Monte-Carlo numerical simulations

4.5.1. Convergence analysis with respect to the nonlinear reduced-order model
In this section, the convergence analysis of the deterministic response of the NL-ROM is

considered for a given pattern of a detuned rotating bladed disk (without mistuning). We estimate
the optimal values of parametersm andN related to the truncation of the vector bases used for
constructing the NL-ROM (according to Section 2.4.3). Letbw(2�� ) be the scalar value such that

bw(2�� ) =

vut MX

j=1

jjbu j(2�� )jj2 : (40)

When dealing with the �rst reduction, involving modal matrix [�̄ m], bw(2�� ) is denoted by
bwm(2�� ). When dealing with the �nal reduction, involving the modal matrix [� m;N], bw(2�� )
is denoted bybwm;N(2�� ). A �rst convergence analysis is performed with respect to the numberm
of modes to be kept in the NL-ROMF. LetConv1(m) be the function de�ned by

Conv1(m) =

s Z

Ba

�
bwm(2�� )

�2 d� : (41)

Figure 8 displays the graph of functionm 7! Conv1(m) for the three di� erent patterns (the tuned
patternP0 = 24A and two detuned patternsP2 = (AB)12 andP13 = 6B12A3B3A). A good
convergence is obtained form = 145 that will be the retained value. A second convergence
analysis is then carried out with respect toN < m = 145 according to Eq. (18). LetConv2(m; N)
be the function de�ned by

Conv2(m; N) =

s Z

Ba

�
bwm;N(2�� )

�2 d� : (42)
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Figure 8: Convergence analysis with respect to the ordermof the NL-ROMF: graphs of function
m 7! Conv1(m) for patternsP0 = 24A, P2 = (AB)12, andP13 = 6B12A3B3A.

Figure 9 displays the graph of functionN 7! Conv2(m = 145; N). It can be seen that a good
approximation is obtained forN = 55, which proves the e� ciency of the reduction strategy that
is proposed.
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Figure 9: Convergence analysis with respect to the orderN of the NL-ROM form = 145: graphs
of functionN 7! Conv2(m; N) for patternsP0 = 24A, P2 = (AB)12, andP13 = 6B12A3B3A.

4.5.2. Convergence analysis with respect to the number NG of columns of matrix[LK ]
From the previous section, the order of the NL-ROM isN = 55. This means that the dimen-

sion of matrix [KNL ] de�ned in Eq. (26) isNa = 3 080. Random matrix [K NL ] is represented
by Eqs. (28) and (29), which depends on the numberNG of columns of matrix [LK ]. We then
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introduce the relative error functionNG 7! err(NG) such that

err(NG) =

vt
k[� eK]k2

F

k[KNL ]k2
F

; (43)

in which k � kF is the Frobenius norm. Figure 10 displays the graph ofNG 7! err(NG). A good
convergence is obtained forNG = 500, which allows for reducing the size of the random matrix
[GK(� K)] used in Eq. (28).
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Figure 10: Convergence analysis with respect to the number of columnsNG of matrix [LK ]:
graph of functionNG 7! err(NG) in log-scale.

4.5.3. Convergence analysis of the NL-SROM with respect to the number of Monte-Carlo simu-
lations

In this section, parametersm, N, andNG are such thatm = 145,N = 55, andNG = 500. The
dispersion parameter� K is �xed to the value 0:1. Let

bW(2�� ) =

vut MX

j=1

jjbU
j
(2�� )jj2 (44)

be the random variable corresponding to Eq. (40) for the stochastic case. The stochastic equa-
tion (31) is solved by using the Monte-Carlo numerical simulation withns realizations denoted
by � 1; � � � ; � ns. Let bW(2��; � ` ) be the realization� ` of the random variablebW(2�� ). The con-
vergence analysis with respect tons is then carried out studying the functionns 7! Conv4(ns)
de�ned by

Conv4(ns) =

vt
1
ns

nsX

`=1

Z

Ba

( bW(2��; � ` ))2d� (45)

In order to limit the CPU-time for performing the robust analysis of the detuned systems in
presence of mistuning, we choose the value ofns to be 500, which corresponds to a reasonable
compromise with respect to the level of convergence.
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Figure 11: Convergence analysis with respect to the numberns of realizations for the Monte-
Carlo numerical simulation of the NL-SROM: graph of functionns 7! Conv4(ns).

5. Nonlinear deterministic analysis of nonlinear tuned and detuned rotating bladed disks
without mistuning

In all this section, we consider the nonlinear tuned rotating bladed disk and the nonlinear
detuned one without mistuning, which are analyzed using the NL-ROMF and the NL-ROM.

5.1. Sensitivity analysis of the deterministic responses for the nonlinear tuned rotating bladed
disk with respect to s0

This external-forces sensitivity analysis is performed using the NL-ROMF withm = 145 for
the nonlinear tuned rotating bladed disk (patternP0 = 24A). The objective is to determine the
value of parameters0 for which the geometric nonlinear e� ects occur in the dynamic response.
This analysis is performed by quantifying the energyiNL outside the excitation frequency band
Be (that is to say, in the bandBanBe) such that

iNL(s0) =

q R
BanBe

�
bw(2�� ; s0)

�2 d�
q R

Be

�
bw(2�� ; s0)

�2 d�
: (46)

Figure 12 displays the graph of functions0 7! iNL(s0). It can be seen that geometric nonlinear
e� ects appear fors0 > 0:10. Figure 13 displays the graph of function� 7! jjbu j0(2�� )jj constructed
with the NL-ROMF for s0 equal to 0:04 (response belonging to the quasi-linear regime of the
nonlinear response), and equal to 0:25, 1:11, and 4:0 (response belonging to the nonlinear regime
of the nonlinear response). The left top �gure clearly shows a dynamic response that remains
in the linear regime (there is no response outsideBe). On the other hand, subsequent contribu-
tions with unexpected resonances appear outsideBe in the frequency bandBanBe as soon ass0

increases.

5.2. Linear and nonlinear dynamic analyses in the time domain using the L-ROM and NL-ROM
In this section, the linear and nonlinear dynamic responses of the tuned con�guration (pattern

P0 = 24A) and three detuned con�gurations (patternsP6 = (4A2B)4, P11 = B4AB18A, P25 =
19
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Figure 12: Sensitivity analysis with respect to parameters0 using the NL-ROMF for the nonlinear
tuned rotating bladed disk (patternP0 = 24A): graph of functions0 7! iNL(s0).
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Figure 13: Sensitivity analysis with respect to parameters0 of the response computed with the
NL-ROMF and analyzed in the frequency domain: graphs of function� 7! jjbu j0(2�� )jj for s0 =
0:04 (left top �gure), s0 = 0:25 (right top �gure), s0 = 1:11 (left down �gure), ands0 = 4:0
(right down �gure). The light yellow zone corresponds to the excitation frequency bandBe

3A3B3A15B) are analyzed. Figure 14 displays the graph of functiont 7! u j0
2;L(t) for patterns

(P0, P6, P11, P25) corresponding to a linear computation performed with the L-ROM de�ned
in Section 2.4.2. Figure 15 displays the graph oft 7! u j0

2;NL(t) for patterns (P0, P6, P11, P25)
corresponding to the nonlinear computation performed with the NL-ROM. By comparing the
nonlinear results with the linear ones, it can be seen thats0 = 1 yields high nonlinear geometric
e� ects that mitigate the amplitude of the responses and show ”irregular” responses, suggesting
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numerous resonances contributing outside bandBe.
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Figure 14: Zoom on the time interval [� 0:01;0:1] s of the linear dynamic analysis in the time
domain performed with the L-ROM: graph of functiont 7! u j0

2;L(t) de�ned on the time interval
[� 0:05;1:5] s for the patternsP0 (left top �gure), P6 (right top),P11 (left down), andP25 (right
down).

5.3. Analysis the nonlinear dynamic time responses in the frequency domain

A Fourier transform is then performed on the time responses constructed with the L-ROM
(linear) and the NL-ROM (nonlinear), allowing the spectrum of the responses to be analyzed in
the frequency band of analysisBa = [0;4 000]Hz. We are interested in the dynamic ampli�cation
factorb(2�� ) (de�ned by Eq. (36) with respect to the tuned con�guration. Figure 16 displays the
graphs of functions� 7! bL(2�� ) (linear) and� 7! bNL(2�� ) (nonlinear) for the tuned rotating
bladed disk (patternP0) and for the detuned rotating bladed disks (patternsP6, P11, P25). By
comparing the linear responses with the nonlinear ones, it can be seen the strong e� ects of the
nonlinearities outside the frequency band of excitationBe and that new resonances occur below
and above this frequency bandBe. Such phenomena has previously been observed [30, 49] in the
turbomachinery context. In order to better understand the discrepancy of the detuned nonlinear
dynamic responses with respect to the tuned ones, letb�

NL(2�� ) be the upper (+) and the lower
(� ) envelopes of the dynamic ampli�cation factors. Figure 17 displays the graphs of functions
� 7! b�

NL(2�� ) and � 7! btuned
NL (2�� ) corresponding to the nonlinear computations performed
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Figure 15: Zoom on the time interval [� 0:01;0:1] sof the nonlinear dynamic analysis in the time
domain performed with the NL-ROM: graph of functiont 7! u j0

2;NL(t) de�ned on the time interval
[� 0:05;1:5] s for the patternsP0 (left top �gure), P6 (right top),P11 (left down), andP25 (right
down).

with the NL-ROM. It can be seen that the nonlinear dynamic response is very sensitive to the
detuning, especially outside bandBe. At a given frequency, the ampli�cation factor can strongly
di� er from one pattern to another one.

6. Analysis of the stochastic linear and nonlinear tuned and detuned rotating bladed disks
with mistuning

In all this section we consider the nonlinear tuned rotating bladed disk and the nonlinear
detuned one in presence of mistuning, which are analyzed using the NL-SROM1, NL-SROM2,
and L-SROM de�ned in Section 3.

6.1. Sensitivity analysis with respect to parameter s0 for the tuned and detuned rotating bladed
disks in presence of mistuning

The objective is to quantify and to give explanations concerning the e� ects of the level of
uncertainties related to the level of mistuning. In that sense, a parametric analysis is carried
out with respect to (i) the dispersion parameter� K that controls the level of uncertainties in
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Figure 16: Frequency analysis of the time responses computed with the NL-ROM: graphs of
functions� 7! bL(2�� ) (red smooth thin lines) and� 7! bNL(2�� ) (blue irregular thick lines) for
patternsP0 (left top �gure), P6 (right top),P11 (left down), andP25 (right down). The excitation
frequency bandBe is in light grey area.

the computational model and (ii) parameters0. A comparison is performed between the lin-
ear stochastic responses computed with L-SROM and the nonlinear stochastic responses com-
puted with NL-SROM2. LetbUmax(s0) be the real-valued random variable de�ned bybUmax(s0) =
max� 2Be

kU j0(2�� ; s0)k depending ons0. Letbumax(s0) be the real number depending ons0 such
that ProbafbUmax(s0) � bumax(s0)g � 0:95. Figure 18 displays the functions0 7! bumax(s0) com-
puted with the stochastic models L-SROM and NL-SROM2 for� K = 0:1 and for the patternsP0

(tuned) andP6 (detuned). It can be seen that the propagation of uncertainties for the nonlinear
geometrical e� ects (NL-SROM2) is smaller than for the linear case (L-SROM). This attenuation
is more important whiles0 is increasing, that is to say when the nonlinear e� ects increase. More-

over, Figure 19 displays the graph of the con�dence region of� 7! jjbU
j0
(2�� )jj corresponding to a

probability level 0:95 for both patternsP0 (tuned) andP6 (detuned) computed using NL-SROM2
for three external-forces intensitiess0 = 0:01, s0 = 0:15, ands0 = 1 corresponding to negligible,
moderate, and large geometric nonlinear e� ects. It can be seen that fors0 = 0:01, the response
in the frequency domain is clearly located in excitation frequency bandBe, similarly to the linear
case. For the medium and high values ofs0, geometric nonlinear e� ects yield unexpected reso-
nances that occur outsideBe, especially, around 484Hz (mode 1 de�ned in Section 4.3), which
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corresponds to the �rst bending mode of the blade and 3 700Hz, which corresponds to a com-
bination of elastic modes. In addition, the general level of responses outside bandBe increase
with s0. Concerning frequency band of excitationBe, it can be seen that the second bending
mode of blade (mode 2 around 1 170Hz de�ned in Section 4.3) is relatively stable in frequency
with respect tos0 while the �rst torsion mode of blade (mode 3 at around 1 490Hz de�ned in
Section 4.3) tends to vanish when the nonlinear geometric e� ects increase. Furthermore, it can
be noticed that the width of the con�dence region is not constant with respect to the frequency.
Let BL(2�� ; � K) be the random variable depending on� K , de�ned by Eq. (37), and constructed
using the L-SROM. LetB1

L (� K) be the random variable de�ned by

B1
L (� K) = max

� 2Be

BL(2��; � K) ;

which corresponds to the maximum dynamic ampli�cation factor over the excitation frequency
band. We then denote byb+;1

L (� K) the value ofB1
L (� K) depending on� K and such that

ProbafB1
L (� K) � b+;1

L (� K)g � 0:95:

Figure 20 displays the graph of function� K 7! b+;1
L (� K) for seven patterns of con�gurations:

tuned patternP0 and detuned onesP2, P3, P5, P6, P12, andP31 de�ned in Appendix A. The re-
sults obtained are coherent with those published in [25], especially, for each pattern, a maximum
is obtained for a small mistuning (small value of� K).

6.2. Stochastic analysis of nonlinear tuned and detuned rotating bladed disks in presence of
mistuning for patterns

In this section, we present the results obtained using NL-SROM1 for the nonlinear tuned and
detuned rotating bladed disks in presence of mistuning.
Let BNL(2�� ; � K) be the random variable depending on� K , de�ned by Eq. (37), and constructed
using the NL-SROM1. For two values of� K controlling the mistuning level, Figure 21 (� K =
0:03) and Figure 22 (� K = 0:1) display the con�dence region of random variableBNL(2�� ; � K),
estimated with a probability level of 0:95, for con�gurationsP0 (tuned), and forP6, P11, and
P25 (detuned de�ned in Appendix A). These �gures allow for estimating the robustness of the
responses with respect to the level of uncertainties as a function of the considered patterns. Nev-
ertheless, the �rst torsion mode forh = 4 (mode 3 around 1 490Hzde�ned in Section 4.3 located
in Be is very sensitive to the mistuning, as already mentioned for the linear case in Section 6.1.
It can be seen that the nonlinear stochastic response of the mistuned-detuned bladed disk is par-
ticularly complex. It should also be noted, as in Section 6.1, that unexpected resonances occur
outside the excitation frequency band as soon as the level of nonlinearities is signi�cant.

6.3. Stochastic analysis of nonlinear tuned and detuned rotating bladed disks in presence of
mistuning for46patterns

The analysis that we have presented in Section 6.2 is revisited considering all the 46 patterns
de�ned in Appendix A. For simplifying the presentation of the results, the 46 patterns (the tuned
pattern and the 45 detuned patterns, all in presence of mistuning) are considered as 46 realizations
of a random mechanical system. LetBall

NL(2�� ) be the random ampli�cation factor de�ned by
Eq. (37) of this random mechanical system, estimated using the NL-SROM1 for� K = 0:1. In
practice, the con�dence region associated with a probability level of 0:95 of random variable
Ball

NL(2�� ) is estimated in concatenating all the Monte-Carlo realizations computed for each one
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of the 46 patterns. Figure 23 displays (in linear and log scales) the con�dence region of the
deterministic ampli�cation factorbtuned

NL (2�� ) for the tuned rotating bladed disk without mistuning
and the random variableBall

NL(2�� ) for all the 46 patterns de�ned in Appendix A, which includes,
as previously mentioned, the tuned patternP0 in presence of mistuning. We use the same type
of analysis as the one that we have presented in Section 6.2. This �gure shows that the values of
the random ampli�cation factor, which occur outside excitation frequency bandBe is signi�cant
and is sensitive to uncertainties. It should be noted thatbtuned

NL (2�� ) is included in the con�dence
region. Moreover, the analysis of Figure 23 shows that the robustness of the stochastic response
around the two main resonances located in bandBe is signi�cantly higher than outsideBe, while
noting that there are relatively high levels outsideBe (in linear, there is no response outside the
bandBe). In the low-frequency band [0;1000]Hz (not excited by the external forces), there are
mistuned con�gurations for which the amplitude level outsideBe is four times lower than the
one inBe. Nevertheless, it should be noted that the levels of responses (induced by the nonlinear
geometric e� ects), which occur outside bandBe, depend on the bladed disk, and that these levels
could be larger than in the frequency bandBe for other bladed disks.

These results lead us to split the frequency band of analysisBa in 3 sub-frequency bands to
better analyze the ampli�cation factor. We then de�ne the following bands:Blow = [0;1 000]Hz,
Bmed = [1000;1 300]Hz, andBhigh = [1 300;4 000]Hz. Note that bandBmed is included in
frequency band of excitationBe and that bandBhigh overlaps bandBe with the common fre-
quency band [1 300;1 600]Hz. This partition of the frequency band of analysis has been intro-
duced in order to analyze the ampli�cation of the resonances in each sub-frequency band. Let
flow;med;highgbe the set of the three strings of characters such that, for band2 flow;med;highg,
the bandBbanddenotes one of the bandBlow, Bmed, andBhigh.

Let BNL(2�� ; � K) be the random ampli�cation factor de�ned by Eq. (37), computed using
NL-SROM1. Let

B1 ;band
NL (� K) = max

� 2Bband

BNL(2�� ; � K)

be the random variable that corresponds to the maximum dynamic ampli�cation factor over
frequency bandBband. We then denote byb+;1 ;band

NL (� K) the value ofB1 ;band
NL (� K) depending on

� K and such that
ProbafB1 ;band

NL (� K) � b+;1 ;band
NL (� K)g � 0:95: (47)

For anyone of the 46 patterns, we are interested in plotting the graphs of functions� K 7!
b+;1 ;med

NL (� K), � K 7! b+;1 ;low
NL (� K), and� K 7! b+;1 ;high

NL (� K), which describe the evolution of the
maximum ampli�cation factor for each con�guration according to the dispersion parameter� K .
However, to maintain a su� cient readability of the �gures, we only plot the lower and upper
envelopes of the 46 con�gurations. These two envelopes de�ne a region in which all the 46
con�gurations belong. Figures 24, 25, and 26 show the graphs for each frequency band,Bmed,
Blow, or Bhigh. In the caption of each one of these three �gures, the patterns corresponding to
the lower and upper envelopes will be indicated. Figure 24 shows that there is a weak sensitiv-
ity of the envelopes with respect to the mistuning level represented by the value of� K . Pattern
P34, which corresponds to the upper envelope, yields the largest dynamic ampli�cation factor in
bandBmed, whereas patternP1, which corresponds to the lower envelope, has the lowest dynamic
ampli�cation factor. In Figures 25 and 26, it can be seen that the envelopes are sensitive to the
level of mistuning represented by� K , and that a very high dynamic ampli�cation factor can be
obtained, for instance patternP26 (upper envelope forBlow) and patternP9 (upper envelope for
Bhigh). Note that these high dynamic ampli�cation factors are due to the choice of the reference.
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If this reference was chosen as the linear tuned system, then this ampli�cation dynamic factor
would be in�nite. Presently, the reference has been chosen as the nonlinear tuned system without
mistuning.

7. CONCLUSION

We have presented a robust analysis of the e� ects of geometric nonlinearities on the nonlin-
ear dynamic behavior of rotating bladed disks that are detuned in presence of mistuning. This
mistuning induces uncertainties that are taken into account by a probabilistic approach in the
computational model. The results obtained allow for increasing the knowledge in the area of the
nonlinear stochastic dynamic of the detuned rotating bladed disks. It has been demonstrated that
the responses obtained in the frequency band outside the band of excitation can be signi�cant.
The envelopes of the dynamic ampli�cations factors among the investigated patterns show that
the nonlinear dynamic response is sensitive to the detuning in presence of mistuning. The results
highlight the indirect excitation of the rotating bladed disks through the geometric nonlinearities
outside the excitation frequency band. The optimization with respect to all the possible con�gu-
rations de�ned by the patterns, with the objective to �nd the pattern that minimizes the random
dynamic ampli�cation factor, remains a problem that demands large computer resources in term
of CPU time. The complexity of the results obtained for the 46 con�gurations studied, seems to
show that such a discrete nonconvex optimization problem on a set of con�gurations having a
huge number of patterns, is di� cult. Nevertheless, although a nonexhaustive study optimization
could not be made, we have shown that there were detuned con�gurations that minimize the
dynamic ampli�cation factor in presence of mistuning.
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A. Table of patterns

Pattern number Arrangement
P0 24A
P1 (5A1B)4

P2 (AB)12

P3 (4A4B)3

P4 4A2B3A2B5A2B3A2B
P5 (3A3B)4

P6 (4A2B)4

P7 AB2A2B(AB)22A2B2AAB2B(AB)2

P8 2ABA2B2A3B(AB)22AB3A3B
P9 (2A2B)6

P10 4A4B(2A2B)22A6B
P11 B4AB18A
P12 12A12B
P13 6B12A3B3A
P14 3B15A3B3A
P15 6A3B6A9B
P16 (3B6A)23B3A
P17 3A6B3A12B
P18 3B12A6B3A
P19 18A6B
P20 3B12A6B3A
P21 6B9A6B3A
P22 6A3B3A12B
P23 9A3B6A6B
P24 14A9B
P25 3A3B3A15B
P26 15B9A
P27 3B6A12B3A
P28 3A21B
P29 3A3B(3A6B)2

P30 (3A3B)23A9B
P31 (6A6B)2

P32 3B9A9B3A
P33 3B21A
P34 6A6B3A9B
P35 18A6B
P36 3B12A3B6A
P37 3B6A3B3A6B3A
P38 6A8B3A6B
P39 9A3B3A9B
P40 3B9A3B3A3B3A
P41 3B6A6B3A3B3A
P42 3B9A6B6A
P43 (3A3B)4

P44 (3A9B)2

P45 (9A3B)2
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Figure 17: Graphs of functions� 7! b�
NL(2�� ) (black irregular thick lines) and� 7! btuned

NL (2�� )
(red/grey irregular thin line) corresponding to the upper (+) and the lower (� ) envelopes of the
dynamic ampli�cation factor among the investigated patterns. Linear scale (top �gure) and log
scale (down �gure) 30
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Figure 18: For� K = 0:1, graphs of functions0 7! bumax(s0) such that ProbafbUmax(s0) �
bumax(s0)g � 0:95: tuned rotating bladed diskP0 (top �gure) and detuned rotating bladed disk
P6 (down �gure). Calculation with L-SROM (red/grey line with crosses) and with NL-SROM2
(blue/black line with circles). 31
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Figure 19: For� K = 0:1, con�dence region (yellow/grey region) of� 7! jjbU
j0
(2�� )jj correspond-

ing to a probability level 0:95, computed using NL-SROM2 forP0 (left �gures) andP6 (right
�gures), and for three values of parameters0: s0 = 0:01 (top �gures),s0 = 0:15 (central �gures),
ands0 = 1 (down �gures). The dashed-line is the response of the deterministic mean (nominal)
model. The vertical grey region corresponds to excitation frequency bandBe
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Figure 20: Graph of function� K 7! b+;1
L (� K) for tuned patternP0 and detuned onesP2, P3, P5,

P6, P12, andP31 de�ned in Appendix A.

Figure 21: For� K = 0:03, con�dence region (yellow/grey region) of the random ampli�cation
factor, BNL(2�� ), estimated with a probability level of 0:95 using NL-SROM1, for the tuned
con�guration P0 (left top �gure), and for the detuned con�gurations,P6 (right top), P11 (left
down), andP25 (right down). The dashed-line is the nominal ampli�cation factorbNL(2�� ). The
vertical grey region corresponds to excitation frequency bandBe.
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Figure 22: For� K = 0:1, con�dence region (yellow/grey region) of the random ampli�cation
factor, BNL(2�� ), estimated with a probability level of 0:95 using NL-SROM1, for the tuned
con�guration P0 (left top �gure), and for the detuned con�gurations,P6 (right top), P11 (left
down), andP25 (right down). The dashed-line is the nominal ampli�cation factorbNL(2�� ). The
vertical grey region corresponds to excitation frequency bandBe.
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Figure 23: For� K = 0:1, con�dence region (yellow/grey region) of the random ampli�cation
factor,Ball

NL(2�� ), related to the 46 patterns, estimated with a probability level of 0:95 using NL-
SROM1. The dashed-line is the ampli�cation factorbtuned

NL (2�� ) of the tuned system without
mistuning. The thick solid line is the median value of random variableBall

NL(2�� ). The vertical
grey region corresponds to excitation frequency bandBe. Linear scale (left �gure), log scale
(right �gure)
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Figure 24: For bandBmed, lower (thin solid line) and upper (thick solid line) envelopes of the
regions containing the 46 graphs of functions� K 7! b+;1 ;med

NL (� K) for the 46 patterns. The upper
envelope corresponds to patternP33 and the lower one toP1.

Figure 25: For bandBlow, lower (thin solid line) and upper (thick solid line) envelopes of the
regions containing the 46 graphs of functions� K 7! b+;1 ;low

NL (� K) for the 46 patterns. The upper
envelope corresponds to patternP26 and the lower one toP37.
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Figure 26: For bandBhigh, lower (thin solid line) and upper (thick solid line) envelopes of the
regions containing the 46 graphs of functions� K 7! b+;1 ;high

NL (� K) for the 46 patterns. The upper
envelope corresponds to patternP9 and the lower one toP8.
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