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Abstract

A stochastic approach to model crack propagation in random heterogeneous media,
using mesoscopic representations of elastic and fracture properties, is presented. In
order to obtain reference results, Monte-Carlo simulations are first conducted on
microstructural samples in which a pre-existing crack is propagated by means of a
phase-field approach. These computations are used to estimate the subscale-induced
randomness on the macroscopic response of the domain. Mesoscopic descriptors are
then introduced to investigate scale transition. Elasticity tensor random fields are
specifically defined, at that stage, through amoving-window upscaling approach. The
mesoscopic fracture toughness, which is assumed homogeneous and deterministic,
is identified by solving an inverse problem involving the macroscopic peak force.
A stochastic model is subsequently constructed in which the mesoscopic elasticity
is described as a non-Gaussian random field. This model allows the multiscale-
informed, elastic counterpart in the phase-field formulation to be sampled without
resorting to computational homogenization. The results obtained with the sample-
based and model-based mesoscopic descriptions are finally compared with those
corresponding to the full-scale, microscopic model. It is shown, in particular, that
the mesoscopic elasticity-phase-field formulation associated with statically uniform
boundary conditions enables the accurate predictions of the mean elastic response
and mean peak force.

KEYWORDS:
Crack propagation; phase-field method; mesoscale; stochastic analysis; random field; uncertainty quan-
tification.

1 INTRODUCTION

Modeling the damage and strength properties in heterogeneous brittle or quasi-brittle materials is of major interest in civil and
mechanical engineering, biomechanics and many other areas of engineering. In such complex materials like concrete, cemen-
titious materials, cortical bone, or fiber/particle-reinforced composites, the main damage mechanisms are due to the initiation
and propagation of crack networks at the microscale. However, in most applications, modeling the crack propagation at the
scale of constituents up to the macroscale is, in general, not tractable. In the recent years, a few attempts have been devoted to
multiscale modeling of damage from microscale crack propagation, including, among many others: FE2-approaches consider-
ing separated scales and microscale nonlinear damage (1, 2), extended FE2 techniques with discontinuities at the macroscale
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(3, 4, 5, 6), domain decompositions methods embedding discontinuities (7, 8, 9), or more recently methodologies enabling the
identification of regularized damage models at the macroscale from microscale calculations (10, 11).
In the mentioned works, only deterministic geometries and crack paths were considered. Since microstructural randomness

strongly impacts the macroscopic response of (quasi-)brittle materials in various ways, ranging from size effects (12, 13, 14, 15)
to high stochasticity in failure patterns and ultimate properties (16, 17, 18), the development of approaches incorporating mul-
tiscale and probabilistic ingredients all together is a natural path to extend the predictive capabilities in fracture simulations.
The main objective of this work is to propose a stochastic, multiscale-informed phase-field approach to model crack propaga-
tion in heterogeneous media. In the proposed framework, the parameters involved in the elasticity-phase-field formulation are
specifically defined through multiscale analysis with non-separated scales. This particular setting ensures consistency with crit-
ical subscale information, and allows for the propagation of stochasticity at the macroscopic level. Similar ideas were pursed
in the very recent work (19), with a few noticeable differences though. First, the approach developed in the above reference is
concerned with dynamical fracture, solved using an asynchronous spacetime discontinuous Galerkin method, and is focused on
fracture strength random fields. A phase-field approach to brittle fracture modeling is alternatively considered and extended in
this paper, in which validation is further assessed on a macroscopic quantity of interest. Second, and while both contributions
invoke information theory as a rationale to define probability measures, stochastic modeling aspects and related methodologi-
cal issues are addressed more extensively hereinafter. Note also that crack paths are simulated in the sequel by propagating a
pre-existing crack, whereas crack nucleation sites are identified, for each sample of the microstructure, as the weakest material
points in (19).
This paper is organized as follows. The computational approach enabling the description of crack propagation at the micro-

scopic scale is first detailed in Section 2. The phase-field formulation is introduced, and reference stochastic computations are
performed on a prototypical random microstructure. The description of crack propagation using mesoscopic descriptors is next
addressed in Section 3. Methodologies to define and subsequently identify these descriptors are introduced, and applied to the
aforementioned microstructure. The relevance of the framework is finally assessed by comparing macroscopic predictions based
on either the reference, microscopic model or the proposed mesoscopic approach.

2 STOCHASTIC MODELING OF CRACK PROPAGATION AT MICROSCALE

2.1 Formulation
We consider an open bounded domain Ω ⊂ ℝm, m = 2, 3, with boundary )Ω , subjected to Dirichlet and Neumann boundary
conditions uD and tN on the corresponding boundaries )Ωu and )Ωt respectively, with )Ωu ∪ )Ωt = )Ω and )Ωu ∩ )Ωt = ∅
(see Fig. 1 (a)). The total energy of the cracked solid is given by

(u,Γ) = ∫
Ω∖Γ

Wu(u,Γ)dΩ + gcm−1(Γ) − ∫
)Ωt

tN ⋅ udΓ , (1)

where u denotes the displacement vector,Wu is the elastic strain density function, gc is the fracture toughness, or critical energy
release rate in the sense of Griffith and the Hausdorff measure of dimension m−1 representing the discontinuous crack shape
Γ. In this work, we adopt the variational approach to fracture as proposed by Bourdin, Francfort and Marigo (20, 21, 22) and
developed in an efficient computational framework in (23), called in the literature the phase field approach to fracture. The above
energy form can be replaced by a regularized one (24, 25), given by:

E(u, d) = ∫
Ω

Wu(u, d)dΩ + gc ∫
Ω

(d)dΩ − ∫
)Ωt

tN ⋅ udΓ , (2)

where  is a crack density function, whose model can be chosen among several possible forms, leading to a class of shapes for
the regularized damage field near the crack (see, e.g., (26)). In this regularized framework, the cracks are no more described by
surfaces but by a smooth field x → d ∈ [0, 1] (see Fig. 1 (b)). For example, the so-called first-order model is associated with

(d) = 1
2l
d2 + l

2
∇(d) ⋅ ∇(d) , (3)

where l ∈ ℝ+ is a regularization length associated to the regularized description of the cracks (see Fig. 1 (c)) such that l ≪ Ω.
Discussions about the choice of l can be found in, e.g., (27, 28, 29). In Eq. (2), the strain density function can be decomposed
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as follows to involve damage in tension only and then avoiding self interpenetration while taking into account automatically
self-contact within the crack (23):

Ψ = ((d) + �)Ψ+([�+]) + Ψ−([�−]) , (4)
where d → (d) denotes the (stiffness) degradation function. Here, the quadratic function(d) = (1−d)2 is used and 0 < � ≪ 1
is a small regularizing parameter ensuring the well-posedness of the boundary value problem (see e.g. (23) and a discussion for
the choice of degradation functions in (30). Furthermore, Ψ+ and Ψ− denote parts of the strain density related to tensile and
compressive parts of the strain tensor, respectively. For an isotropic medium, it leads to (see (23)):

Ψ±([�]) = �
2
(

⟨T r ([�])⟩±
)2 + �T r

{(

[�±]
)}

, (5)

where T r(.) is the trace operator and x → �(x) and x → �(x) are the field of Lamé’s constants. In Eq. (5), [�+] and [�−] are
such that [�] = [�+] + [�−] and are defined by the spectral decomposition

[�±] =
m
∑

i=1
< �i >

± '(i) ⊗ '(i) , (6)

in which {(�i,'(i))}mi=1 are the pairs of associated eigenvalues and eigenvectors of the strain tensor [�], and< ⋅ >
± is the operator

given by
< z >±= 1

2
(z ± |z|) , ∀z ∈ ℝ . (7)

(a) (b) l = (1/10) L (c) l = (1/20) L (d) l = (1/50) L

FIGURE 1 Panel (a): sharp description of a cracked solid. Panels (b), (c) and (d): smeared description within the phase field
framework, showing damage profile x → d(x) for different values of the regularization length l (in this figure, L denotes the
characteristic length of the domain, here of the minor axis of the ellipsoidal shape).

Variation of (2) with respect to u and d leads to the coupled equations:
⎧

⎪

⎨

⎪

⎩

( ⋅ [�(u, d)] = 0 ,
gc
l
(d − l2Δd) − 2(1 − d)([�]) = 0,

(8)

where ∇ ⋅ (.) is the divergence operator and is a strain density history function, used to prescribe damage irreversibility (23):

(x, t) = max
� ∈ [0,t]

{

Ψ+ (x, �)
}

. (9)

The stress tensor for the damaged material reads, for an isotropic material, as:

[�(u, d)] = )Ψ
)[�]

= ((d) + �)
{

� ⟨T r([�])⟩+ [1] + 2�[�]+
}
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+� ⟨T r([�])⟩− [1] + 2�[�]−.
The system of equations (8) is complemented by the following boundary conditions

⎧

⎪

⎨

⎪

⎩

u = uD on )Ωu ,
[�]n = tN on )Ωt ,
(d ⋅ n = 0 on )Ω ,

(10)

where ∇(.) is the gradient operator, uD and tN are prescribed vector fields of displacements and tractions, and n is the outward-
pointing normal vector on )Ω (see Fig. 1 (a)).
It should be noticed at this point that Eq. (5) encapsulates the stochastic aspect of the propagation at microscale, since the

field x → JC (�(x), �(x))K corresponds to a realization of the elasticity tensor random field {JC((�(x), �(x)))K,x ∈ Ω} given by

JC(x)K =
Np
∑

i=1
1Ωi(x)JC

i (�(x), �(x))K , (11)

where {1Ωi(x),x ∈ Ω} and JC i (�(x), �(x))K are the indicator function and elasticity tensor of phase i (assumed to be isotropic
here), occupying domain Ωi, and the domain Ω is assumed to contain Np constitutive phases. For random microstructures, the
indicator functions are, indeed, non-Gaussian random fields: in practice, it is thus required to proceed to, e.g., Monte Carlo
simulations of these fields, and to solve the coupled elasticity-phase-field problem for each realization ofΩ. This strategy allows
the variability in crack paths (and consequently, in the nonlinear part of the macroscopic response) to be simulated at microscale.
This point is specifically illustrated in the next section.

2.2 Computing Realizations of Crack Paths at the Microscale
In this section, we describe the Monte Carlo approach used to generate realizations of crack paths at the micro scale. These
realizationswill be used, in Section 3.3, to identify amesoscale stochasticmodel constructed in Section 3.2.1. In order to illustrate
the methodology throughout this paper, a prototypical stationary, isotropic random microstructure made up of a homogeneous
matrix andmonodisperse spheres is selected hereinafter (Np = 2). A two-dimensional square domainΩ = (]0, L[)2 is considered
(that is, m = 2), with L = 1 mm, and the radius of the inclusions is set to R = 0.04 × L. Plane strain conditions are assumed.
A set of �obs = 1000 realizations was generated using the molecular-dynamics-type algorithm proposed in (31). Each sample is
periodized and contains Ninc = 50 non-overlapping heterogeneities. Independent realizations of this microstructure are shown
in Fig. 2 .

FIGURE 2 Four independent realizations of the periodized random microstructure.

The constitutive materials are assumed isotropic, and the bulk and shear moduli are denoted as (km, �m) and (ki, �i) for
the matrix and inclusions, respectively. Accordingly, gc,m and gc,i denote the toughnesses of the matrix and inclusions. These
properties are chosen such that the mechanical contrast � satisfies � = ki∕km = �i∕�m = gc,i∕gc,m, where the properties of the
matrix are taken as km = 175 [GPa], �m = 81 [GPa] and gc,m = 2.7×10−3 [kN.mm−1]. Dirichlet boundary conditions are applied
in the form uD(x1, 0) = 0 and uD(x1, L) = uDe(1) for 0 ⩽ x1 ⩽ L, in which e(1) = (1, 0) is the first vector of the canonical
basis in ℝ2 (note that )ΩN = ∅) and uD ∈ [0, uD]; see Fig. 3 . An initial crack is positioned as described in Fig. 3 . These
boundary conditions correspond to a pure shear loading (see Fig. 3 ), and the evolution of the damage field and displacement-
force curve (associated with the microstructural sample shown in Fig. 3 ) can be seen in Figs. 4 and 5 , for l = 0.0075
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FIGURE 3 Boundary conditions applied to the domain and initial crack.

mm (in the two phases) and � = 10. As expected given the selected contrast in toughness, the crack exclusively propagates

FIGURE 4 Evolution of the damage field x → d(x) for the microstructure shown in Fig. 3 .

within the matrix phase. Since the crack path Γ is, by definition, identified as the collection of points xΓ for which d ≈ 1,
and upon restricting the analysis to configurations containing a single crack, the variability in the crack propagation generated
by the underlying microstructural randomness can be observed by considering the stochastic process {xΓ1 (x2), x2 ∈ X2}, in
which X2 ⊆ [0, 0.5]. Likewise, the stochasticity induced on the macroscopic response can be characterized by computing
the horizontal force on the top edge (x2 = L) of the samples, denoted by F . The mean and standard deviations for these
quantities of interest, together with sample-based envelopes are shown in Fig. 6 . In these figures, uD → F (uD) = E{F (uD)}
and uD → �F (uD) =

√

E{F (uD)2} − E{F (uD)}2 represent the mean and variance functions for the macroscopic force, and the
statistical estimators and envelopes are obtained using 100 independent realizations of the microstructure. Similar notations are
used for studying the second-order properties of the process {xΓ1 (x2), x2 ∈ X2}.

3 STOCHASTIC MODELING OF CRACK PROPAGATION AT MESOSCALE

In this section, we propose a simplified model of crack propagation at a mesoscale, i.e. at a level of scale where the fully
detailed microstructure is replaced by a smoother approximation to reduce the computational costs in a stochastic framework.
Note that (i) this mesoscale model differs from a fully homogenized one, as it maintains some statistical fluctuations raised by
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FIGURE 5 Simulated displacement-force response for the microstructure shown in the left panel in Fig. 3 .

Force [kN]
0 0.005 0.01 0.015

u
D
[m

m
]

0

0.2

0.4

0.6

0.8

1

1.2

F (uD)
F (uD) + σF (uD)
Envelope over sample

FIGURE 6 Envelope, mean and standard deviation for the displacement-force curve (left) and the crack path (right).

microstructural randomness; (ii) the formulation remains predictive to study crack propagation, in contrast with an approach
that would describe cracks through first-order, averaged characteristics (such as crack density).

3.1 Formulation for Stochastic Crack Propagation at Mesoscale
In order to characterize crack propagation using coarse descriptors, we introduce an upscaled version of the elasticity-phase-field
problem as follows:

⎧

⎪

⎨

⎪

⎩

( ⋅ [�(u, d)] = 0 ,
g̃c
l̃
(d − l̃ 2Δd) − 2(1 − d)Ψ̃+([�]) = 0 ,

(12)

where the stress tensor
[�(u, d)] = ((d) + �))Ψ̃

+([�(u)])
)[�(u)]

+
)Ψ̃−([�(u)])
)[�(u)]

, (13)

is here expressed as a function of a new, mesoscopic stored energy function

Ψ̃±([�]) = [�±] ∶ JC̃K ∶ [�±] , (14)
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in which x → JC̃(x)K is a mesoscopic elasticity tensor field, g̃c represents an equivalent toughness for the mesoscale medium
and l̃ is the characteristic length associated with the regularized description at the mesoscale. In what follows, the definition of
these quantities is investigated through a two-step methodology:

• First, the definition of the elasticity field x → JC̃(x)K is achieved using a moving-window upscaling approach under
different types of boundary conditions. This point is discussed in Section 3.2.1.

• Second, the definition of the toughness g̃c is addressed in Section 3.2.2, where a statistical inverse problem involving the
peak force at the macroscopic scale is introduced.

The results from the first step will be used, in Section 3.3, to construct a stochastic surrogate for the elasticity field. This model
will enable us to draw additional samples of themesoscopic elasticity field without having recourse to the homogenization solver.

3.2 Definition of the Mesoscopic Coefficients
3.2.1 Homogenization-based Definition of Mesoscopic Elasticity Tensor Fields
In this section, we define the technique used to construct a mesoscopic (smooth) definition of the heterogeneous elastic medium
from fully detailed realizations of microstructures. Such an approach has been extensively discussed over the past two decades.
Within a multiscale setup, this can be achieved by using a local homogenization (see (32) for a survey) or a filtering approach
(33, 34, 35). For averaging-type upscaling, kinematic and static uniform boundary conditions (which are denoted by KUBC
and SUBC hereinafter) can be considered (36) and provide bounds for the field of apparent tensors (37, 38). Alternatively,
periodic boundary conditions (PBC) can be invoked, especially when a fast convergence toward the effective properties is
sought; PBC were employed in the so-called moving-window approach (39), for instance. In the sequel, kinematic uniform
boundary conditions (KUBC) and static uniform boundary conditions (SUBC) are selected. While square-shaped domains are
typically used in the literature of homogenization, a circular moving window is considered to prevent the generation of spurious
anisotropic features at the mesoscale created by the corners of a square bow (see, e.g., (34)). In this work, an original method
using a moving window for obtaining a smoothed homogenized field with fluctuations is described in the following.
Let Ω̃x be a circular domain of radius R̃, centered at x ∈ Ω, with boundary )Ω̃x. For one realization of the microstructure,

{JC̃(x)K,x ∈ Ω} is obtained by performing a homogenization locally in Ω̃x, for both KUBC and SUBC (see Fig. 7 ). As x
moves withinΩ, we obtain a continuous, smooth homogenized medium characterized by a wavelength associated with the radius
R̃ (see illustrations of this process in Fig. 10 for different radii R̃. We recall that KUBC correspond to the following boundary
conditions:

u(ij)D (z) = [E(ij)]z , ∀z ∈ )Ω̃x , (15)
where in the present 2D plane strain context the indices i and j run over {1, 2}, leading to:

[E(11)] =
[

1 0
0 0

]

, [E(22)] =
[

0 0
0 1

]

, [E(12)] = 1
2

[

0 1
1 0

]

. (16)

The strategy is schematically depicted in Fig. 7 .
For SUBC, traction vectors are applied in the form

tN (z) = [Σ(ij)]n(z) , ∀z ∈ )Ω̃x , (17)

where n(z) is the outward-pointing normal vector at point z ∈ )Ω̃x. Combinations of indices similar to those introduced for
KUBC are considered, with

[Σ(11)] =
[

1 0
0 0

]

, [Σ(22)] =
[

0 0
0 1

]

, [Σ(12)] = 1
2

[

0 1
1 0

]

. (18)

Let {C̃KUBC (x)K,x ∈ Ω} and {C̃SUBC (x)K,x ∈ Ω} be the random fields of mesoscopic elasticity tensors defined under the
aforementioned boundary conditions. Note that when x approaches the boundary )Ω, the realization of the microstructure is
virtually replicated, by periodicity, and the mesoscopic tensor is still well defined.
Denoting by R the radius of the inclusions, the ratio R̃∕R plays an important role in defining a continuous transition from

the microscale (R̃∕R → 0+) to the macroscale (R̃∕R → +∞). Additionally, it specifies the level of anisotropy exhibited by the
local apparent elasticity tensor, ranging from microscopic isotropy to mesoscopic anisotropy, and then to macroscopic isotropy
(in the present case). The definition of the isotropic approximation for the mesoscale elasticity tensor field is addressed in the
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FIGURE 7 Defining mesoscale fields of stiffness through homogenization (case of KUBC).

following.

Let {JC̃ iso
BC (x)K,x ∈ Ω} denote the isotropic approximation of the field {JC̃BC (x)K,x ∈ Ω}, where the subscript BC refers

to the type of boundary conditions under consideration (KUBC or SUBC). In two-dimensional elasticity, and assuming plane
strain conditions, the Voigt-type matrix representation {[C̃ iso

BC (x)],x ∈ Ω} of the aforementioned field is given by

[C̃ iso
BC (x)] =

⎡

⎢

⎢

⎢

⎢

⎣

k̃BC (x) +
4
3
�̃BC (x) k̃BC (x) −

2
3
�̃BC (x) 0

k̃BC (x) −
2
3
�̃BC (x) k̃BC (x) +

4
3
�̃BC (x) 0

0 0 �̃BC (x)

⎤

⎥

⎥

⎥

⎥

⎦

, ∀x ∈ Ω , (19)

where {k̃BC (x),x ∈ Ω} and {�̃BC (x),x ∈ Ω} are the random fields of three-dimensional bulk and shear moduli defining the
isotropic approximation, in plane strain elasticity, of the actual (anisotropic) elastic tensor C̃BC (x). To obtain these coefficients,
we minimize the distance (in the sense of the metric defined as follows) between C̃BC (x) and [C̃ iso

BC (x)] (see (40, 35) and the
references therein):

(k̃BC (x), �̃BC (x)) = argmin
k>0, �>0

‖[C̃BC (x)] − [C̃ iso
BC (x)]‖

2
F , (20)

in which

[C̃BC ] =
⎛

⎜

⎜

⎝

C̃11 C̃12 C̃13
C̃12 C̃22 C̃23
C̃13 C̃23 C̃33

⎞

⎟

⎟

⎠

, (21)

where the Voigt’s notation has been used for the different components of the tensor and ‖ ⋅ ‖F is the Frobenius norm.
The optimization problem defined by Eq. (20) can readily be solved by a direct differentiation of the cost function, and the

mesoscopic moduli of the isotropic approximation are found as

k̃(x) = 1
60
(11C̃11(x) + 11C̃22(x) − 4C̃33(x) + 38C̃12(x)) , �̃(x) = 1

5
(C̃11(x) + C̃22(x) + C̃33(x) − 2C̃12(x)) , (22)

where the subscript BC has been dropped for notational convenience (this convention will be used in the sequel when no
confusion is possible). In order to assess the relevance of the isotropic approximation, the following random field {BC (x),x ∈
Ω} is introduced (40, 35):

BC (x) =
‖[C̃BC (x)] − [C̃ iso

BC (x)]‖F
‖[C̃BC (x)]‖F

, ∀x ∈ Ω . (23)

The graphs of the fields of mean and standard deviation evaluated for a coarse mesoscopic grid (with 20 points along each
direction) are shown in Figs. 8 and 9 , for both KUBC and SUBC.
It is seen that the error between the homogenization-based random fields and their isotropic approximations remain small in

mean and variance, and that the error is larger in the case of KUBC. The effect of the mesoscopic resolution on the isotropic
approximation (for KUBC) is qualitatively shown on a single realization in Fig. 10 . As expected, the field becomes more
homogeneous as the ratio R̃∕R increases. The approximation in the set of isotropic tensors is satisfactory and allows the
phase-field approach to be readily applied in the isotropic case. In this rest of this paper, we will consider the characterization
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FIGURE 8 Graphs of the mean functions for the random fields {KUBC (x),x ∈ Ω} (left) and {SUBC (x),x ∈ Ω} (right).
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FIGURE 10 One realization of the random field {‖[C iso(x)]‖F ,x ∈ Ω} for R̃∕R ∈ {0.2, 0.6, 0.8, 1, 2, 4} (from left to right).

and simulation of the non-Gaussian fields {k̃BC (x),x ∈ Ω} and {�̃BC (x),x ∈ Ω} for R̃∕R = 3.

The graphs of the first-order marginal probability density functions for the bulk and shear moduli are shown in Fig. 11 . The
well-known ordering with respect to boundary conditions is observed almost surely (that is, k̃SUBC ⩽ k̃KUBC and �̃SUBC ⩽
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�̃KUBC for each microstructural sample), and it is seen that the level of statistical fluctuations associated with KUBC is larger
than for SUBC.
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FIGURE 11 Graphs of the first-order marginal probability density functions for the bulk (left) and shear (right) moduli.

The estimated normalized correlation functions along e(1) and e(2) for the fields of bulk and shearmoduli (for SUBC) are shown
in Fig. 12 . In these figures, the notation �i → Rdata

k̃
(�i) indicates that the correlation function of the bulk modulus random field

is evaluated along the unit vector e(i) (a similar notation is used for the shear modulus). It is seen that the differences between the

Lag distance
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2

0

0.2

0.4

0.6

0.8

1

R
data

k̃
(τ1)

R
data

k̃
(τ2)

Lag distance
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2

0

0.2

0.4

0.6

0.8

1

R
data

µ̃

(τ1)

R
data

µ̃

(τ2)

FIGURE 12 Graph of the correlation function along e(1) and e(2), estimated from the simulated data, for the random fields of
bulk (left) and shear (right) moduli.

correlation functions for the two random fields are almost indistinguishable, due to the very strong cross-correlation between
the two properties. Moreover, it can be observed that the correlation first decreases over the range [0, L∕2] (with L = 1) and
then starts increasing on [L∕2, L], in accordance with the periodicity of the underlying background medium. This information
will be used to select an appropriate form of the correlation functions for the random field models, constructed in Section 3.3.1.
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3.2.2 Identification of the Mesoscopic Toughness
Let us now turn to the identification of the fracture and phase-field parameters g̃c and l̃ at the mesoscale (see Section 3.1). In
this work, the characteristic length l̃ of the mesoscopic medium is set to be equal to the characteristic length at the microscale,
previously denoted by l. This choice is supported by unreported numerical convergence results, as well the results provided
in (11). The mesoscopic toughness parameter g̃c is next identified by solving an inverse problem involving the peak force
Fmax = maxuD F (uD). More precisely, g̃c is calibrated by imposing a match between the mean value F max of Fmax, estimated
with 500 independent microstructural samples and the fine-scale elasticity-phase-field simulations (detailed in Section 2.2), and
the mean value determined with the mesoscopic description introduced in Section 3.1, denoted by F̃ max. In the latter description,
samples of the elasticity randomfield are estimated through themowing-window homogenization procedure, and themesoscopic
toughness then appears as the unique unknown parameter. Let F̃ max(g̃∗c ) be the mean peak force associated with the candidate
value g̃∗c for the mesoscopic toughness (that is, by substituting g̃∗c for g̃c in Eq. (12)). An optimal value can thus be defined by
minimizing the relative error function

 (g̃∗c ) =
|F max − F̃ max(g̃∗c )|

F max
(24)

over the admissible set [gc,m, gc,i]:
g̃c = argmin

g̃∗c ∈ [gc,m, gc,i]
 (g̃∗c ) . (25)

Since the mesoscopic elasticity field depends on the boundary conditions applied, the above optimization problem must be
solved independently for KUBC and SUBC. The graph of the cost function obtained for a resolution parameter � = 3 is shown
in the left panel in Fig. 13 . The optimal values are obtained as

g̃c = 1.022 × gc,m ≈ 2.75 × 10−3 [kN.mm−1] (26)

for KUBC and
g̃c = 1.255 × gc,m ≈ 3.375 × 10−3 [kN.mm−1] (27)

for SUBC. A comparison of the macroscopic responses obtained with the mesoscopic formulations (for KUBC and SUBC),
parametrized with the identified values, and the reference computations is shown in the right panel in Fig. 13 . This figure shows
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FIGURE 13 Graphs of the cost function for KUBC and SUBC (left), and envelopes of the macroscopic response for the
reference microscale model and the mesoscopic formulations (right).

that the mesoscale formulation identified under SUBC provides a fairly accurate estimate of the mean macroscopic response.
This conclusion similarly holds for KUBC, although this type of boundary conditions leads to a stiffening of the response, in
accordance with the fact that apparent tensors obtained under KUBC constitute upper bounds for the mesoscopic elasticity. In
both cases, the variability is underestimated due to filtered elasticity fluctuations. These effects can clearly observed in Fig. 13 ,
where the mean and standard deviation on crack paths are reported for the two types of boundary conditions. It is seen that the
cracks paths obtained with the mesoscopic formulations are localized near the mean crack path at microscale, for both KUBC
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and SUBC. Not surprisingly, the mesoscopic-based crack paths exhibit a variability that is much smaller than the one obtained
at microscale (where the crack trajectory is constrained by the radius of the inclusions). While the results support the relevance

micro
KUBC

Γ
micro

Γ
d
SUBC

Γ
g
SUBC

FIGURE 14 Comparison of crack paths obtained with the microscopic description (black dashed/solid lines) and the
mesoscopic formulation. Left panel: case of KUBC. Right panel: case of SUBC.

of the formulation, the latter necessitates solving a very large number of homogenization problems to represent the fluctuations
of the elasticity field at the mesoscopic scale. In the next section, we address the construction of a stochastic model that enables
the elasticity tensor random field to be sampled in a robust manner.

FIGURE 15 Crack path for the same microstructure: microscale description (left), KUBC-based description (middle), SUBC-
based description (right).

3.3 Stochastic Modeling and Identification of Mesoscale Elasticity
3.3.1 Construction of Random Field Models
The construction of stochastic models for random fields of elasticity tensors with arbitrary material symmetries has been inves-
tigated in (41, 42, 43) using an information-theoretic formulation (44) (see (45) for a survey), and in (46) using a spectral
expansion. For a given type of boundary conditions, let {k̃BC (x),x ∈ Ω} and {�̃BC (x),x ∈ Ω} be the random fields of
three-dimensional bulk and shear moduli as defined in Eq. (19).
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Let {�(x) = (Ξ1(x),Ξ2(x)),x ∈ Ω} be a bivariate Gaussian field with statistically independent, normalized components.
These components are defined by the correlation functions (x, y) → RΞ1(x, y;�

(1)) and (x, y) → RΞ2(x, y;�
(2)). The non-

Gaussian random fields of elastic moduli are then defined through the nonlinear transformations

k̃BC (x) = F −1G(p k̃,q k̃)
(

FN(0,1)(Ξ1(x))
)

(28)

and
�̃BC (x) = F −1G(p �̃ ,q �̃)

(

FN(0,1)(�Ξ1(x) +
√

1 − �2 Ξ2(x))
)

, (29)

where F −1G(p,q) is the inverse cumulative distribution function of the Gamma law with (shape and scale) parameters p and q (note
that the dependence of these parameters on the boundary conditions is not reported for notational convenience), FN(0,1) is the
cumulative distribution function of the standard Gaussian law and � denotes the correlation coefficient between k̃BC (x) and
�̃BC (x).
Given the stationarity and the form of the correlation functions estimated for the random fields of elastic moduli (see Fig. 12 ),

the following separable form is retained:

RΞi(x, y;�
(i)) = r(�1; �

(i)
1 ) × r(�2; �

(i)
2 ) , ∀ � ∈ ([0, L])2 , i ∈ {1, 2} , (30)

where �j = |xj − yj| is the lag distance along e(j), j ∈ {1, 2}, and the one-dimensional normalized correlation function
� → r(�; �) is defined as

r(�; �) = exp
(

− 2
�2
sin2

(��
L

))

. (31)
In Eq. (31), � is a model parameter related to the internal length

 =

L∕2

∫
0

|r(�; �)| d� , (32)

which is interpreted, in the periodic setting under consideration, as the spatial correlation length of the Gaussian random field
along the associated basis vector (e.g., along e(1) if the function �1 → r(�1; �

(i)
1 ) is considered). It can be shown that the correlation

length  < L∕2 reads as
 = L

2
exp{−�−2}0(�−2) , (33)

where 0 denotes the zero-order modified Bessel function. It should be noted that by construction, one has li < Li∕2. The graph
of � → r(�; �) is shown in Fig. 16 for different values of �.

τ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r
(τ
;α

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α = 0.2
α = 0.5
α = 1
α = 1.2

FIGURE 16 Plot of the correlation function � → r(�; �) for different values of �.

The following properties can easily be deduced.

• The first-order marginal probability measure is a bivariate Gamma law (47, 48), which is consistent with previous results
derived within the framework of information theory (see (45) and the references therein).



14 D. A. Hun et al.

• The mean values k̃BC = E{k̃BC (x)} and �̃BC = E{�̃BC (x)} read as

k̃BC = p k̃ × q k̃ , �̃
BC
= p �̃ × q �̃ , (34)

and the coefficients of variation are given as

� k̃BC =
1

√

p k̃
, � �̃BC =

1
√

p �̃
. (35)

Recall that these properties are independent of location x, owing to the stationarity of the random fields.

• The fields of stiffness and compliance tensors are of second-order:

E{‖[C̃ iso
BC (x)]‖

2
F } < +∞ , E{‖[C̃ iso

BC (x)]
−1
‖

2
F } < +∞ , ∀x ∈ Ω , (36)

hence ensuring that the stochastic linear elastic boundary value problem is well posed (44).

• The random fields {k̃BC (x),x ∈ Ω} and {�̃BC (x),x ∈ Ω} are mean-square continuous and mean-square differentiable.

From a computational standpoint, the underlying Gaussian fields are sampled using a truncated Karhunen-Loève expansion.
In order to reduce the associated computation time, the random fields are sampled on a grid that is coarser than the one used
to solve the elasticity-phase-field problem at the mesoscale. Realizations of fields are then obtained by interpolating on the
fine mesoscopic grid. To that end, the coarse mesoscopic grid is specifically defined so that the correlation structure is prop-
erly discretized. In the results presented hereinafter, the coarse mesh includes six Gauss points per correlation length, in each
direction.

3.3.2 Identification of the Elasticity Random Field
The probabilistic model involves two sets of parameters controlling the joint probability density function of the elastic moduli
at a given location and the correlation structure of the underlying Gaussian fields. The first set of parameters gathers (p k̃, q k̃)
and (p �̃, q �̃) (or equivalently (k̃BC , � k̃BC ) and (�̃BC , � �̃BC ), in view of Eq. (34)), as well as the the coefficient of cross-correlation
�. These hyperparameters can be estimated from the database using standard statistical estimators, here with 500 sample
realizations:

k̃KUBC = 258.7 [GPa] , � k̃KUBC = 10.25% , �̃
KUBC

= 137.7 [GPa] , � �̃KUBC = 13.30% , � = 0.9775 , (37)

k̃SUBC = 238.6 [GPa] , � k̃SUBC = 9.3% , �̃
SUBC

= 112.2 [GPa] , � �̃SUBC = 10% , � = 0.995 . (38)
The kernel density estimations of the first-order marginal and joint distribution for the bulk and shear moduli obtained with the
data and the model-based samples are shown in Figs. 17 and 18 (recall that the resolution is fixed by R̃∕R =3 here). A very
good agreement is observed between the probability density functions corresponding to the homogenization-based data and
those estimated with model-based samples. Since the transformations given by Eqs. (28) and (29) are nonlinear, the correlation
functions associated with the random fields of elastic moduli cannot be inferred explicitly. In this case, the identification of the
vector-valued hyperparameters �(1) and �(2) is performed through a two-step procedure, described below.

Let the correlation functions of {k̃BC (x),x ∈ Ω} and {�̃BC (x),x ∈ Ω} be written as � → Rmodel
k̃

(�;�(1)) and � →

Rmodel�̃ (�; (�(1),�(2))), respectively: this notation emphasizes the underlying dependence on the parameters of the Gaussian fields
(see Eqs. (28) and (29)). By a slight abuse of notation, these correlation functions will also be denoted as �j → Rmodel

k̃
(�j ; �

(1)
j )

and �j → Rmodel�̃ (�j ; (�
(1)
j , �

(2)
j )) when evaluated along e(j), j ∈ {1, 2}. In a first stage, the components of �(1) are identified, for

a given type of boundary conditions, as

�(1)1 = argmin
� > 0

 (1)
1 (�) , �(1)2 = argmin

� > 0
 (1)
2 (�) , (39)

where the cost functions are given by

 (1)
1 (�) =

⎛

⎜

⎜

⎝

L∕2

∫
0

(Rdata
k̃
(�1) − Rmodelk̃

(�1; �))2d�1
⎞

⎟

⎟

⎠

1∕2

(40)
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FIGURE 17 Kernel density estimates for the probability density function of the bulk (left) and shear (right) moduli, for the
two types of boundary conditions KUBC (blue) and SUBC (red).
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FIGURE 18 Kernel density estimates for the joint probability density function of the bulk and shear moduli, for
homogenization-based (left) and model-based (right) samples (for SUBC).

and

 (1)
2 (�) =

⎛

⎜

⎜

⎝

L∕2

∫
0

(Rdata
k̃
(�2) − Rmodelk̃

(�2; �))2d�2
⎞

⎟

⎟

⎠

1∕2

. (41)

In a second stage, the hyperparameters controlling the correlation structure of the Gaussian random field {Ξ2(x),x ∈ Ω} are
identified as

�(2)1 = argmin
� > 0

 (2)
1 (�) , �(2)2 = argmin

� > 0
 (2)
2 (�) , (42)

in which

 (2)
1 (�) =

⎛

⎜

⎜

⎝

L∕2

∫
0

(Rdata�̃ (�1) − Rmodel�̃ (�1; (�
(1)
1 , �))

2d�1
⎞

⎟

⎟

⎠

1∕2

(43)
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and

 (2)
2 (�) =

⎛

⎜

⎜

⎝

L∕2

∫
0

(Rdata�̃ (�2) − Rmodel�̃ (�2; (�
(1)
2 , �))

2d�2
⎞

⎟

⎟

⎠

1∕2

. (44)

In Eqs. (43) and (44), the values of �(1)1 and �(1)2 are those obtained within the first step of the methodology (see Eq. (39)).
Below, the estimations of the correlation functions associated with the stochastic model are performed by combining statistical
and ergodic averaging on a set of 500 independent realizations of the random fields (for fixed values of the hyperparameters).
The optimal values are found as

�(1) = (0.4624, 0.4574) , �(2) = (0.4043, 0.4014) (45)
for the elasticity random fields identified under KUBC, and

�(1) = (0.4654, 0.4604) , �(2) = (0.4694, 0.4654) (46)

for the case of SUBC. The graphs of the normalized correlation functions estimated with the data and with the stochastic model
thus identified (under SUBC) are shown in Figs. 19 and 20 for the bulk and shear moduli random fields, respectively. It is seen
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FIGURE 19 Normalized correlation function of the bulk modulus random field along e(1) (left) and e(2) (right), estimated from
the multiscale data (red line) and the calibrated stochastic model (black line).

that the calibrated model allows the decays of the correlation functions to be accurately reproduced, which is key to mimicking
the mesoscopic elasticity (and in particular, the frequency of sample path oscillations that has a substantial impact on the crack
paths in the phase-field formulation at mesoscale).

3.4 Comparison Between the Microscopic and Mesoscopic Formulations
The variability in crack paths can be observed in Fig. 21 for the reference microscale-based computations and the mesoscopic
formulation defined with either locally-homogenized microstructural samples or the elasticity field stochastic model. It can be
observed that the crack paths corresponding to a description at microscale present larger statistical fluctuations. As previously
indicated, this result is indeed expected, since the propagation only occurs in the matrix phase then (hence forcing the crack to
get around inclusions). In contrast, the mesoscopic formulations exhibit much smaller variability but capture quite accurately
the mean crack path. Interestingly, it is seen that the stochastic model for the elasticity tensor random field performs well in
delivering crack paths that are consistent those computed with homogenization-based fields.
The predictions of the macroscopic force-displacement curve are shown in Fig. 22 . In accordance with the results presented

in Section 3.2.2 (see the right panel in Fig. 13 ), where microscopic and homogenization-based mesoscopic formulations were
compared, it is observed that the mesoscopic elasticity-phase-field formulation defined under SUBC delivers predictions in
better agreement with the reference solution, in terms of both the mean elastic response and mean peak force. In contrast, the
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FIGURE 20 Normalized correlation function of the shear modulus random field along e(1) (left) and e(2) (right), estimated
from the multiscale data (red line) and the calibrated stochastic model (black line).
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FIGURE 21 Comparison of crack paths obtained with the microscopic description (black dashed/solid lines), the mesoscopic
formulation where the elasticity is obtained frommicrostructural samples (blue lines), and the mesoscopic formulation involving
the stochastic model for elasticity tensors (red lines). Left panel: case of KUBC. Right panel: case of SUBC.

use of KUBC at the mesoscale generates a stiffer response in the elastic regime, while still allowing for a good prediction of
the mean peak force. In addition, the use of the stochastic model in lieu of homogenization-based samples does not introduce
any significant bias in the predictions, regardless of the type of boundary conditions. Upon interpreting the macroscopic force
as a stochastic process indexed by the prescribed displacement, the error generated by the proposed model-based, mesoscopic
formulation can be characterized as

" =
|E{∫ uD

0 F (uD)2 duD}1∕2 − E{∫
uD
0 F̃ (uD)2 duD}1∕2|

E{∫ uD
0 F (uD)2 duD}1∕2

, (47)

where the stochastic process {F̃ (uD), uD ∈ [0, uD]} is implicitly depending on the boundary conditions applied at mesoscale.
The right-hand side term in Eq. 47 can be estimated through Monte Carlo simulations, and the relative error remains small for
the two types of boundary conditions, with " ≈ 1.6% for KUBC and " ≈ 2.2% for SUBC. The error for the prediction of the
mean peak force can be characterized by

"max = |F max − F̃ max|∕F max . (48)



18 D. A. Hun et al.

α gmc

0 0.002 0.004 0.006 0.008 0.01 0.012

J
(F

m
a
x
(g

c
))

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fmicro

Fdata
KUBC

Fgen
KUBC

Fdata
SUBC

Fgen
SUBC

FIGURE 22 Envelopes of the macroscopic response for the reference microscale model (F ) and the mesoscopic formulations
parametrized either by upscaled coefficients (F̃ ups

KUBC , F̃
ups
SUBC ) or model-based coefficients (F̃ mod

KUBC , F̃
mod
SUBC ).

The error measure is given by "max ≈ 0.084% for KUBC and "max ≈ 0.037% for SUBC, showing that an accurate prediction of
the mean peak force can be obtained with the two types of boundary conditions.

4 CONCLUSION

A stochastic approach to model crack propagation in random media has been proposed in this paper. The formulation relies on
a phase-field formulation where material coefficients are defined and identified through multiscale computations. Monte-Carlo
simulations were first performed using a description at the microscopic scale. These computations enables the characterization
of subscale-induced randomness on the macroscopic response of the domain and were subsequently used as reference results
to assess the relevance of the framework. The definition of the mesoscopic parameters was then addressed. The elasticity field
at mesoscale was specifically defined as the isotropic approximation of spatially dependent homogenized tensors, obtained by
means of a moving-window upscaling approach (under kinematically and statically uniform boundary conditions). The (deter-
ministic) mesoscopic toughness was identified by solving an inverse problem related to the mean peak force. It is shown that
the formulation under statically uniform boundary conditions allows for an accurate prediction of the mean elastic response
and mean peak force. In contrast, kinematically uniform boundary conditions generate a stiffening of mesoscale elasticity, in
accordance with theoretical results derived elsewhere. An information-theoretical probabilistic model for the elasticity random
field was then constructed and allows for a fast, robust sampling of mesoscopic elasticity. The results obtained by feeding this
stochastic surrogate model into the phase-field formulation were finally compared with those corresponding to the full-scale,
microscopic model. It is shown, in particular, that the model-based, mesoscopic elasticity-phase-field formulation associated
with statically uniform boundary conditions allows for an accurate prediction of both the mean elastic response and mean peak
force.
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