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Transfer of regularity for Markov semigroups

V0LAD BALLY®
Lucia CARAMELLINO!

Abstract

We study the regularity of a Markov semigroup (P;)¢~0, that is, when P;(x, dy) = p:(x, y)dy
for a suitable smooth function p;(z,y). This is done by transferring the regularity from
an approximating Markov semigroup sequence (P}*);s0, n € N, whose associated densities
pi(x,y) are smooth and can blow up as n — co. We use an interpolation type result and
we show that if there exists a good equilibrium between the blow up and the speed of
convergence, then P;(z,dy) = pi(z,y)dy and p; has some regularity properties.

Keywords: Markov semigroups; regularity of probability laws; interpolation spaces.
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1 Introduction

In this paper we study Markov semigroups, that is, strongly continuous and positive semigroups
P, t >0, such P,1 = 1. We set the domain equal to the Schwartz space S(R?) of the C*°(R9)
functions all of whose derivatives are rapidly decreasing.

The link with Markov processes gives the representation

Pf@) = | S@PG.dy), 20, feSER.

We study here the regularity of a Markov semigroup, which is the property P(x,dy) =
pe(x,y)dy, t > 0, for a suitable smooth function p;(z,y), by transferring the regularity from an
approximating Markov semigroup sequence P/*, n € N.

To be more precise, let P; be a Markov semigroup on S(R?) with infinitesimal operator L
and let P*,n € N, be a sequence of Markov semigroups on S(R?) with infinitesimal operators
L,, n € N. Classical results (Trotter Kato theorem, see e.g. [13]) assert that, if L,, — L then
P* — P,. The problem that we address in this paper is the following. We suppose that P/* has
the regularity (density) property P/*(xz,dy) = pi(x,y)dy with p? € C®°(R? x R?) and we ask
under which hypotheses this property is inherited by the limit semigroup P;. If we know that
p} converges to some p; in a sufficiently strong sense, of course we obtain Pi(z,dy) = pi(x, y)dy.
But in our framework p}" does not converge: here, p;' can even “blow up” as n — oo. However,
if we may find a good equilibrium between the blow up and the speed of convergence, then we
are able to conclude that P;(x,dy) = pi(x,y)dy and p; has some regularity properties. This is
an interpolation type result.

Roughly speaking our main result is as follows. We assume that the speed of convergence
is controlled in the following sense: there exists some a € N such that for every ¢ € N

1L = L) fllg o0 < €nllfllg1a,00 (L.1)

Here || f||,  is the norm in the standard Sobolev space W%°°. In fact we will work with weighted
Sobolev spaces, and this is an important point. And also, we will assume a similar hypothesis
for the adjoint (L — L,)* (see Assumption 2.1 for a precise statement).

Moreover we assume a “propagation of regularity” property: there exist b € Nand A, > 1
such that for every q € N

HPtanq,oo < ATL ”f”q+b,oo (12)

Here also we will work with weighted Sobolev norms. And a similar hypothesis is supposed to
hold for the adjoint P;"" (see Assumption 2.2 for a precise statement).

Finally we assume the following regularity property: for every t € (0,1], P/'(xz,dy) =
p(z,y)dy with pf € C®°(R? x R?) and for every x > 0, t € (0,1],

c (1 + [a*)™)

anB, n
050y pi (x,y)| < (Ant)fo(lal+181+61) - 1+ |z —y*)

(1.3)

Here, o, 8 are multi-indexes and 05, 65 are the corresponding differential operators. Moreover,

7(k), 6o and 6; are suitable parameters and A, — 0 as n — oo (we refer to Assumption 2.9).
By (1.1)—(1.3), the rate of convergence is controlled by &, — 0 and the blow up of p} is

controlled by A\-% — co. So the regularity property may be lost as n — oo. However, if there



is a good equilibrium between ¢,, — 0 and A% — 0o and A,, — oo then the regularity is saved:

we ask that for some § > 0

lranW < oo, (14)
n

the parameters a, b and 6y being given in (1.1), (1.2) and (1.3) respectively. Then P;(z, dy) =
pi(z,y)dy with p; € C°(R? x R%) and the following upper bound holds: for every ¢ > 0 and
# € N one may find some constants C,7(k) > 0 such that for every (z,y) € R? x R?

< c X (1 + ’x‘z)ﬂ-(ﬁ)
= o= (altlgl2dre) (14 [z — y)~

0200 pi(x,y) (1.5)

This is the “transfer of regularity” that we mention in the title and which is stated in Theorem
2.7. The proof is based on a criterion of regularity for probability measures given in [3], which
is close to interpolation spaces techniques.

A second result concerns a perturbation of the semigroup P; by adding a compound Poisson
process: we prove that if P, verifies (1.2) and (1.3) then the perturbed semigroup still verifies
(1.3) —see Theorem 2.11. A similar perturbation problem is discussed in [19] (but the arguments
there are quite different).

The regularity criterion presented in this paper is tailored in order to handle the following
example (which will be treated in a forthcoming paper). We consider the integro-differential
operator

Lf(x) = <b($),Vf($)>+/ (f(@+c(z,2)) = f(2) = {e(z,2), Vf(2)))dp(z)  (1.6)

E

where 4 is an infinite measure on the normed space (E, [o|) such that [ 1A |¢(z, o))? du(z) <
oo. Moreover, we consider a sequence €, | (), we denote

Aid () = /{ o, CERI R

and we define

Lnf(z) = <b(ﬂlf),Vf(ﬂv)>Jr/{|| }(f(x+6(z,$))—f(fv)—<C(Zyw),Vf(x)>)du(Z) )
z|p>en 1.7

+%tr(An(:c)V2 £(x).

By Taylor’s formula,

L7 = Lufloo Wz with &o=sup [ fe(z,a)[ du(2)
z H{|zlg<en}

Under the uniform ellipticity assumption A,(z) > )\, for every z € R%, the semigroup P
associated to L, has the regularity property (1.3) with 6y depending on the measure p. The
speed of convergence in (1.1), with a = 3, is controlled by &, | 0. So, if (1.4) holds, then we
obtain the regularity of P, and the short time estimates (1.5).

The semigroup P; associated to L corresponds to stochastic equations driven by the Poisson
point measure N, (dt,dz) with intensity measure 4, so the problem of the regularity of P, has



been extensively discussed in the probabilistic literature. A first approach initiated by Bismut
[8], Leandre [16] and Bichteler, Gravereaux and Jacod [7] (see also the recent monograph of
Bouleau and Denis [9] and the bibliography therein), is done under the hypothesis that £ = R™
and p(dz) = h(z)dz with h € C*°(R™). Then one constructs a Malliavin type calculus based on
the amplitude of the jumps of the Poisson point measure N, and employs this calculus in order
to study the regularity of P;. A second approach initiated by Carlen and Pardoux [11] (see also
Bally and Clément [5]) follows the ideas in Malliavin calculus based on the exponential density
of the jump times in order to study the same problem. Finally a third approach, due to Picard
[17, 18] (see also the recent monograph by Ishikawa [14] for many references and developments
in this direction), constructs a Malliavin type calculus based on finite differences (instead of
standard Malliavin derivatives) and obtains the regularity of P, for a general class of intensity
measures g including purely atomic measures (in contrast with p(dz) = h(z)dz). We stress
that all the above approaches work under different non degeneracy hypotheses, each of them
corresponding to the specific noise that is used in the calculus. So in some sense we have not a
single problem but three different classes of problems. The common feature is that the strategy
in order to solve the problem follows the ideas from Malliavin calculus based on some noise
contained in NN,. Our approach is completely different because, as described above, we use
the regularization effect of tr(A, (z)V?). This regularization effect may be exploited either by
using the standard Malliavin calculus based on the Brownian motion or using some analytical
arguments. The approach that we propose in [4] is probabilistic, so employs the standard
Malliavin calculus. But anyway, as mentioned above, the regularization effect vanishes as
n — oo and a supplementary argument based on the equilibrium given in (1.4) is used. We
precise that the non degeneracy condition A, (z) > A, > 0 is of the same nature as the one
employed by J. Picard so the problem we solve is in the same class.

The idea of replacing “small jumps” (the ones in {|z|; < €, } here) by a Brownian part (that
is tr(A,(7)V?) in L,) is not new - it has been introduced by Asmussen and Rosinski in [2] and
has been extensively employed in papers concerned with simulation problems: since there is a
huge amount of small jumps, they are difficult to simulate and then one approximates them by
the Brownian part corresponding to tr(A,(z)V?). See for example [1, 6, 12] and many others.
However, at our knowledge, this idea has not been yet used in order to study the regularity of
Pt.

The paper is organized as follows. In Section 2 we give the notation and the main results
mentioned above and in Section 4 we give the proof of these results. Section 3 is devoted to
some preliminary results about regularity. Namely, in Section 3.1 we recall and develop some
results concerning regularity of probability measures, based on interpolation type arguments,
coming from [3]. These are the main instruments used in the paper. In Section 3.2 we prove a
regularity result which is a key point in our approach. In fact, it allows to handle the multiple
integrals coming from the application of a Lindeberg method for the decomposition of P — P;*.
The results stated in Section 2 are then proved in the subsections in which Section 4 is split.
Finally, in Appendix A.1, A.2 and A.3 we prove some technical results used in the paper.

2 Notation and main results

2.1 Notation

For a multi-index a = (a1, ..., ) € {1,...,d}"™ we denote |a| = m (the length of the multi-

index) and 9“ is the derivative corresponding to «, that is 9% ... 9%, with 9% = 0y, . For
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f € C®(R? x RY), (z,y9) € R? x R and two multi-indexes o and 3, we denote by 92 the
derivative with respect to x and by 9y the derivative with respect to y.
Moreover, for f € C*°(R?) and q € N we denote

flg @)= 10°f(x)]. (2.1)

0<|al<q

If f is not a scalar function, that is, f = (f%)i=1,. a4 or f = (f*)ij=1, 4, we denote |f|q =

Z?:l |fl‘ respectively |f]q = Zijzl ‘fi’j‘q-
We Wﬁl work with the weights

be(z) = 1+ [2)", ke (2.2)
The following properties hold:
e for every k > k' >0,
Vr(x) < Y (2); (2.3)
e for every x > 0, there exists C; > 0 such that
V(@) < Crthe(y)n(z — y); (2.4)

e for every k > 0, there exists Cy; > 0 such that for every ¢ € C2°(R?),
Un(6(2)) < Cutbn(6(0)) (1 + [[VolIZ,) “n(); (25)
e for every g € N there exists C, > C, > 0 such that for every x € R and f € C>®(RY),
Cotow | fly (@) < [Wufl, (@) < Cqvbe | fl, (2)- (2.6)

Note that (2.3)—(2.5) are immediate, whereas (2.6) is proved in Appendix A.1 (see Lemma
Al).

For g € N, k € R and p € (1, 00] (we stress that we include the case p = +00), we set || - ||,
the usual norm in LP(R%) and

17l = ||l 1e] (2.7)

We denote WP to be the closure of C*°(R?) with respect to the above norm. If k = 0 we
just denote || fll,,, = Ifll, 0, and WP = WP (which is the usual Sobolev space). So, we are
working with weighted Sobolev spaces. The following properties hold:

e for every ¢ € N there exists C, > C, > 0 such that for every k € R, p > 1 and
f e wake(Ra),

Colltnl flally < N fllgmp < Colltbel flallp; (2.8)
o for every ¢ € N and p > 1 there exists Cy;, > 0 such that for every x € R and f €
weks(R),
1 llgmp < Caw | Fll gt doo (2.9)
and if p > d,
1fllg00 < Cap 1 llgi1mp (2.10)

5



o for i,k € R, ¢,¢ € N, p € (1,00] and U : C®(R%) — C>®(R?), the following two
assertions are equivalent: there exists a constant C, > 1 such that for every f,

HUqu,n,oo < C* ||f”q’,/@’,p (211)

and there exists a constant C* > 1 such that for every f,

Notice that (2.8) is a consequence of (2.6). The inequality (2.9) is an immediate consequence
of (2.6) and of the fact that 1_q € LP(R?) for every p > 1. And the inequality (2.10) is
a consequence of Morrey’s inequality (Corollary IX.13 in [10]), whose use gives ||f[lo o <

wﬁU(;Mf)

<C* | fllyp- (2.12)

q?oo

1 fll1,0,p+ and of (2.6). In order to prove the equivalence between (2.11) and (2.12), one takes

g = Y f (respectively g = ﬁf) and uses(2.6) as well.

2.2 Main results

We consider a Markov semigroup P; on S(R?) with infinitesimal operator L and a sequence
P*',n € N of Markov semigroups on & (RY) with infinitesimal operator L,,. We suppose that
S(R%) is included in the domain of L and of L, and we suppose that for f € S(RY) we have
Lf € S(RY) and L, f € S(RY). We denote A, = L — L,,. Moreover, we denote by P"" the
formal adjoint of P}* and by A} the formal adjoint of A,, that is

(P f,9) =({f,Plg) and (ALf,g)=(f Dng), (2.13)

(-,-) being the scalar product in L?(R?, dx).
We present now our hypotheses. The first one concerns the speed of convergence of L,, — L.

Assumption 2.1 Leta € N, and let (,,)nen be a decreasing sequence such that lim,, e, = 0. We
assume that for every q € N;k > 0 and p > 1 there exists C' > 0 such that for every n and f,

(A1) MAnfllg—ro0 < Cenllfllgia, 00 (2.14)
(A1) A llgmp < Conllfllgrans - (2.15)

Our second hypothesis concerns the “propagation of regularity” for the semigroups P/

Assumption 2.2 Let A, > 1,n € N be an increasing sequence such that A1 < vA, for some
v > 1. For every ¢ € N and k > 0,p > 1, there exist C > 0 and b € N, such that for every
n €N and f,

(AQ) Slilz HPsanq,—n,oo < CAy, Hqu—l—b,—n,oo’ (216)

(42)  sup ([P flly e p < CAR IS (2.17)

q,k,p — Q+b’ﬁ7p '
The hypothesis (A3) is rather difficult to verify so, in Appendix A.2, we give some sufficient
conditions in order to check it (see Proposition A.7).
Our third hypothesis concerns the “regularization effect” of the semi-group P}



Assumption 2.3 We assume that
P = [ ey (218)

with pf € C®(R? x RY). Moreover, we assume there exist 6y > 0 and a sequence \p, n € N
with

A d 0, A <AYAna1, (2.19)
foe some v > 1, such that the following property holds: for every x > 0,q € N there exist

7(q, k), increasing in q and in Kk, a constant 1 > 0, and a constant C' > 0 such that for every
n €N, t € (0,1], for every multi-indexes a and B with || + 8] < q and (x,y) € R? x R?

1 wﬂ'(q,ﬁ) (33)

aaf n
(Ag) 8 8ypt( ) S C()\nt)eo(q—‘rel) X 1/}K(l’ —_ y)

(2.20)

Note that in (2.20) we are quantifying the possible blow up of \83851)?(% y)| asn — oo .
We also assume the following statement will holds for the semigroup F;.

Assumption 2.4 For every k > 0,q € N there exists C > 1 such that

(A1) [1Pfllg o0 < C Nl 00 (2.21)
For § > 0 we denote
B, (8) = en A, x A f0latb+0) (2.22)
where a and b are the constants in Assumption 2.1 and 2.2 respectively. Notice that

O, (8) < AR, L (5). (2.23)

And, for kK > 0,17 > 0 we set
U, w(x,y) = 1/1,.;(?/)7 (z,y) € RY x R% (2.24)

n()

Our first result concerns the regularity of the semigroup P; :

Theorem 2.5 Suppose that Assumption 2.1, 2.2 , 2.8 and 2.4 hold. Moreover we suppose
there exists & > 0 such that
lim sup ¢,,(0) < oo, (2.25)

®,,(0) being given in (2.22). Then the following statements hold.
A. P f(x) = [pape(z,y)dy with py € C°(R? x RY).
B. Let n € N and 65 > 0 be such that
D,,(64) 1= sup D, (d,) < c0. (2.26)

n'>n

Wefirge N, p>1,e,>0, k>0 and we put m =1+ q+2d/p* with p. the conjugate of p.
There exist C > 1 and ny > 1 (depending on q,p, e, 0x, K and v) such that for every n > ng
andt >0

1@y wpill,, < CxQulgm)xtfollatbimbatad/p)(te) ity (2.27)

1 —m 1+ex
Qe = (o + 0 (0) (2.28)




C. Let p > 2d. Set m = 1—1—%. There exist C > 1,n > 0 (depending on q,p, e, 0x, k)
such that for everyt >0, n € N and for every multi-indexes «, 8 such that || + |B| < q,

0500 py(x,y)| < C x Qulg+ 1,m) x ¢~ follatbimtalad/p)(lreny f?“‘( )) (2.29)
k\T —

for every t € (0,1] and x,y € R?.

Remark 2.6 We stress that in hypothesis (2.26) the order of derivation q does not appear.
However the conclusions (2.27) and (2.29) hold for every q. The motivation of this is given by
the following heuristics. The hypothesis (2.20) says that the semi-group P]' has a reqularization
effect controlled by 1/(A\,t)%. If we want to decouple this effect mq times we write P} =
Pt’}mo Pg}m and then each of the mg operators Pt"/ acts with a regularization effect of
order (A, x t/mg)?. But this heuristics does not work directly: in order use it, we have to
use a development in Taylor series coupled with the interpolation type criterion given in the

following section.

The proof of Theorem 2.5 is developed in Section 4.1. We give now a variant of the estimate
(2.29), whose proof can be found in Section 4.2.

Theorem 2.7 Suppose that Assumption 2.1, 2.2, 2.3 and 2.4 hold. Suppose also that (2.25)
holds for some § > 0 and that for every k > 0 there exist &, C' > 0 such that Py, (x) < Cr(x),
for allz € R? and t > 0. Then Py(z,y) = pi(x,y) with p; € C°(RE x RY) and for every k € N,
e > 0 and for every multi-indexes o and [ there exists C = C(k,¢€,d, a, B) such that for every
t>0 and z,y € R?

8908py(z,y)| < € x t~00+=F) lal+Bl+2d+e) o ntn(@) 2.30
ypi(@y)| < Ui(z —y) (2:30)

with 6y from (2.20).

We give now a result which goes in another direction (but the techniques used to prove it
are the same): we assume that the semigroup P; : C2°(R?) — C£°(R?) verifies hypothesis of
type (As2) (see (2.16) and (2.17)) and (As) (see (2.20)), we perturb it by a compound Poisson
process, and we prove that the new semigroup still verifies a regularity property of type (As).
This result will be used in [?] in order to cancel the “big jumps”.

Let us give our hypotheses.

Assumption 2.8 For every ¢ € N,k > 0 and p > 1 there exist Cq . p(P), Cqr00(P) > 1 such
that

(H2) Bl 00 < Camoo(P) 1 fllg,—s,00 » (2.31)
(Hy) B fllgmp < Comp(P) [ Fllg 0 (2.32)

This means that the hypotheses (A2) and(A%) (see (2.16) and (2.17)) from Section 3.2 hold
for P; (instead of P;*) with A,, replaced by Cy x.00(P) V Cy k. p(P) and with b = 0.



Assumption 2.9 We assume that Py(x,dy) = pi(z,y)dy with p, € C®(R% x RY) and the blow
up of pr — oo as t — 0 is controlled in the following way. For every fixred ¢ € N,k > 0 there
exist some constants C > 1,0 < A < 1 and n > 0 such that for every two multi-indexes o,

with |a| + 18| < ¢ (z)
(Hs) |0200py(z,y)| < ()folaron) z/%(; — )

Here 0; > 0,1 = 0,1 are some fixed parameters.

(2.33)

We construct now the perturbed semigroup. We consider a Poisson process N (t) of param-
eter p > 0 and we denote by T}, k € N, its jump times. We also consider a sequence Z;, k € N,
of independent random variables of law v, on a measurable space (F,£), which are independent
of N(t) as well. Moreover we take a function ¢ : E x R* = R? and we denote ¢, (z) = ¢(z, ).
We will precise in a moment the hypothesis on ¢. We associate the operator

U.f(x) = f(¢=(x)) (2.34)

and we define P; to be the perturbation of P; in the following way. Conditionally to T} and
Zi, k € N we define

PN =P for t<Ty,

PN =P Py? for T <t < Tha

The second equality reads ijyk Z f(z) = PF}\; Z f(¢z,). Essentially (2.35) means that on [T}_1, T})
we have a process which evolves according to the semigroup P, and at time T}, it jumps according
to ¢z,. Then we define

Pif(x) =EP 7 f(@) = Lu(f)(x)
with

and for m > 1,

m—1
m!
(&) = E(Lneomy Proty, TL Ut Porroty s F@)r 1
" Jocti<...<tm-1<tm<t Pl

(ml Ptmfm_tmfiUmei)Ptl F(a)dt ... dtm),

<11 <...<tm—1<tm<t i=0

= pmeptE(/
0

in which ¢y = 0 and t,,11 = t. We come now to the hypothesis on ¢. We assume that for every
2€E, ¢, € C°(R?) and V¢, € C’,‘fo(Rd) and that for every ¢ € N

1111 00 == 5UP 62ll1 goo = Y sup sup |05¢(z,z)| < oo, (2.36)
z€F 1<[al<q 2€FE xcR4

~

¢ :=sup |¢,(0)] < 0. (2.37)
2€E

Moreover we define o(¢,) = V¢.(V,)* and we assume that there exists a constant e(¢) > 0
such that for every z € F and x € R?

det o(¢:)(x) = e(¢). (2.38)



Remark 2.10 We recall that in Appendiz A.3 we have denoted Vy_ f(x) = f(¢.(x)) = U, f(x).
With this notation, under (2.56), (2.87), (2.38) we have proved in (A.21) and (A.23) that, for
every z € I,

K 2K
U= fllg oo < CLV O D12 g oo (2.39)
i 1V g2k 2dg+142x
NUZ fllymp < CW X LVl 200 ) X 1 fllgup - (2.40)
(2.41)

This means that Assumption 3.5 from Section 3.2 hold uniformly in z € E and the constant
given in (3.20) is upper bounded by

1V "
CQ7H7OO7P(U7 P) S C \/ ¢
9

W x (1V \|¢||%,6qu121,;2”) X (Como0(P) V Cop(P)).  (2.42)

We are now able to give our result (the proof being postponed for Section 4.3):

Theorem 2.11 Suppose that P; satisfies assumptions 2.8 and 2.9. Suppose moreover that
¢ satisfies (2.36), (2.37), (2.38). Then Py(z,dy) = p,(z,y)dy and we have the following
estimates. Let ¢ € N;xk > 0 and 6 > 0 be given. There exist some constants C,x such that for
every «, 3 with |a] + |8 < ¢

cr szx(ff)

o 9f—
QB aypt(xay) S (()\t)eo(q+2d)(1+6) x wn(x - y)

(2.43)

We stress that the constant C depends on C 00 p(U, P) (see (2.42)) and on g,k and 6 but
not on t,p and \.

This gives the following consequence concerning the semigroup P; itself:

Corollary 2.12 Suppose that (2.51),(2.32),(2.33) hold. Then, does not matter the value of 0,
in (2.33), the inequality (2.33) holds with 67 = 2d + ¢ for every € > 0.

Proof. Just take ¢,(z) = z. O

3 Regularity results

This section is devoted to some preliminary results allowing us to prove the statements resumed
in Section 2.2: in Section 3.1 we give an abstract regularity criterion, in Section 3.2 we prove
a regularity result for iterated integrals.

3.1 A regularity criterion based on interpolation

Let us first recall some results obtained in [3] concerning the regularity of a measure p on
R¢ (with the Borel o-field). For two signed finite measures p, v and for k € N we define the
distance

di(p,v) = sup{) /fdu - /fdy‘ koo < 1}. (3.1)

10



If 4 and v are probability measures, dg is the total variation distance and dy is the Fortét
Mourier distance. In this paper we will work with an arbitrary & € N. Notice also that
d(p,v) = It = V|| k.0 where W is the dual of Wk

We fix now k,q,h € N, with h > 1, and p > 1. Hereafter, we denote by p, = p/(p — 1) the
conjugate of p. Then, for a signed finite measure p and for a sequence of absolutely continuous
signed finite measures i, (dz) = f,(2)dx with f, € C?"T9(R?), we define

[e.o] o0

n 1
Wk,q,h,p(ﬂ; (,un)n) = Z 2 (k+q+d/p*)dk(:u’7 :u'n) + Z W anHQthq,Qh,p : (32)

Remark 3.1 Notice that 4, is a particular case of Ty 4 pe treated in [3]: just choose the
Young function e(x) = ey(x) = |z|P, giving Pe,(t) = tY/P (see Example 1 in [3]). Moreover,
Tkq,hp 15 strongly related to interpolation spaces. More precisely, let

ﬁk,q,hm(ﬂ) = inf{ﬂ'k,q,hm(ﬂa (tn)n) : pn(dz) = fo(z)dz, fo € C2h+q(Rd)}-

Then Ty q.n,p 15 equivalent with the interpolation norm of order p = H%hd/p* between the spaces

WE (the dual of WH) and W2h+a2hp — {f I fallansgon, < oo}. This is proved in [3],
see Section 2.4 and Appendiz B. So the inequality (3.3) below says that the Sobolev space WP
1s included in the above interpolation space. However we prefer to remain in an elementary
framework and to derive directly the consequences of (3.3) - see Lemma 3.4 below

The following result is the key point in our approach (this is Proposition 2.5 in [3]):

Lemma 3.2 Let k,q,h € N with h > 1, and p > 1 be given. There exists a constant C
(depending on k,q,h and p only) such that the following holds. Let u be a finite measure for
which one may find a sequence pn(dx) = fu(x)dx, n € N such that mqpp(1, (1n)n) < 00.
Then p(dx) = f(x)dz with f € WP and moreover

”f”q,p S C* X Wk,q,h,p(,uz, (/’Ln)n) (33)

The proof of Lemma 3.2 is given in [3], being a particular case (take e = e,) of Proposition
A.1 in Appendix A.
We give a first simple consequence.

Lemma 3.3 Letp; € C°(R?),t > 0 be a family of non negative functions and let ¢ = p(z) > 0
be such that [ p(z)pi(z)de < m < co for every t < 1. We assume that for some 6y > 0 and
01 > 0 the following holds: for every q € N and p > 1 there exists a constant C = C(q,p) such
that

lgpll,, < Ct=0t00 ¢ <1, (3.4)
Let 6 > 0. Then, there exists a constant Cy. = Cy(q,p,d) such that

d
lopell,, < Cut™ @54 <1, (3.5)

where py is the conjugate of p. So, does not matter the value of 01, one may replace it by p%.
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Proof We take n, € N and we define f,, = 0 for n < n, and f, = ¢p; for n > n,. Notice
that do(¢pt,0) < m. Then (3.3) with k£ = 0 gives (C' denoting a positive constant which may
change from a line to another)

™ o
4 1
”‘Ppth,p < C<m22n(q p*)"’_H@pt”2h+q,2h,p Z 22nh>
n=0 n=nsx+1

(g+L 1
< (7(nq2”(q P*)%-H¢U%H2h+q2h4;§§ﬁiﬁ>'

We denote pp, = (¢ + %)/2]1. We optimize over n, and we obtain

1 Ph
lepell,, < 2Cxm™on x |lopillon® o

—00(2h—+q+01) 1j’,;h

1
< 20miten x Ct

Since limp o pp, = 0 and limy, 0 (20 + g+ 01) li’;h =q+ p% the proof is completed, we choose
h large enough and we obtain (3.5). O
We will also use the following consequence of Lemma 3.2.

Lemma 3.4 Let k,q,h € N, with h > 1, and p > 1 be given and set

k+q+d/p«
Ph'i= "7 -

2h (3.6)

We consider an increasing sequence 6(n) > 1,n € N such that lim, 0(n) = oo and 6(n +

1) < © x 0(n) for some constant © > 1. Suppose that we may find a sequence of functions
fn € C?MH9(RY), n € N such that

1fll2h4q,2n,p < €(0) (3.7)
and, with p,(dz) = f,(z)dz,

lim sup dy, (1, ptn) X 0P (n) < oo (3.8)

for some € > 0. Then p(dx) = f(x)dx with f € WP,
Moreover, for §,e >0 and ny, € N, let

A((s) _ ’M’ (Rd) % 21(5)(1+6)(Q+k+d/p*) with l((;) _ min{l . leﬁia > l}, (3.9)
0 12(g+k+d/pste)
B(e) = zz; Tl (3.10)
Chn.(e) = sup dy(p, pn) x 67275(n). (3.11)
N>Nx

Then, for every d > 0
1£1lyp < C(® + A(8)0(ns) 1 H0) + B(e)Ch . (€)), (3.12)

C, being the constant in (3.3) and pp, being given in (3.6).
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Proof of Lemma 3.4. We will produce a sequence of measures v;(dz) = g;(z)dz,l € N
such that
Th g (1 (V1)1) < © + A(8)0 ()"0 + B(e) . (€) < o0

Then by Lemma 3.2 one gets p(dx) = f(z)dx with f € WP and (3.12) follows from (3.3). Let
us stress that the 1;’s will be given by a suitable subsequence i, (), I € N, from the puy,’s.

Step 1. We define
22hl

n(l) = min{n : 6(n) > e }

and we notice that

1 22hl
60(71([)) <O(n(l)—1) < o = < 0(n(l)). (3.13)
Moreover we define
2hl
Since
22hl*
O(n(l)) > > 6(n.)

*

it follows that n(l) > n..

We take now () = 1% which gives 2(h37};(6)) = 1+ 4. And we take [(0) > 1 such that

210/(140) > [ for I > 1(6). Since h > 1 it follows that (8) > ﬁié« so that, for [ > I(J) we also
have 20€(9) > [. Now we check that
22(h78(5))l* < 22hl(5)0(n*)' (314)
If I, < 1(0) then the inequality is evident (recall that 6(n) > 1 for every n). And if I, > [(0)
then 20+€(9) > .. By the very definition of [, we have
92h(l.—1)
s < H(n,
-1z <)

so that
22}11* < 22h(l* o 1)29(7?,*) < 22}1 « 221*5(5)9(n*)

and this gives (3.14).
Step 2. We define
v =01l <l and v = ppq) it 1 > 1

and we estimate 7y, g, (i, (1)1). First, by (3.7) and (3.13)

o [e.e]

1 1
Z 92hl Hf"(l)Hq—f—Qh,Zh,p S Z 22hl ) < @Z 7=

1=l I=lx I=lx

Then we write

22(q+k+d/p*)ldk(u, v) =581+ S;
=1
with -
*z: olgt+k+d/p:)l g Z olat+k+d/p:)l g dy, (11, ﬂn(l))-

I=ls
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Since di(u,0) < do(p,0) < || (R?) we use (3.14) and we obtain
’N’ (Rd) « 2(q+k+d/p*)l* _ |/’L| (Rd) « (22(h75(5))l*)(quker/p*)/Q(hfs(&))
1] (RY) x (20 (n.)) 49 = A(8)0(n,)r059).

S1

IN A

If I > I, then n(l) > n(lx) > n, so that, from (3.11),

Chn.(€) 2 \ente  Chp(e)  12onte)
it tn) < iy < O Ogm) = Gasisamon * g

We conclude that
0 12(pn+e)

S2 < Chp.(€) Z gkl < Chpn.(€) X B(e).
=l

g

3.2 A regularity lemma

We give here a regularization result in the following abstract framework. We consider a sequence
of operators U; : S(RY) — S(RY), j € N, and we denote by U} the formal adjoint defined by

(Uj f,g) = (f,Ujg) with the scalar product in L*(RY).

Assumption 3.5 Let a € N be fized. We assume that for every g € Nyk >0 and p € [1,00)
there exist constants Cq . p(U) and Cq . 00(U) such that for every j and f,

(H) Ui fllg -0 < Camoo(U) 1 fllg4a,—n,00 (3.15)
() NNy < Comn0) 1l gy (3.16)
We assume that Cy .. ,(U), p € [1,00], is non decreasing with respect to g and k.

We also consider a semigroup S, t > 0, of the form

Sy(z,dy) = si(x,y)dy with s, € S(R? x RY).

We define the formal adjoint operator
51w = [ slea) @, t>0

Assumption 3.6 If f € S(R?) then S;f € S(R?). Moreover, there exist b € N such that for
every ¢ € N,k > 0 and p € [1,00) there exist constants Cy . ,(S) such that for every t > 0,

(H2)  [18efllg—n00 < Camoo () [1Fllgp,—,00 - (3.17)
(Hz) 1S5 fllgnp < Camp() 1 lgbmp- (3.18)

We assume that Cy . p(S), p € [1,00], is non decreasing with respect to q and k.
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We denote

Cq,/@,oo(Up S) = Cq7H700(U)Cq7mOO(S)= Cq,ﬁ,p(a S) = Cq7mp(U)Cq,H,p(S)v (3-19)
Cq7,.i7oo7p(U, S) = Cq7,$7oo(U, S)V C'q7,.i7p(U7 S). (3.20)

Under Assumption 3.5 and 3.6, one immediately obtains

1CSeU) fllg— 00 < Camoo(Us S) 1 llg1att, 00 (3.21)
1SFUN | 4p < Camn U S) 1 llgasbrmp - (3.22)

q7ﬁ7p -

In fact these are the inequalities that we will employ in the following. We stress that the above
constants Cy x o0 (U, S) and Cy (U, S) may depend on a, b and are increasing w.r.t. ¢ and &.

Finally we assume that the (possible) blow up of s; — oo as ¢ — 0 is controlled in the
following way.

Assumption 3.7 Let g, A > 0 be fired. We assume that for every k > 0 and q € N there
exist m(q, k), 01 > 0 and Cy > 0 such that for every multi-indezes o and § with |a| + |5] < g,
(z,y) € R x R? and t € (0,1] one has

(H3) aﬁ@fst(a;, y)| < Cor Ur(g,r) (7)

- ()\t)eo(Q-H%) x ¢H(x — y) (3'23)

We also assume that w(q, k) and Cy ;. are both increasing in q and k.
This property will be used by means of the following lemma:

Lemma 3.8 Suppose that Assumption 3.7 holds.

A. For every k > 0, ¢ € N and p > 1 there exists C > 0 such that for every t € (0,1] and
f one has

C

1 Mo < gregaoarany I¥lows (3.24)

where v =7(q,k +d) + Kk +d

B. For every k > 0, q1,q2 € N there exists C > 0 such that for every t € (0,1], for every
multi-index o with |o| < qo and f one has

o C
St (¢, 0% f) < W ll.flloo

quﬁ ( (3.25)

41,00

where n = 7(q1 + @2,k +d + 1) + k.

Proof. In the sequel, C' will denote a positive constant which may vary from a line to
another and which may depend only on k and ¢ for the proof of A. and only on k,¢; and ¢
for the proof of B.

A. Using (3.23) if |a| < ¢,

1/}7r(q,n+d) (y)
(/\t)90((I+91) wm+d($ — y)

095, f ()] < / |0 se(y, 2)| < | f(y)| dy < x| f(y)l dy.
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By (2.4) Yutd(2)/Vrtd(® — y) < Cyra(y) so that

c d 7(q,K
Vrrdl@) |0°5 ()] < (At)% q+91> ¥ +j/,(i)jzx(i ;;l)(y) x| f(y)| dy
= W / Un(grrd+r+d(y) < |f(y)| dy
C

= W HfHo,u,l
We conclude that

. C
157 fll g mtdyoo < (\)Polaon) £ Mo -

By (2.9) 15 fllgnp < CISE Sl
B. Let v with |y| < ¢1. Using integration by parts

g.rtd.co SO the proof of (3.24) is completed.

50,0 ) = [ Ol ) u(0)0" )y
= (0 [ ag(@suCep)nl)) % Flu)dy
Using (2.6), (3.23) and (2.4), it follows that
05:0,0" (e < [ 105021 0)n0)| % 110l dy
< /R 15t 9 0n 0 gy 1 X 1) dy
<C [ 15l g ) x|

C wﬂ(q1+q2,l€+d+1) (x)

< 3 d
— (A)felataztoy 171 R Grari(@—y) vnly)dy
< % (¥ ¢W(q1+qg,n+d+1)+n($)d

(\t) o(q1+g2+061) R Va1 (z — )

C
- W 11l pr((11-%-112,m—&-d-i—l)-k,@(CU)-

This implies (3.25). O
We are now able to give the “regularity lemma”. This is the core of our approach.
Lemma 3.9 Suppose that Assumption 3.5, 3.6 and 3.7 hold. We fiz t € (0,1], m > 1 and

8 >0,i=1,...,m such that > >, 6; = t.
A. There exists a function ps, . s, € C>®(R? x R?Y) such that

m—1

Ui)Ss,, () = / Bovssn (@ 9) F () dy. (3.26)

7,:1
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B. We fix q1,92 € Ny > 0,p > 1 and we denote ¢ = g1 + g2 + (a+b)(m —1). One may find
universal constants C, x,p > 1 (depending on k,p and q1 + q2) such that for every multi-index
B with |B| < g2 and every x € R?

1 oY () )

At At
(3.27)
Proof. A. For g = g(x,y), we denote ¢*(y) := g(x,y). By the very definition of U} one
has

agﬁ(ﬁ,---,tsm (xv )

q1,RK,p

S (x) = / U w)dy.

As a consequence, one gets the kernel in (3.26):

m—1

D618 (T, ) = /Rdx( , Ui“sgl(yl)( 11 v 1(yj))85m(ym—1,y)dy1---dym_l,
m— ] —9
and the regularity immediately follows.
B. We split the proof in several steps.
Step 1: decomposition. Since ) ", §; =t we may find j € {1,...,m} such that J; > %
We fix this j and we write

m—1
Som = 1Q2
i1
with
j-1 m—1 m—1
Q= H(SaiUi)S%(sj and Qo = S15 Uj 1T (85.U:)Ss,, = Si5, 1] WiSsipn)-
i=1 i=j+1 i=j

Here we use the semi-group property S 15, S 15, = Ss;-

We suppose that j < m — 1. In the case j = m the proof is analogous but simpler. We will
use Lemma 3.8 in order to estimate the terms corresponding to each of these two operators.
As already seen, both Q1 and Q2 are given by means of smooth kernels, that we call py(z,y)
and po(z,y) respectively.

Step 2. We take 3 with |3]| < g2 and we denote g™*(y) := 8£g(x,y). For h € L' we write

| 160, se. 2tz = [ 106 [ ol gy, 2)dya:
/ p1(x,y /h( )p2(y, )dzdy—/ Op1(x, y)Q2h(y)dy

/ Q3py " (y)h(y)dy

It follows that

S

05Bs,...om (@, 2) = Q3p1" (2 i Uni) 815,007 (2).

-
I
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We will use (3.22) m — j times first and (3.24) then. We denote
@ =q+(m=j)(a+b)

and we write

102515 (@ lar s <cy 2 (U, 5)H515p1 [P

<2;Z)60(q1+61)

(3.28)
<™ (U,8)C

1,:‘6])

[
with
v=m(q,k+d)+r+d.

Step 3. We denote g.(u) = [[;1 oo) (U1 — 21), so that do(u — 2) = J4gz(u) with p =
(1,2,...,d). We take py=v+d+1 and we formally write

L
¢M(Z)

This formal equality can be rigorously written by using the regularization by convolution of
the Dirac function.
We denote

pi(e,2) = Q1(¢u0°g:)(x).

Gb=q@+G-1a+d), n=nld+g,p+d+1)+p

and we write
()

o)

P ()] = o) < S

Since p=v+d+1, [, x w% < 00, 80 using (2.6), we obtain (recall that || < ¢2)

12 < Cyy(z) sup !‘—85Q1(¢#8pgz)u < Cpy(x) sup H—Ql 1, 0° gz)Hq2 -
zerd Un zeRd ¥y '
< Cipyy (e su]é) Q1 (0" gz)”qz,—nm'
4SS

Using (3.21) j — 1 times and (3.25) (with k = u) we get

1@ (0:) e < L (U.)]115 (80°6-) g0

2m\ fo(gs+d+01)
Jj—1 =i
< ot U9 gl. 0(5F) .
Since ||g:||, = 1 we obtain
- om eo(q2+d+61)
[PY" lowir < wn(@)CY, ) (U.S) C ()

By inserting in (3.28) we obtain (3.27), so the proof is completed.

4 Proofs of the main results

In the present section, we use the results in Section 3 in order to prove Theorem 2.5 (Section
4.1) and Theorem 2.11 (Section 4.3).
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4.1 Proof of Theorem 2.5

Step 0: constants and parameters set-up. In this step we will choose some parameters
which will be used in the following steps. To begin we stress that we work with measures on
R? x R? so the dimension of the space is 2d (and not d). We recall that in our statement the
quantities q,d, p, d«, €4,k and n are given and fixed. In the following we will denote by C a
constant depending on all these parameters and which may change from a line to another. We

define 0
4 ca/px /p*J>0 (4.1)

m0:1+{ 3.

and given h € N we denote
(@ +b)mo + g+ 2d/p.

Ph = oh
Notice that this is equal to the constant p; defined in (3.6) corresponding to k = (a + b)mg
and ¢ and to 2d (instead of d).
Step 1: a Lindeberg-type method to decompose P, — Pj*. We fix (once for all)
t € (0,1] and we write

(4.2)

t t t
R = Prf = [ oupr R = [ Pr(L- LPugds= [ P2 aP s
0 0 0

We iterate this formula mg times (with mg chosen in (4.1)) and we obtain

mo—1
Pif(x) = P'f(z) = Y I f(x)+ Ry f(x) (4.3)
m=1

with (we put tg = t)

m—1

t t1 tm—1
I f(zx) = /0 dt1/0 dtQ.../O dt,, H (P An)P) f(z), 1<m<mo—1,
=0

mo—1

t t1 tmo—l
R:?Uf<x) _/ dtl/ dtQ.../ dtmg H (Pg_tiJrlAn)PtmOf(x).
0 0 0

=0

In order to analyze I;" f we use Lemma 3.9 for the semigroup S; = P/* and for the operators
U, =A, =L — L, (the same for each i), with 0; = t; — t;4+1, 1 =0,...,m (with ¢,,4-1 = 0). So
the hypotheses (3.15) and (3.16) in Assumption 3.5 coincide with the requests (2.14) and (2.15)
in Assumption 2.1. And we have Cy ... o0(U) = Cy 1 p(U) = Cey,. Moreover the hypotheses (3.17)
and (3.18) in Assumption 3.6 coincide with the hypotheses (2.16) and (2.17) in Assumption
2.2. And we have Cf 00 (P") = Cy o p(P") = A;,. Hence,

CQ7K/7OO7P(A7L7 Pn) = Csn X A?’L? (4.4)

Finally, the hypothesis (3.23) in Assumption 3.7 coincides with (2.20) in Assumption 2.3. So,
we can apply Lemma 3.9: by using (3.26) we obtain

t tm—1
I f(z) = /0 dty... /0 b / P o (@) f()dy.

19



We denote

mo—1

t tm—1
o (2, y) = p(x, y) + Z /0 dty... ; dtmp?;ThtTtl’.._’tm(x,y)
m=1
so that (4.3) reads

/ F(y) P, dy) = / F ()60 (2, y)dy + R f (z).

We recall that ¥, ,; is defined in (2.24) and we define the measures on R? x R? defined by

p"(dx, dy) = Wy (2, y) Pz, dy)de  and  ph™" (dz, dy) = U, (2, y)0" (2, y)ddy.

7,K,mM0

So, the proof consists in applying Lemma 3.4 to p = p"* and p, = pin
Step 2: analysis of the principal term. We study here the estimates for f,(x,y) =
U, ¢y (2, y) which are required in (3.7).
We first use (3.27) in order to get estimates for /"y . (z,y). Wefix q1,¢2 € N,k >
0,p > 1 and we recall that in Lemma 3.9 we introduced § = ¢1 + g2 + (a + b)(mo — 1). Moreover
in Lemma 3.9 one produces x such that (3.27) holds true: for every multi-index § with |3| < ¢2

|

58 _n,m
w"ﬂampt—tl,tl —t2,...,tm (33, )
q1,p

1 \fo(q1+g2+d+261) 1 \bo(a+b)\™
<co(— 2
_<7(Ant) x <enAn(Ant) ) ().

We recall the constant defined in (2.22):

1

)\90 (a+b+38) "

B, (8) = enhp x

Denote
&(q) = q+d+ 201 + mo(a+0), wi(q) = g+ d+ 26;.

With this notation, if |3] < g2 we have

‘ < C(}\it>90(q1+q2+d+201) 5 <8nAn<)\1t)oo(a+b)>m0 ¢X(x) (4‘5)

n

Ve ()

q1,p
— (Ot % (q1ta2) )\;90&)1 (q1+q2) M0 (0)1hy (). (4.6)

We take | = 2h + ¢,1' = 2h and we take ¢(I) = [+ (a + b)mg. Moreover we fix ¢; and g2 (so
qd=q1+ g2 <) and we take x to be the one in (4.5). Moreover we take 7 is sufficiently large
in order to have pn — 2h — px > d 4 1. This guarantees that

dx

= - . 4.7
R< wpn—l’—px(ﬂf) = (4.7)
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By (2.6) and (4.5)

nm
|y ™ [y, <C //R‘I’

|ox \+\B|<l

O<|+|B<l/ Y- (2) /Rd

=¢ Z /wpn v(x Hw”Jrl//paa e Hlﬁl,p

lal+|BI<!

020507 (@) v (@) (y)dyda

7,1 P
Vs p )OS O[ ™ (w,y)| dyda

dx
<C tf(?o&l(l))\;@owl(l)q)n 0 PmO/ -
( ( )) R4 ¢p77—l’—px(x)

We conclude that
||\Il777'i¢?7m0||2h+q,2h,p < ot~ fokilat2h) o )\Eeowl(q4r2h)(b;n0(0) =:0(n). (4.8)
By (2.23) 6(n) 1 +o00 and ©0(n) > 6(n + 1) with
@ = Hfo((atb)motqt2htd+201)+mo > 1.
In the following we will choose h sufficiently large, depending on d,,mg, q,d and p. So © is a

constant depending on 9., mg, q,d, a, b,y and p, as the constants considered in the statement of
our theorem.

Step 3: analysis of the remainder. We study here dy,, (1) := d(gip)m, (", ™) as
required in (3.8): we prove that, if n > k + d + 1, then
Ay () < C(Apey)™ < Aolatbdgmogmo sy, (4.9)
Using first (A;) and (As2) (see (2.14) and (2.16)) and then (A4) (see (2.21)) we obtain
mo—1
H (Pt?—tiHAn)Ptmof < C Hf”(aer)mo,—n,oo (An@n)mo
=0 0,—kK,00
which gives
||RZLOf||O —K,00 — C||f|| a+b O—Km(Angn)mo‘
Using now the equivalence between (2.11) and (2.12) we obtain
R0 S s ()™ (410

We take now g € C°(R% x RY), we denote g,(y) = g(z,y), and we write

/Rdedg(:r’y)(u”’“ — ™) (d, dy)'

dx
= / 2t U (7)
dx

R4 1/177 H( ) %( )

< C sup [|9el (at5)mg,00 (Anen)™
z€RI

/ 0o(0) e (v) (Pu(zr, dy) — 7™ (,))dy

dx

R (Yrgs) ()
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the last inequality being a consequence of (4.10) and of n — k > d + 1. Now (4.9) is proved
because supepq ||9x||(a+b)m0,oo = H9\|(a+b)m0,oo-

Step 4: use of Lemma 3.4 and proof of A. and B. We recall that pj is defined in
(4.2) and we estimate

Ay (n) x O(n)Pr < Ct~0082(0) \owa(h) gmo(l+pn) (5

with
&2(h) = pn&i(q +2h) = pr(q + 2h + d + 261 + mo(a + b))
and
walh) = (a+b+3d)mo— pn(qg+2h+d+26;)
b 2d/p«
= 5*mo—(a+ )mo;Lqu /P (q+d+201) — (q+2d/ps).

By our choice of mg we have

dxmo > q + 2d/ps
so, taking h sufficiently large we get wa(h) > 0. And we also have &a(h) < &3 := (a + b)mo +
q+ f}—‘j + &4 and pp, < g4. So we finally get

iy (n) X O(n)Pr < Ot~ %% @molites) (5 ), (4.11)

The above inequality guarantees that (3.8) holds so that we may use Lemma 3.4. We take
n > k + d and, using (A4) (see (2.21)) we obtain

- ZZE:;; Pz, dy)dz < C _dv < 00.

R Vr—n(T)
Then, A(d) < C (see (3.9)). One also has B(e) < oo (see (3.10)) and finally (see (3.11))

| =

Chon, () < Ct~ P moltes) (5.

We have used here (4.11). For large h we also have
0(n)Pr < C()\nt)_90((“+b)m°+q+%)(1+5*)@2* (0).

Now (3.12) gives (2.27). So A and B are proved.
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Step 5: proof of C. We apply B. with ¢ replaced by § = ¢+1, s0 ¥, cp; € WaP(RYxRY) =
WoP(R2). Since ¢ > 2d/p (here the dimension is 2d), we can use the Morrey’s inequality: for
every a, B with || +[8] < [g—2d/p) = g, then 0205 (ypt) (@ )| < C|Wgupillgp By (2:27),
one has (withm =1+ %)

1 \ (a+b)ym+g+2d/p« _ (14-ex)
020] (W epi)(a.y)| < C(1+ (1) o7, ,(6.))
i.e. (using (2.6)),
1 \ (a+b)m+g+2d/p« - (1+ex) 1
a af < m
6:c 8ypt(xa y)) = C(l + ()\nt) cbt,n,r((s*)> X \I/n,;q(l'vy)

Now, by a standard calculus, ¥, .(z,y) > CK% (use that ¥, (x —y) < Crhe(x)s(—y) =
Cuthi(z)s(y)), so (2.29) follows. O

4.2 Proof of Theorem 2.7

By applying Theorem 2.5, Py(x,dy) = pi(x,y)dy and p; satisfies (2.27), which we rewrite here
as
|qp g Ct_e*(q+61)’

[N

where 60, = 0(1+ “TH’)(I +¢) and 6 is computed from (2.27) (the precise value is not important
here). The constant C' in the above inequality depends on k,7,¢,d,q. Moreover, by choosing
n>k-+d,

1 1
U, w(x,y)p x,ydxdy:/ XPmedxg/ ———dx =m < 0.
/Rded w1 9) Ra Pn(z) (@) Rt Y- ()

So, Lemma 3.3 (recall that we are working here with R? x R? = R2?) gives
[, kptllgp < Ot~ Olat2d/pe)
We choose now p > 2d and by Morrey’s inequality,

H\I’nwpt
By taking p = 2d/(1 — ¢), we get
H\I/nv"ipt”r,oo < C't*O*(V"JerJFE)7

where C denotes here a constant depending on &, 7,e. This gives that, for every x,y € R? and
for every multi-index o and S,

8208 py(x,y)| < O x t=0=(alHBl+2d+e) Un(z)
e ] = )

The statement now follows from (2.4). O
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4.3 Proof of Theorem 2.11

In this section we give the proof of Theorem 2.11.

Step 1. Let
m!
(Ut(dtl, ceey dtm) = Tm 1{0<t1<...<tm<t}dt1"“dtm

and (with tp,4+1 =1)

m—1
In(N@) =E(ivmmy [ (T] Poncicmton Uz ) P fC)en(ditn, st ).
+ =0

Since, conditionally to N(t) = m, the law of (171, ...,T},) is given by w(dty, ..., dt,,), it follows

that
Puf(x) =Y In(f)@) = Y In(f)(@) + Ry f(2)
m=0 m=0
with -
Roof@) = 3 In(H().
m=mo-+1

Step 2. We analyze first the regularity of I,,(f). We apply Lemma 3.9. Here S; = P,,
so assumptions 3.6 and 3.7 hold due to assumptions 2.8 and 2.9 respectively. Moreover, here
U; = Up—z,, so Assumption 3.5 is satisfied uniformly in w as observed in Remark 2.10. Notice

that a = b = 0 in our case. Then Lemma 3.9 gives

m—1
( H Bm—i+1_tm—iUZm—i>Blf(x) = /pthtz—tl,m,t—tm (z, y)f(y)dy
=0

and, for ¢1,q2 € N,k > 0,p > 1 and |5| < g2 we have

< bge(m) x Py (z).

8xﬁpt1,t2—t1,---7t—tm (x7 )

qu,6Ep
with +d+26
C x m1 L -1
Og0(m) = —()\t)eo(q+d+291) X C;?X,ppo(P, U).

Here C and x are constants which depend on ¢q1, g2 and x. We notice that

9q7t(m + 1) < C x Cq,x,p,oo(P) U) X 9q7t(m).

(4.12)

We summarize: for each fixed ¢, x, k,p and each § > 0 there exists some constants © > 1 and

Q@ > 1 (depending on ¢, x, k,p and § but not on m and on t) such that for every m € N

Ogt(m+1) <O x 054(m), and
Q™

O, (m) < W'

We define now

mo

() = 2/ Pty ottt (T Y) i (db...dtr).

m=0 " RY’
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Using (4.12), standard computations give: for every [,I’ € N, p > 1 and x € N there exists
1o € N such that for every n > ng,

19k, < 1(mo). (4.15)
Step 3. We fix n > np and n > k 4+ d and we define the measures
P (da, dy) = Uy (@, y)Pe(z, dy)dz and  p"™"0 (dx, dy) = Wy (2, y)¢)" (z,y)ddy.

Let g = g(z,y) be a bounded function and set g,(y) = g(x,y). We have,

‘ / gdp™" — / gy / 1/%7 i H e )

/w?7 T Hw m(Vrge)

We deal with the norm in the integral above. By iterating (2.31) and (2.39) (with ¢ = 0) we
get,

dﬂs

dx.

m>mo+1

< & 1Yngello,—rco < €i'llglloos

m—1
H ( H Ptmfiﬁ»l_tmfiUmei)Ptl (%gx) 0
=0

Pata?)

where ¢, > 0 is a constant depending on the constants appearing in (2.31) and (2.39). There-
fore, we obtain

H% (Ungs)|| < PN = m)]g]loe:

Since n — k > d, it follows that for every mg > 1 (recall that ¢t < 1),

do(ur ey < 30 I (T ey
m! my!
m>mo+1

So, for m > 1 we have, for every [

1 (cup@Qm)™
nE | 0K,Mm T« Crp
sup do (™", ) X Oy (m)" < Oy < S e
ecl@p(1+Qr)

< (\t)fo(T+d+201)r (4.16)

We now use Lemma 3.4 and we get u™*(dx,dy) = p™"(x,y)drdy with p* € C®(R? x R?).
And one concludes that Py(z,dy) = p,(z, y)dzdy with p, € C®(R? x R9).
We will now obtain estimates of p,. We fix h € N (to be chosen sufficiently large, in a

moment) and we recall that in (3.6) we have defined p;, = (¢ + 2d/p«)/2h (in our case k = 0
and we work on R? x R% ~ R%d). So, with the notation from (3.11) (with n, = 1)

ccnp(1+QPn+e)

Ch,l(g) = ()\t)eo(2h+q+d+291)(/?h+a) ’

We have used here (4.16) with | = 2h+ ¢ and r = pj, +¢. Then by (3.12) with n, = 1, for every
0>0 s
1971l < C(O + 05057 (1) + Cna ()
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Taking h sufficiently large we have

QCHp

Chale) < (At)fo(a+2d/p.)(1+6) "

and, for 6 > 0,
pn(1+6) Qe e2er
Oonrqr (c(rn)p) < (\t)@hFa+d/p-)pn(1+9) <O x (M) (@+24/p)(148)
Since p > 1 we conclude that
echp
7,k

C' denoting a constant which is independent of p. We take now p = 2d + ¢ and, using now
Morrey’s inequality

B 628np
19" g0 < 10" l10 < € X mnrnsy
This proves (2.43). O
A Appendix
A.1 Weights
We denote
Y(x) = (1+ [z*)*. (A1)

Lemma A.1 For every multi-index o there exists a constant C,, such that

80‘(%)’ < i: (A.2)

Moreover, for every q there is a constant Cy > 1 such that for every f € Cboo(]Rd)

G5 D) T fenze £ (Dl oo

7 0<|al<q 0<al<q odaicg’ Uk

Proof. One checks by recurrence that

|

<¢k> Z ¢k+q

where P, 4 is a polynomial of order ¢g. And since

(+lae __ C
L+ eP)r* = (4 P
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the proof (A.2) is completed. In order to prove (A.3) we write

o (L) = ot 3 dpot(5)or

(By)=a
1B1>1

This, together with (A.2) implies

(D)< ¥ Lo

k
0<|yI<]e

so the first inequality in (A.3) is proved. In order to prove the second inequality we proceed
by recurrence on ¢. The inequality is true for ¢ = 0. Suppose that it is true for ¢ — 1. Then we

write f
o= wk)—(%‘_ (5.0 ()07

181=1

and we use again (A.2) in order to obtain

r(Glre T gense 3 1o (0)

<l | 0<|BI<q

\5O‘f! <

the second inequality being a consequence of the recurrence hypothesis. [

Remark A.2 The assertion is false if we define ¥y, (x) = (1+|z|)* because 0;0; |z| = (T;] — T

L el
blows up in zero.

We look now to v, itself.
Lemma A.3 For every multi-index « there exists a constant C,, such that
|0%Yi| < Catg. (A.4)

Moreover, for every q there is a constant Cy > 1 such that for every f € C’fo(]Rd)

o Y el Y wlorn<o Y 1)l (4.5)

7 0<lal<q 0<]al<q 0<]al<q

Proof. One proves by recurrence that, if |a| > 1 then 0%, = z 1’(/Jk ¢Fq with P, a

polynomial of order ¢. Since 14 |z| < 2(1 + |z|?) it follows that |P,| < Ct, and (A.4) follows.
Now we write

R0 f = 0%(Wnf) = Y e(B, )0 D f

B:)=a
|8]>1

and the same arguments as in the proof of (A.3) give (A.5).
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A.2 Semigroup estimates

We consider a semigroup P; on C°°(R%) such that P f(x) = [ f(y)P:(z,dy) where P;(x,dy) is
a probability transition kernel and we denote by P} its formal adjoint.

Assumption A.4 There exists Q > 1 such that for every t < T and every f € C(R?)

1P flly < @A (A.6)

Moreover, for every k € N there exists Kj, > 1 such that for every x € R?
|Pe(¢r)(@)| < Kith (). (A7)
Lemma A.5 Under Assumption A.J, one has
oy (19l < Ky Q7 151, (A8)
Proof. Using Hélder’s inequality, the identity ¢}, = 9y,, and (A.7)

P(tkg) (@)] < |Pewl) (@) P 1P(gl ) (@) [P < K Pow() | PP ) ()] 7"

Then, using (A.6)

= K7 (| PlglP) 1) Ve

P*)

Pt T/Jkg)

IN

1 s\ |1/ Dx
ol DTSRG
p

=

D=

IN

EPQVP(|llgl™ 1) VP = KPQYP gl

Using Holder’s inequality first and the above inequality we obtain

g G0l = | G-Paw. )| <151, | - Ptawo

K P QY7 llgll,. I£1],-

DPx

A

DPx

O
We consider also the following hypothesis.

Assumption A.6 There exists p > 1 such that for every q € N there exists Dqu) (p) > 1 such
that for every x € RY

D 0P f(2)] < Diy(p) Y (P10 f17)(2)) /P (A.9)

lal<q lal<q

Proposition A.7 Suppose that Assumption A.4 and A.6 hold. Then for every k,q € N and
p > p there exists a universal constant C (depending on k and q only) such that

1P (F /)4 < CRGEQP=/ D (p) (1 1l - (A.10)
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Proof. We will prove (A.10) first. Let a with |a| < ¢. By (A.9)

0% (o PY (/) (@) < Cowla) Y 107 (B (f /) (@)

[v1<q

< Dy (p)n(@) S (B (|07 (£ /)| )@))

1BI<q

= Dyl D W@ P (07 /)| @))

181<q

= ODy(0) D Wk (@) P (g /) @) /”

1B1<q

with
9(@) = v(@) |27 (F/0) @)| = [on(@)0°(f o) (@)
Using (A.8)

| o () 2| = ok r (o)l 5 < K@= gl

And we have

lalls = ([ [in@o* @) de)> <€ ([ 100 p(a) do)te = £l

[v[<q

We conclude that

1P (f /004 < CRGEQP=/ DY (p) (11l -
O

A.3 Integration by parts

We consider a function ¢ € C>®(RY, ]Rd) such that 0;¢ € C’b‘x’(Rd, R%), j =1,...,d. We denote
V¢ the d x d matrix field whose (i, j) entry is 9;¢° and o(¢) = Vo(Ve)*.

Lemma A.8 We suppose that o(¢) is invertible and we denote y(¢) = o~1(¢). Then

/(8f dx—/f (2)da (A11)
with
Hi(¢,9) = ; (QZ’W 8k¢j) - (A.12)
Moreover, for a multi-indez a = (ay, ..., ;m) we define

Ha(9,9) = Ha,, (6, Hiay,....am-1)(®9)) (A.13)

/ (0° ) (6(x))g(x)da = / F(6(2) Hal . g) (@) (A.14)

and we obtain



Proof. The proof is standard: we use the chain rule and we obtain V(f(¢)) = (V¢)*(Vf)(¢).
By multiplying with V¢ first and with v(¢) then, we get (Vf)(¢) = v(¢)VoV(f(¢)). Using
standard integration by parts, (A.11) and (A.12) hold. And (A.13) follows by iteration. OJ

Our aim now is to give estimates of |[Ha(¢, g)(z)|, . We use the notation introduced in (2.1)
and for ¢ € N, we denote
LV [(x)[395
C — q+ . A].5
(O = et o (6) () (19)
Lemma A.9 For every multi index o and every q € N there exists a universal constant C > 1
such that

Ha(,9)(x)]y < Cl9(2)] 41101 X CLY0/ (@) (@). (A-16)

Proof. We begin with some simple computational rules:

f@g@)l, < C > 1@ 9@, (A.17)
k1+ko=q
(Vf(z),Vg@)l, < C Y |f 19(2)| 1 yy1 5 (A.18)
k1+ko=q
1 C < Ig(ﬂﬂ)lé
‘() . l9(@)] ; g(z)" (A.19)

We denote by 57 (¢) the algebraic complement and write 77/ (¢) = 5%7(¢)/det o(¢). Then,
using the above computational rules we obtain

o)
A (det o (¢)(x))aTT

4,J
49 (6)(a)], < O x -
and moreover

D)
[Hi(6,9)(@)l, < Clg@)l g1 X 18(0)]1 g0 X ('i(t i’(;‘gf))m < Clg(@)lg41 % Cal@) ().

Let ao = (f,14). Iterating the above estimate we obtain

Ha(6.9)(@)l, = |Hi(¢, Ha(6,9)(@)], < C|Ha(6,9)(x)],,, x Col0)(x)
< Clg(@)]gy10 % Ol (@) ().

O
We define now the operator V, : C°(R?) — Cp°(R?) by
Vof(x) = f(o(x)). (A.20)
Lemma A.10 A. One has
H V)| < OO0 IO 1 (A.21)
K q,00
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B. Suppose that

xiégd deto(¢)(z) > e(¢) >0 (A.22)

Then, for k,q € N and p > 1,

1 LV |35
¢HV¢ (wif) < Cwn(¢(0)) x €(¢)q(q+1)+1/p* X “f“q+1,p : (A23)
K q,p
Proof. We notice first that
l9(d(2))], < CAVIs@)L,) D 1(0%9)(¢ (A.24)
la|<g

Using (2.6) and the above inequality we obtain

1 (1V!¢ o
S| < i el < S gqra () 0(2))
< SV 6w 3 10 6t
¢H(x) lal<q

And using (2.5) this gives (A.21).
B. We take now « with || < ¢ and we write

<5"(%V¢§"(dif)),g> — (e <j,v¢<¢naag>>
— (1)l J (2) (e ><¢< ))da
Rd Wk

S T L () @)

It follows that

f
(oG 000)| < oo, (s )|
Using (A.16) and (A.22) we obtain (recall that |a| < q)
f f g
Ho(o. L xvo) @) < o|(L wm<¢>)<m> RGO
LV |o(x)[3% 5\ a
< Ol [ xw@@)| x (—gm)’
By (A.24) we have
e(@) (@) < CAVIs@ITL) Y 10%e) (@) < COV o)1) x ¢e(b(2))
|oo| <k+1

< OV (@)|T550) X ¥u((0) (1 V [ VSIIZ )t ().
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Finally

Ho (0. % 0.(0)) @

< CLF(@)] gy Yr(0(0)) (1 V [[V]25) x MW$H

2dg+1+2
LV 18l1 ) 20

e(g)atatl)

1 \/ ‘qs(x) 2dq+1

IN

Clf (@)l g1 ¥u(9(0)) X

and this gives

Using a change of variable and (A.22) ||g(¢)

LV ||g|f32 2
< C¢H(¢(O)) X 5(¢)qE¢I+13 X ”f”q—i—l,p
p

|12 (0.-L <000

< e(g)H/p

» gll,,, - These two inequalities prove

(A.23). O
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