B. Arras and . Houdré, C: Applications to Sums of Independent Random Variables, 2019.

V. Bally and L. Caramellino, On the distances between probability density functions Electron, J. Probab, vol.19, issue.110, 2014.

V. Bally and L. Caramellino, Asymptotic development for the CLT in total variation distance, Bernoulli, vol.22, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01104866

V. Bally, L. Caramellino, and G. Poly, Convergence in distribution norms in the CLT for non identical distributed random variables, Electronic Journal of Probability, vol.23, issue.45, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01413548

V. Bally, L. Caramellino, and G. Poly, Non universality for the variance of the number of real roots of random trigonometric polynomials, Probab. Th. Rel. Fields, vol.174, issue.3-4, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01634848

V. Bally and E. Clément, Integration by parts formula and applications to equations with jumps, Probab. Th. Rel. Fields, vol.151, pp.613-657, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00431632

V. Bally and E. Clément, Integration by parts formula with respect to jump times for stochastic differential equations, Stochastic analysis 2010, pp.7-29, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00472657

V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations, Probab. Th. Rel. Fields, vol.104, p.43, 1996.
URL : https://hal.archives-ouvertes.fr/inria-00074427

D. Bakry, I. Gentil, and M. Ledoux, Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften, vol.348, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00929960

V. I. Bogachev, E. Kosov, and G. Zelenov, Fractional smoothness of distributions of polynomials and a fractional analog of the Hardy-Landau-Littlewood inequality, Trans. Amer. Math. Soc, vol.370, 2018.

N. Bouleau and L. Denis, Dirichlet Forms Methods for Poisson Point Measures and Lévy Processes, With Emphasis on the Creation-Annihilation Techniques, Probability Theory and Stochastic Modelling, vol.76, 2015.

J. Guyon, Euler scheme and tempered distributions. Stochastic Process, Appl, vol.116, issue.6, 2006.

Y. Hu, F. Lu, and D. Nualart, Convergence of densities of some functionals of Gaussian processes, Journal of Functional Analysis, vol.266, issue.2, 2014.

V. Konakov and E. Mammen, Edgeworth type expansions for Euler schemes for stochastic differential equations, Monte Carlo Methods and Applications, vol.8, issue.3, 2002.

G. Mokobodzki, Sur l'algèbre contenue dans le domaineétendu d'un générateur infinitésimal, Sém. Théorie du Potentiel, vol.681, 1978.

I. Nourdin and G. Peccati, Normal approximations with Malliavin calculus: from Stein's method to universality, vol.192, 2012.

I. Nourdin, G. Peccati, and A. Réveillac, Multivariate normal approximation using Stein's method and Malliavin calculus, Annales de l'IHP Probabilités et Statistiques, vol.46, 2010.

I. Nourdin, G. Peccati, and Y. Swan, Entropy and the fourth moment phenomenon, Journal of Functional Analysis, vol.266, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00807589

I. Nourdin and J. Rosi?ski, Asymptotic independence of multiple Wiener-Itô integrals and the resulting limit laws, The Annals of Probability, vol.42, 2014.

I. Nourdin and G. Poly, Convergence in total variation on Wiener chaos, Stochastic Process. Appl, vol.123, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00696499

D. Nualart, The Malliavin calculus and related topics, 2006.

G. Poly, Regularization along central convergence on second and third Wiener chaoses
URL : https://hal.archives-ouvertes.fr/hal-02122855

D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Analysis and Applications, vol.8, 1990.
URL : https://hal.archives-ouvertes.fr/inria-00075490