A. Alfonsi, E. Cancès, G. Turinici, D. Ventura, B. Huisinga et al., Adaptive simulation of hybrid stochastic and deterministic models for biochemical systems, ESAIM Proceedings, vol.14, pp.1-13, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00536559

S. Asmussen and J. Rosinski, Approximations of small jumps of Lévy processes with a view towards simulation, J. Appl. Probab, vol.38, pp.482-493, 2001.

V. Bally and L. Caramellino, Convergence and regularity of probability laws by using an interpolation method, Ann. Probab, vol.45, pp.1110-1159, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01677407

V. Bally and L. Caramellino, Regularity for the semigroup of jump equations, 2019.

V. Bally and E. Clément, Integration by parts formulas with respect to jump times for stochastic differential equations, 2010.

K. Ball, T. G. Kurtz, L. Popovic, and G. Rempala, Asymptotic analysis of multiscale approximations to reaction networks, Ann. Appl. Probab, vol.16, pp.1925-1961, 2006.

K. Bichteler, J. Gravereaux, and J. Jacod, Malliavin calculus for processes with jumps. Gordon and Breach science publishers, 1987.

J. M. Bismut, Calcul des variations stochastique et processus de sauts, Z. Wahrsch. Verw. Gebiete, vol.63, pp.147-235, 1983.

N. Bouleau and L. Denis, Dirichlet forms and methods for Poisson point measures and Lévy processes. Probability Theory and Stochastic Modelling, vol.76, 2015.

H. Brezis, Analyse fonctionelle. Théorie et applications, 1983.

E. Carlen and E. Pardoux, Differential calculus and integration by parts on Poisson space. Stochastics, algebra and analysis in classical and quantum dynamics, Math. Appl, vol.59, pp.63-73, 1988.

A. Crudu, A. Debussche, A. Muller, and O. Radulescu, Convergence of stochastic gene networks to hybrid piecewise deterministic processes, Ann. Appl. Probab, vol.22, pp.1822-1859, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00553482

S. N. Ethier and T. G. Kurtz, Markov processes. Characterization and convergence, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, 1986.

Y. Ishikawa, Stochastic Calculus of variation for Jump Processes. De Gruyter Studies in Math, vol.54, 2013.

B. Lapeyre, É. Pardoux, and R. Sentis, Méthodes de Monte-Carlo pour leséquations de transport et des diffusion, Mathématiques et Applications, vol.29, 1998.

R. Léandre, Régularuté des processus de sauts gégénérés, Ann. Inst. H. Poincaré Probab. Statist, vol.21, pp.125-146, 1985.

J. Picard, On the existence of smooth densities for jump processes, Probab. Theory Related Fields, vol.105, pp.481-511, 1996.

J. Picard, Density in small time for Lévy processes, ESAIM Probab. Statist, vol.1, pp.358-389, 1997.

X. Zhang, Densities for SDEs driven by degenrate ? stable processes, Annals of Proba, p.3565