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Upper bounds for the function solution of the homogeneous 2D

Boltzmann equation with hard potential

Vlad Bally∗

Abstract

We deal with ft(dv), the solution of the homogeneous 2D Boltzmann equation without cutoff.
The initial condition f0(dv) may be any probability distribution (except a Dirac mass). However, for
sufficiently hard potentials, the semigroup has a regularization property (see [5]): ft(dv) = ft(v)dv
for every t > 0. The aim of this paper is to give upper bounds for ft(v), the most significant one

being of type ft(v) ≤ Ct−ηe−|v|λ for some η, λ > 0.

Keywords: Boltzmann equation without cutoff, Hard potentials, Interpolation criterion, Integration
by parts.

2010 MSC: 60H07, 60J75,82C40.

1 Introduction and main results

We are concerned with the solution of the two dimensional homogenous Boltzmann equation:

∂tft(v) =

∫

R2

dv∗

∫ π/2

−π/2
dθ |v − v∗|γ b(θ)(ft(v′)ft(v′∗)− ft(v)ft(v∗)). (1.1)

Here ft(v) is a non-negative measure on R2 which represents the density of particles having velocity
v in a model for a gas in dimension two, and, with Rθ being the rotation of angle θ,

v′ =
v + v∗

2
+Rθ

(
v − v∗

2

)
, v′∗ =

v + v∗
2

−Rθ

(
v − v∗

2

)
.

The function b : [−π
2 ,

π
2 ]�{0} → R will be assumed to satisfy the following hypothesis:

(Hν) i) ∃0 < c < C s.t. c |θ|−(1+ν) ≤ b(θ) ≤ C |θ|−(1+ν) (1.2)

ii) ∀k ∈ N,∃Ck s.t.
∣∣∣b(k)(θ)

∣∣∣ ≤ Ck |θ|−(k+1+ν) .

In [17] it is proved that, for every ν ∈ (0, 12 ) and γ ∈ (0, 1], the above equation has a unique weak

solution. More precisely: under the assumption (Hν) and the integrability condition
∫
e|v|

λ

f0(dv) <∞
for some λ ∈ (γ, 2),[17] shows that there exists a unique weak solution ft of (1.1) which starts from f0.

Furthermore the solution satisfies supt≤T

∫
e|v|

λ′

ft(dv) < ∞ for every λ′ < λ. Throughout the paper
these hypotheses are in force.
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Below, f0(dv) will be a probability distribution which is not assumed to be absolutely continuous with
respect to the Lebesgue measure (we will just assume that f0(dv) is not a Dirac mass δv0(dv) - in this
trivial case the corresponding solution is ft(dv) = f0(dv) = δv0(dv) for every t > 0).
Our first aim is to give sufficient conditions under which, for every t > 0, ft(dv) is absolutely continuous
and to study the regularity of its density ft(v): see Theorem 1.1 below. This problem has already been
addressed in [5] for the same equation and under the same assumptions, in [16] for the three dimensional
Boltzmann equation and in [1] for the Boltzmann equation in arbitrary dimension (however, in this
last paper, f0(dv) is assumed to be absolutely continuous and to have finite entropy). In the case of
Maxwell molecules (where γ = 0) this problem is addressed in [20] and [13], and for Landau equation
in [21] . These last three papers are the pioneering papers concerning the probabilistic approach to
the regularity problem.
Our second aim is to give upper bounds for ft(v) : see Corollary 1.2 and Theorem 1.3 bellow. This is
actually the main contribution of the paper. Two aspects of our bounds are noteworthy:

• for any t > 0, v 7→ ft(v) decays exponentially fast (spatial exponential decay) and

• t 7→ ft(v) blows up at most polynomially as t→ 0 (blow-up in time).

Under a cutoff condition, and if the initial value is a function which is upper bounded by a Maxwellian
potential, bounds on the spatial decay of ft were proved in [19]. Our result applies even when the
initial condition is a measure (not necessarily absolutely continuos) and we work with the equation
without cutoff. In [23] the author discusses upper bounds of polynomial type for an initial condition
which is a smooth function. This is rather different from our framework, as our bounds are exponential
and no regularity of the initial condition is required.
In order to precisely state our results, some notation is required. We denote by ‖·‖p respectively by

‖·‖q,p the norm in Lp respectively in the Sobolev space W q,p on R2. For p > 1 we denote by p∗ the

conjugate of p. We fix ν ∈ (0, 12) and γ ∈ (0, 1], we suppose that f0(dv) is not a Dirac mass, and that

for some λ ∈ (γ, 2) one has
∫
e|v|

λ

f0(dv) <∞.
We consider a non decreasing function ρ : R+ → R+ such that ρ(u) = 1 for u ∈ (0, 1), ρ(u) = u for
u ∈ (2,∞) and ρ ∈ C∞(R+) and, for 0 < λ′ < λ, we define

Φλ′(v) = eρ(|v|
λ′). (1.3)

The important point is that Φλ′(v) = e|v|
λ′

for |v| ≥ 2; the function ρ is used just to avoid singularities
of the derivatives of Φλ′ around v = 0. The specific choice of ρ impacts just the constants C (which
anyway are not explicit).
Moreover we will use an auxiliary function ϕ : [0,∞) → [0,∞) defined by

ϕ(α) =
(1− ν)(1 + γ + α)

1 + ν(γ + α)
− 1 (1.4)

and we denote by α∗ the unique solution of the equation ϕ(α∗) = α∗ (see (3.11) for the explicit value
of α∗). We also denote

η =
2(ϕ(2) − 1)

ϕ(2)− 2

(
13(1 + α∗)(2 + ν)

ν
− 1

)
. (1.5)

We need to impose η > 0. Direct computation shows that

ϕ(0) > 0 ⇔ ν <
γ

2γ + 1
(1.6)

ϕ(2) > 2 ⇔ ν <
γ

4γ + 9
(1.7)
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Theorem 1.1 A. Let us assume that ν < γ
2γ+1 . Then the measure ft(dv) is absolutely continuous

with respect to the Lebesgue measure on R2. We denote by ft(v) its density (that is ft(dv) = ft(v)dv).
Let λ′ < λ.
B a. If ν < γ

4γ+9 then Φλ′ft ∈ Lp(R2) for every p > 1 and (with η given in (1.5))

‖Φλ′ft‖p ≤
C

tη
. (1.8)

b. If γ
4γ+9 ≤ ν < γ

2γ+1 then α∗ < 2 and Φλ′ft ∈ Lp(R2) for every 1 < p < 2
2−α∗

.

C.a If ν < γ
4γ+9 then Φλ′ft ∈W q,p(R2) for q = 1, 2 and 1 < p < pq, with

p1 =
2(1 + ν(γ + 2))

1− γ + 11ν + 5νγ
and p2 =

2(1 + ν(γ + 2))

2− γ + 13ν + 6νγ
. (1.9)

Moreover for every p < pq one has

‖Φλ′ft‖q,p ≤
C

tη
. (1.10)

b. If γ
4γ+9 ≤ ν < γ

3γ+4 then Φλ′ft ∈W 1,p(R2) for every 1 < p < 2
3−α∗

.

We stress that the precise power η in t−η in (1.8) and (1.10) is due to the technical approach that we
use. We do not expect it to be optimal (see the point D in Lemma 3.1 for more precise estimates,
which themselves are not optimal). However this guarantees that the blow up of ft as t → 0 is at
most polynomial.
In order to be able to compare this result with the ones in the papers which we quoted before, take
s > 1 and ν = 2

s−1 , γ = s−5
s−1 : these are the values which are significant in the case of the three

dimensional Boltzmann equation. Our condition γ > 0 implies that s > 5; in the literature this case
is known as the ”hard potential” case. With this choice of ν and of γ we have ν < γ

2γ+1 iff s > 9 and

ν < γ
4γ+9 iff s > 16 +

√
193 ∼ 30. The regularity results of the above theorem are analogous with the

ones in [5], though not identical. In [16] one deals with the real three dimensional equation (without
cutoff) and obtains absolute continuity for a larger range for s then in the above theorem. However
the Lp estimates obtained in our paper are stronger: we obtain Φλ′ft ∈ Lp(R2) instead of ft ∈ L2(R2).
Moreover, we obtain bounds depending polynomially on t ↓ 0. The result of [1] is stronger in the sense
that it applies to equations in any dimension, but it requires that the initial condition is already a
function (so it is not really possible to compare them).
We give now some consequences of the previous result concerning the tails of ft(dv) :

Corollary 1.2 Suppose that ν < γ
2γ+1 . For every λ′ < λ there exists a constant C ≥ 1 (depending on

λ′) such that for every R > 1, t ∈ (0, 1]

ft({v : |v| ≥ R}) ≤ C

tκ
e−Rλ′

with (1.11)

κ =
13(2 + ν)(1− ν)(1 + γ)

ν(1 + νγ)
− 1. (1.12)

We give now the upper bound for ft(v) :

Theorem 1.3 Suppose that ν < γ
4γ+9 . Then p1 > 2 (given in (1.9)) and ft ∈ C0,χ (Hölder continuous

functions of order χ) with χ = 1− 2
p1

for all t > 0. Moreover for every λ′ < λ there exists C ≥ 1 such
that

|ft(v)| ≤
C

tη
e−|v|λ

′

(1.13)

with η given in (1.5). Finally, there exists C ≥ 1 such that for every v,w ∈ R2 with |w − v| ≤ 1

|ft(w)− ft(v)| ≤
C

tη
e−|v|λ

′

|w − v|χ . (1.14)
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To our best knowledge, both the time-space estimate (1.13) and the Hölder continuity of ft and the
estimate (1.14) are new. For the Landau equation, lower and upper bounds for the solution have
been obtained in [21] using integration by parts techniques based on the classical Malliavin calculus.
This approach is not directly possible in our framework because of the singularities that appear in the
problem. We will use similar but ultimately different techniques below.
Corollary 1.2 and Theorem 1.3 are the main contributions of our paper. The drawback of our approach
is that it applies only to ”very hard potentials” (s > 9 for (1.11) respectively s > 30 for (1.13) and
(1.14)). Moreover, the exponent η in the polynomial blow-up t−η is not expected to be optimal.
The proofs are based on a ”balance argument” which is interesting in itself, and may be useful in
other settings. We summarize it below.
Consider a family of random variables Fε ∼ fε(v)dv, ε > 0 and a random variable F. Suppose that
Fε − F → 0 and fε ↑ ∞ as ε → 0, in a certain sense. If the convergence to zero is sufficiently faster
then the blow-up of fε, then one is able to prove that the law of F has a density and to obtain some
regularity of the density. This idea first appears in [18] and has been used ever since in several papers
(see [12] for example). In these papers the ”balance” between the speed of convergence to zero and
the blow-up is built by using Fourier analysis. Later on, in [11] the authors introduced a new method
based on a Besov space criterion, which turns out to be significantly more powerful then the one based
on Fourier analysis. This is the method used in [16] in the case of the three dimensional Boltzmann
equation (see also [10]). Finally, in [2], a third method which is close to interpolation theory was
introduced.
The criterion that we use in the present paper is an improvement of the latter method: we give an
abstract framework in which an integration by parts formula can be applied and we quantify the
blow-up of fε in terms of the weights appearing in the corresponding integration by parts formula.
Let us be more precise.
Consider a family of random variables Fε with values in Rd and Gε with values in [0, 1], ε > 0. Associate
to them the measures µε given by ∫

ϕdµε = E(ϕ(Fε)Gε).

The random variables Gε play a technical role, and will be used in some localization procedure.
We assume that for every ε > 0 and every multi-index α one may find a random variable Hα,ε such
that the following integration by parts formula holds:

E(∂αϕ(Fε)Gε) = E(ϕ(Fε)Hα,ε) ∀ϕ ∈ C∞
b (Rd). (1.15)

Here α = (α1, ..., αm) ∈ {1, ..., d}m , is a multi-index of length |α| = m and ∂α is the derivative
associated to α.
Additionally, we assume that Hα,ε may be chosen such that, for every q ∈ N and p > 1, there exist

some constants Ĥq,p and a, b, ε∗ ≥ 0 such that for every 0 < ε < ε∗

sup
|α|≤q

‖Hα,ε‖p ≤ Ĥq,pε
−b(q+a). (1.16)

In particular this implies that µε(dv) = fε(v)dv with fε ∈ C∞(Rd).
Moreover, we consider a random variable F ∈ Rd and we assume that there exists β > 0 and C∗ ≥ 1
such that

‖Gε − 1‖2 + ‖Fε − F‖1 ≤ C∗ε
β . (1.17)

Finally we consider a function Φ : Rd → R+ which belongs to C∞(Rd), is convex and there exists
C ≥ 1 such that Φ(x) ≥ 1

CΦ(y) if |x| ≥ |y| . Moreover we assume that for each h ∈ N and for each
multi-index α there exist some constants c1, c2 (depending on h and α) such that

(1 + |x|)h(1 + |∂αΦ(x)|) ≤ c1Φ
c2(x). (1.18)
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The typical examples are Φ(x) = (1+ |x|2)r and Φλ defined in (1.3). We denote by C the class of these
functions and for Φ ∈ C and θ ≥ 0 we denote

Cθ(Φ) = E(Φθ(F )) + sup
ε>0

E(Φθ(Fε)). (1.19)

Our criteria are the following:

Theorem 1.4 A. Let F ∈ Rd be a random variable. Suppose that one is able to find a family Fε ∈ Rd

and Gε ∈ R, ε > 0 which verify (1.15), (1.16) and (1.17). Fix q ∈ N and p > 1 and assume that (recall
that p∗ is the conjugate of p)

β > b(1 + q +
d

p∗
). (1.20)

Then P (F ∈ dx) = f(x)dx with f ∈W q,p(Rd).
B. Consider a function Φ ∈ C such that Cθ(Φ) < ∞ for every θ > 0. Let q ∈ N and p > 1, δ > 0 be
given. Assume that (1.20) holds. There exist some constants C ≥ 1,θ ≥ 1 and h∗ ≥ 1 (depending on
q, d, β, b, p and δ) such that for h ≥ h∗ one has

‖Φf‖q,p ≤ ΓΦ,θ(q, h, p) with (1.21)

ΓΦ,θ(q, h, p) := C × (C∗ + Cθ(Φ))×
(
h2bĤ

1/2h
2h+q+d,p∗

)(1+δ)(1+q+d/p∗)
(1.22)

with C∗ given in (1.17), Ĥ2h+q+d,p∗ given in (1.16) and Cθ(Φ) given in (1.19).
C. Suppose that (1.20) holds for q = 1 and p > d. Then f ∈ C0,χ(Rd) with χ = 1− d

p and we have

|f(x)| ≤ 1

Φ(x)
× ‖Φf‖1,p ≤

1

Φ(x)
× ΓΦ,θ(1, h, p). (1.23)

Moreover, let
∇̂Φ(x) = sup

|x−y|≤1
|∇Φ(y)| . (1.24)

For every x, y ∈ Rd with |x− y| ≤ 1

|f(y)− f(x)| ≤ 1

Φ(x)
(1 +

∇̂Φ(x)

Φ(x)
)× ‖Φf‖1,p × |x− y|χ (1.25)

≤ 1

Φ(x)
(1 +

∇̂Φ(x)

Φ(x)
)× ΓΦ,θ(1, h, p) × |x− y|χ . (1.26)

Remark 1.5 The constants in the previous theorem depend on Φ by means of the constants c1 and
c2 which appear in the property (1.18).

Remark 1.6 The estimates in the point C in the above theorem are quite precise and this is important
in order to prove Theorem 1.3. But, roughly speaking, (1.23) reads

|f(x)| ≤ C

Φ(x)
× (E(Φθ(F )) + sup

ε>0
E(Φθ(Fε))).

The constant C depends on h∗, Ĥ
1/2h
2h∗+1+d,p∗

, β, C∗, d and p. This version is less precise but focus on

the following basic fact: if one is able to estimate the moments E(Φθ(F )) and E(Φθ(Fε)) then one
obtains the upper bound of f by Φ−1(x). This means that one is able to translate moment estimates
in terms of upper bounds for the density function.
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Let us try to give the heuristic which is behind the above criterion. Suppose for simplicity that we are
in dimension d = 1 and that F itself satisfies the integration by parts formula (1.15) (with G = 1).
We formally write

fF (x) = E(δ0(F − x)) = E(1′[0,∞)(F − x)) = E(1[0,∞)(F − x)H1).

Using regularization by convolution the above reasoning may be done rigorously and it proves that
P (F ∈ dx) = fF (x)dx. Let us now compute the upper bounds. Take for example Φ(x) = e|x|. Then,
using Schwarz’s inequality first and Chebishev’s inequality then

fF (x) ≤ P 1/2(F ≥ x) ‖H1‖2 = P 1/2(e|F | ≥ e|x|) ‖H1‖2 ≤ e−
1
2
|x|E(e|F |)1/2 ‖H1‖2

so we obtain an estimate of type (1.23).
The classical probabilistic way to obtain integration by parts formulas of type (1.15) is to use Malliavin
calculus - our approach is strongly inspired from this methodology, but however, at a certain point,
takes a completely different direction. Malliavin calculus is an infinite differential calculus settled
in the following way. One considers a class of ”simple functionals” which are ”finite dimensional”
objects. For them one defines a derivative operator D and a divergence operator L using the classical
differential operators in finite dimension. Then one defines the extension of these operators in infinite
dimension: a general functional F is in the domain of D (respectively of L) if one may find a sequence
of simple functionals Fε such that Fε → F in L2 and DFε → U in L2 (respectively LFε → V ). Then
one defines DF = limε→0DFε respectively LF = limε→0 LFε. These operators are used in order to
built the weight H1 in the integration by parts formula E(ϕ′(F )) = E(ϕ(F )H1). In our approach we
also settle a finite dimensional calculus as above so we define DFε and LFε for a finite dimensional Fε

and we use them in order to obtain E(ϕ′(Fε)) = E(ϕ(Fε)H1,ε) (see Section 5). But in our framework
LFε ↑ ∞ (see Remark 5.1 for more details) so F is no more in the domain of L. So the second step
in Malliavin’s methodology brakes down: there is no infinite dimensional calculus available here. And
we have H1,ε ↑ ∞. But, if we are able to obtain the estimates given in (1.16) and in (1.17) and if
the equilibrium condition (1.20) is verified, then we still obtain the regularity of the law of F and the
upper bound for its density. This is the object of Theorem 1.4 . The ideas of this criterion origin in
[2] and the proof is given in Section 4.
In the years 80′th starting with the papers [8], [24] and [7] a version of Malliavin calculus for Poisson
point measures has been developed and successfully used in order to study the regularity of the
solutions of SDE′s with jumps (see also [22] and [9] and the references there for recent developments
in this area). In the above papers the extension form the finite dimensional calculus to the infinite
dimensional one is successfully done and the limit limε→0 LFε = LF exists. Although the finite
dimensional calculus developed in our paper is similar, in our framework LFε blows up as ε → 0.
This is because the law of the jumps in Boltzmann equation (and more generally in the framework of
Piecewise Deterministic Markov Processes) depends on the position of the particle before the jump
while for usual SDE′s, the law of the jumps is independent of the position of the particle (see Section
5 for details).
The proof of Theorem 1.1 is based on the criterion given in Theorem 1.4. In order to do it, following
Tanaka [26], we introduce a stochastic equation which represents the probabilistic representation of
the Boltzmann equation and we construct some regularized version of this equation. The solutions
of these equations play the role of F and of Fε in Theorem 1.4. Then we recall two results from [5]:
the first one permits to estimate the error in (1.17) and the second one gives the integration by parts
formula (1.15) and the estimates in (1.16).
The paper is organized as follows: in Section 2 we recall the results from [5] and in Section 3 we prove
Theorem 1.1, Corollary 1.2 and Theorem 1.3 (starting from the general criterion given in Theorem
1.4). In Section 4 we prove Theorem 1.4. In Section 5 we give an overview of the results from [5] and
we precise the changes which are necessary in order to obtain an explicit expression for the dependence
with respect to t of the constants in the main estimates.
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2 Preliminary results

In this section we present some results from [5]. Throughout this section we fix ν ∈ [0, 12), γ ∈ [0, 1]
and λ ∈ (γ, 2) and the corresponding solution ft(dv) of (1.1) (which exists and is unique). In [5]
(following the ideas from [26]) one gives the probabilistic interpretation of the equation (1.1). We
recall this now. Let E = [−π

2 ,
π
2 ]×R2 and let N(dt, dθ, dv, du) be a Poisson point measure on E×R+

with intensity measure dt× b(θ)dθ × ft(dv)× du. Consider also the matrix

A(θ) =
1

2

(
cos θ − 1 − sin θ
sin θ cos θ − 1

)
=

1

2
(Rθ − I).

We are interested in the equation

Vt = V0 +

∫ t

0

∫

E×R+

A(θ)(Vs− − v)1{u≤|Vs−−v|γ}N(ds, dθ, dv, du) (2.1)

with P (V0 ∈ dv) = f0(dv). Proposition 2.1 in [5] asserts that the equation (2.1) has a unique càdlàg
solution (Vt)t≥0 and P (Vt ∈ dv) = ft(dv) (in this sense Vt represents the probabilistic representation
for ft).
In order to handle the equation (2.1) we face several difficulties: the derivatives of the function
w → |w − v|γ blow up in the neighborhood of v - so we have to use a regularization procedure.
Moreover, this function is unbounded and so we use a truncation argument. Finally, the measure
θ−(1+ν)dθ has infinite mass, and it is convenient to use a truncation argument also. We follow here
the ideas and results from [5]. We fix

η0 ∈ (
1

λ
,

1

γ ∨ ν ) and Γε = (ln
1

ε
)η0 . (2.2)

Since γη0 > 1 we have, for every C ≥ 1 and a > 0

lim
ε→0

εaeCΓγ
ε = 0. (2.3)

So eCΓγ
ε ≤ ε−a for sufficiently small ε. Moreover, if κ > 0 is such that κη0 > 1, then for every A ≥ 1

lim
ε→0

ε−Ae−Γκ
ε = 0. (2.4)

So e−Γκ
ε ≤ εA for sufficiently small ε.

We construct the following approximation. We consider a C∞ even non negative function χ supported
by [−1, 1] and such that

∫
R χ(x)dx = 1 and we define

ϕε(x) =

∫

R
((y ∨ 2ε) ∧ Γε)

χ((x− y)/ε)

ε
dy. (2.5)

Observe that we have 2ε ≤ ϕε(x) ≤ Γε for every x ∈ R, ϕε(x) = x for x ∈ (3ε,Γε − 1), ϕε(x) = 2ε for
x ∈ (0, ε) and ϕε(x) = Γε for x ∈ (Γε,∞). To the cut off function ϕε one associates the equation

V ε
t = V0 +

∫ t

0

∫

E×R+

A(θ)(V ε
s− − v)1{u≤ϕγ

ε (|V ε
s−−v|)}N(ds, dθ, dv, du). (2.6)

We construct a second approximation: for ζ > 0 we consider a smooth cut-off function Iζ which is a
smooth version of 1{|θ|>ζ} (the precise definition is given in (5.2)) and we associate the equation

V ε,ζ
t = V0 +

∫ t

0

∫

E×R+

A(θ)(V ε,ζ
s− − v)1

{u≤ϕγ
ε (

∣

∣

∣
V ε,ζ
s− −v

∣

∣

∣
)}
Iζ(θ)N(ds, dθ, dv, du). (2.7)
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We state now a property which will be used in the following: given α ∈ [0, 2] and κ ≥ 0 there exists
K ≥ 1 such that for every w ∈ R2, t0 > 0 and every 0 < ε < 1

(Aα,κ) sup
t0≤t≤T

ft(Ball(w, ε)) ≤
K

tκ0
εα. (2.8)

Since ft(dv) is a probability measure, this property is always verified with K = 1, α = 0 and κ = 0.
In Proposition 2.1 from [5] one proves that the equations (2.6) and (2.7) have a unique solution and

E
∣∣∣V ε,ζ

t − V ε
t

∣∣∣ ≤ CT e
CΓγ

ε × ζ1−ν × t ∀t ≤ T. (2.9)

Moreover, if (Aα,κ) holds, then

E |Vt − V ε
t | ≤ CT e

CΓγ
ε × ε1+γ+α × t1−κ ∀t ≤ T. (2.10)

We stress that in [5] the explicit dependence on the time t does not appear in the right hand side
of the above estimates - but a quick glance to the proof shows that we have the dependence on t as
in (2.9) and in (2.10) ( this is important if we look to short time behavior). Moreover, in the same
proposition one proves that for every 0 < λ′ < λ there exists some ε0 > 0 such that

sup
ε≤ε0

sup
ζ≤1

E(sup
t≤T

(e|Vt|
λ′

+ e|V
ε
t |λ

′

+ e

∣

∣

∣
V ζ,ε
t

∣

∣

∣

λ′

) =: C(λ′) <∞. (2.11)

Finally in Theorem 4.1 in [5] one proves an integration by parts formula that we present now. One

defines (see (4.1) and (4.2) in [5]) a random process Gε,ζ
t which verifies

1
{sups≤t

∣

∣

∣

V ζ,ε
s

∣

∣

∣

≤Γε−1}
≤ Gε,ζ

t ≤ 1
{sups≤t

∣

∣

∣

V ζ,ε
s

∣

∣

∣

≤Γε}
. (2.12)

The precise form of Gε,ζ
t is not important here - the only property which we need is (2.12). Moreover,

since the law of V ε,ζ
t is not absolutely continuous we use the following regularization procedure. One

considers a two dimensional standard normal random variable Z and denotes

F ε,ζ
t =

√
uζ(t)Z + V ε,ζ

t with uζ(t) = tζ4+ν. (2.13)

Then one proves (see (4.3) and (4.4) in [5]) that for every multi-index β ∈ {1, 2}q there exists a random

variable Kβ(F
ε,ζ
t , Gε,ζ

t ) such that for every function ψ ∈ Cq(R2)

E(∂βψ(F ε,ζ
t )Gε,ζ

t ) = E(ψ(F ε,ζ
t )Kβ(F

ε,ζ
t , Gε,ζ

t )). (2.14)

One also proves that for every q ∈ N and every κ ∈ ( 1
η0
, λ) one may find a constant C (depending on

q and κ only) such that for every p ≥ 1

∥∥∥Kβ(F
ε,ζ
t , Gε,ζ

t )
∥∥∥
p
≤ C

t
2+ν
ν

(12q−4)
eCΓγ

ε (ε−qζ−νq + e−Γκ
ε ζ−2νq). (2.15)

In particular this gives for every function ψ ∈ Cq(R2) and every multi-index β ∈ {1, 2}q
∣∣∣E(∂βψ(F ε,ζ

t )Gε,ζ
t )

∣∣∣ ≤ C

t
2+ν
ν

(12q−4)
eCΓγ

ε (ε−qζ−νq + e−Γκ
ε ζ−2νq)× ‖ψ‖∞ . (2.16)

The proof of (2.14) and (2.15) is based on a Malliavin type calculus for jump processes and is quit
technical. In Section 5 we give an overview of the objects which come on in this proof and on the
main estimates which are needed. In particular we mention that in Theorem 4.1 in [5] the dependence
with respect to t in the right hand side of (2.15) is not explicit - at the end of Section 5 we precise
this dependence (see (5.15)).
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3 Proof of Theorem 1.1

In the following we adapt the results presented in the previous section to our specific goals. Recall
that the parameters ν ∈ [0, 12 ), γ ∈ [0, 1] and λ ∈ (γ, 2) are given and characterizes the unique solution
ft(dv) of (1.1). Suppose that (Aα,κ) (see (2.8)) holds for some α ≥ 0 and κ ≥ 0. In order to equilibrate
the errors in (2.9) and (2.10) we take

ζ = ζα(ε) = ε(1+γ+α)/(1−ν).

With this choice, for every c > 0, we may find C ≥ 1 (depending on c, see ((2.3)) such that

E(
∣∣∣Vt − V

ε,ζα(ε)
t

∣∣∣) ≤ C

tκ−1
× eCΓγ

ε × ε1+γ+α ≤ C

tκ−1
ε1+γ+α−c. (3.1)

Recall that η0 is given in (2.2) and λη0 > 1. So we may choose (and fix) some λ′ ∈ ( 1
η0
, λ). We work

with the function Φλ′ given in (1.3) and we define

gt(dv) = Φλ′(v)ft(dv).

Moreover, for ε > 0, we recall that F ε,ζ
t and Gε,ζ

t are given in (2.13) and (2.12), and we define f ε,αt (dv)
and gε,αt (dv) by

∫
ψ(v)f ε,αt (dv) = E(ψ(F

ε,ζα(ε)
t )G

ε,ζα(ε)
t ), gε,αt (dv) = Φλ′(v)f ε,αt (dv).

In (1.4) we introduced the function ϕ. Notice that ϕ solves the equation

1 + γ + α− (1 + ϕ(α))
1 + ν(γ + α)

1− ν
= 0. (3.2)

We construct the sequences

αk+1 = ϕ(αk), κk+1 = κk − 1 +
13(2 + ν)

ν
(1 + αk+1) (3.3)

with α0 = 0 and κ0 = 0. Direct computation shows that ϕ′(α) > 0 for every α, so ϕ is strictly
increasing. We will assume in the following that α1 = ϕ(0) > 0 = α0 and this implies αk+1 > αk for
every k. It follows that αk ↑ α∗ solution of ϕ(α∗) = α∗ (see (3.11) for the explicit value of α∗). Notice
also that α1 = ϕ(0) > 0 is equivalent with ν < γ

2γ+1 and ϕ(2) > 2 is equivalent with ν < γ
4γ+9 .

We know that (A0,0) holds. Our aim now is to employ Theorem 1.4 in order to obtain (Aα,κ) for α as
large as possible.

Lemma 3.1 A. Let q ∈ N, α ∈ [0, 2] and κ ≥ 0 be given. Suppose that (Aα,κ) holds with ϕ(α) > q,
and take p > 1 such that

q +
2

p∗
< ϕ(α). (3.4)

Then ft(dv) = ft(v)dv with ft ∈W q,p. Moreover, for every λ′ < λ there exists C ≥ 1 such that

‖Φλ′ft‖q,p ≤
C

tκ−1+
13(2+ν)

ν
(1+ϕ(α))

. (3.5)

B Suppose that (Aα,κ) holds and ϕ(α) > 0. Then (Aα′,κ′) holds for every α′ < ϕ(α) ∧ 2 with

κ′ = κ− 1 +
13(2 + ν)

ν
(1 + ϕ(α)). (3.6)
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C. Let αk, κk, k ∈ N be the sequences defined in (3.3). Suppose that ϕ(0) > 0. Then, for each k ∈ N∗

the property (Aα,κk
) holds for every α < αk ∧ 2.

D. Suppose that ϕ(0) > 0. Let k, q ∈ N and p > 1 be such that

q +
2

p∗
< ϕ(αk ∧ 2) = αk+1 ∧ ϕ(2). (3.7)

Then

‖Φλ′ft‖q,p ≤
C

tκk+1
. (3.8)

Proof of A. We will use Theorem 1.4 with d = 2, and Fε = F
ε,ζα(ε)
t , Gε = G

ε,ζα(ε)
t . So we verify the

hypothesis there.

Step 1. By (2.14) we know that the integration by parts formula (1.15) holds withHβ,ε = Kβ(F
ε,ζα(ε)
t , G

ε,ζα(ε)
t ).

By (2.15) we obtain for every κ ∈ ( 1
η0
, λ) (with ζ = ζα(ε))

sup
|β|≤q

‖Hβ,ε‖p ≤
C

t
2+ν
ν

(12q−4)
eCΓγ

ε (ε−qζ−νq + e−Γκ
ε ζ−2νq).

We use (2.3) and (2.4) in order to obtain

eCΓγ
ε (ε−qζ−νq + e−Γκ

ε ζ−2νq) ≤ Cε−c((εζν)−q + εAε−2νq(1+γ+α)/(1−ν))

for every c > 0 and A ≥ 1. Notice that εζνα(ε) = ε(1+ν(q+α))/(1−ν) . Taking A ≥ 2νq(1 + γ + α)/(1− ν)
we obtain

sup
|β|≤q

‖Hβ,ε‖p ≤
C

t
2+ν
ν

(12q−4)
× ε−q× 1+ν(γ+α)

1−ν
−c

and this means that (1.16) is verified with

Ĥq,p =
C

t
2+ν
ν

(12q−4)
, b =

1 + ν(γ + α)

1− ν
, a =

c

b
.

Let δ > 0. Taking h sufficiently large we have 1
2h(12(2h + q + 2)− 4) ≤ 12(1 + δ) so that

Ĥ
1/2h
2h+q+2,p ≤

C

t
2+ν
ν

×12(1+δ)
. (3.9)

Step 2. Let us verify (1.17). Using (2.12) and (2.11)

∥∥∥1−G
ε,ζα(ε)
t

∥∥∥
2
≤ P 1/2(sup

s≤t

∣∣∣V ε,ζα(ε)
s

∣∣∣ ≥ Γε)

≤ Ce−
1
2
Γλ′
ε (E(sup

s≤t
e

∣

∣

∣
V

ε,ζα(ε)
s

∣

∣

∣

λ′

))1/2 ≤ Ce−
1
2
Γλ′
ε ≤ CεA.

The last inequality is true for any A ≥ 1. It is a consequence of λ′η0 > 1 and of (2.4).

Recall that F
ε,ζα(ε)
t is defined in (2.13). We have

E(
∣∣∣V ε,ζα(ε)

t − F
ε,ζα(ε)
t

∣∣∣) ≤ Cζ
4+ν
2

α (ε) = Cε
(1+γ+α) 4+ν

2(1−ν) ≤ Cε1+γ+α.

Then, as a consequence of (3.1), for every c > 0 we obtain

E(
∣∣∣Vt − F

ε,ζα(ε)
t

∣∣∣) ≤ C

tκ−1
ε1+γ+α−c.
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We conclude that (1.17) holds with

C∗ =
C

tκ−1
, β = 1 + γ + α− c. (3.10)

Step 3. Now (3.4) ensures that, for sufficiently small c > 0,

β − b(1 + q +
2

p∗
) = 1 + γ + α− c− (1 + q +

2

p∗
)
1 + ν(γ + α)

1− ν

> 1 + γ + α− (1 + ϕ(α))
1 + ν(γ + α)

1− ν
= 0

the last equality being a consequence of (3.2) (this is the motivation of choosing ϕ to be the solution
of this equation).
So (1.20) holds (with d = 2) and we are able to use Theorem 1.4. Notice that for every θ ≥ 1 and
every λ′ < λ′′ one may find C such that Φθ

λ′ ≤ CΦλ′′ . So (2.11) gives Cθ(Φ) < ∞ (see (1.19) for the
definition of Cθ(Φ)). By (1.21)

‖Φλ′ft‖q,p ≤ C × (C∗ + Cθ(Φ))×
(
h2bĤ

1/2h
2h+q+d,p∗

)(1+δ)(1+q+2/p∗)
.

We denote C ′ = Cθ(Φ)× h2b(1+δ)(1+q+2/p∗). Then, using (3.10) and (3.9)

‖Φλ′ft‖q,p ≤
C

tκ−1+ 2+ν
ν

×12(1+q+2/p∗)(1+δ)2

≤ C

tκ−1+ 2+ν
ν

×12(1+ϕ(α))(1+δ)2
.

We take δ > 0 sufficiently small so that 12(1 + δ)2 ≤ 13 and A is proved.
Proof of B. We use A with q = 0. Let 0 < α′ < ϕ(α) ∧ 2. Since α′ < 2 we may find p > 1 such that
2
p∗

= α′ < ϕ(α), so (3.4) holds for this p. By(3.5) ‖ft‖p ≤ ‖Φλ′ft‖p ≤ Ct−κ′
with κ′ given in (3.6).

Using Hölder’s inequality we get (Aα′,κ′) :

ft(Ball(w, ε)) ≤ ‖ft‖p × ε2/p∗ ≤ Ct−κ′ × εα
′
.

Proof of C. Take first k = 1. We know that (A0,0) holds, and by hypothesis, ϕ(0) > 0. Then,

according to B, (Aα′,κ′) holds for every α′ < ϕ(0)∧2 = α1∧2 with κ′ = 0−1+ 13(2+ν)
ν (1+ϕ(0)) = κ1.

So our assertion holds for k = 1.
Suppose now that the property is true for k and let us check it for k + 1. Suppose first that αk > 2.
Then αk+1 > αk > 2. By the recurrence hypothesis, for α < 2 = αk ∧ 2 = αk+1 ∧ 2 the hypothesis
(Aα,κk

) holds. Since κk+1 > κk,the hypothesis (Aα,κk+1
) holds as well.

Suppose now that αk ≤ 2 and take α′ < αk+1 ∧ 2 = ϕ(αk) ∧ 2. Since ϕ(α) ↑ ϕ(αk) as α ↑ αk, we may
find α < αk = αk ∧ 2 such that α′ < ϕ(α) ∧ 2. By the recurrence hypothesis we know that (Aα,κk

)
holds and then, using B, we obtain (Aα′,κk+1

).
D. By (3.7) we may find α < αk ∧ 2 such that q+ 2

p∗
< ϕ(α). By C we know that (Aα,κk

) holds. Then
we may use A and (3.5) gives (3.8). �
Proof of Theorem 1.1. We will work with the sequences αk and κk given in (3.3). Recall that
αk ↑ α∗ with α∗ = ϕ(α∗). Direct computation give

α∗ =
−(γ + 2) +

√
(γ + 2)2 + 4(γν − 2γ − 1)

2
(3.11)
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and

α∗ > 0 ⇔ ν <
γ

2γ + 1

α∗ > 1 ⇔ ν <
γ

3γ + 4

α∗ > 2 ⇔ ν <
γ

4γ + 9
.

If ν < γ
2γ+1 then ϕ(0) > 0 so we may use the point A in Lemma 3.1 with q = 0. We obtain

ft(dv) = ft(v)dv so the point A in Theorem 1.1 is proved.
Proof of B.b. If γ

4γ+9 < ν < γ
2γ+1 we have α∗ ≤ 2 so that αk < 2 for every k ∈ N. If p < 2

2−α∗
then

2
p∗
< α∗ so we may find k such that 2

p∗
< αk+1 < 2. Using the point D in Lemma 3.1 (with q = 0) we

obtain Φλ′ft ∈ Lp(R2).
Proof of C.b. If γ

4γ+9 < ν < γ
3γ+4 we have α∗ ∈ (1, 2] so that 1 < 2

3−α∗
. We take 1 < p < 2

3−α∗
and

then 1 + 2
p∗
< α∗. We take k sufficiently large in order to have 1 + 2

p∗
< αk+1 and then, as above, by

D in Lemma 3.1, we obtain Φλ′ft ∈W 1,p(R2).
Proof of B a If ν < γ

4γ+9 then α∗ > 2. Recall that αk ↑ α∗ and define k∗ = min{k : αk ≥ 2}. By C

in Lemma 3.1, for every α < 2 the property (Aα,κk∗
) holds. We denote ψ(α) = ϕ(α)− α. Notice that

ψ is decreasing on (0, 2). For k < k∗ we have αk < 2 = αk∗ ∧ 2 so that ψ(2) < ψ(αk) = αk+1 − αk. It
follows that

2 > αk∗−1 =

k∗−2∑

k=0

(αk+1 − αk) > (k∗ − 1)ψ(2)

which gives k∗ − 1 ≤ 2/ψ(2) and so k∗ + 1 ≤ 2(ϕ(2) − 1)/(ϕ(2) − 2). Since αk ≤ α∗ = ϕ(α∗) we have
for every k (see (3.3))

κk ≤ κk−1 +
13(2 + ν)

ν
(1 + ϕ(α∗))− 1 ≤ .... ≤ k(

13(2 + ν)

ν
(1 + α∗)− 1).

This yields

κk∗+1 ≤ (k∗ + 1)× (
13(2 + ν)

ν
(1 + α∗)− 1) ≤ 2(ϕ(2) − 1)

ϕ(2) − 2

(
13(1 + α∗)(2 + ν)

ν
− 1

)
= η

with η given in (1.5).
We use now the point D in Lemma 3.1 with q = 0. Recall that ϕ(2) > 2 (see (1.7)) Since ϕ(αk∗ ∧ 2) =
ϕ(2) > 2 > 2

p∗
for every p > 1, we obtain gt ∈ ∩p>1L

p(R2). Moreover, taking k = k∗ in (3.8) we get

‖gt‖p ≤
C

tκk∗+1
≤ C

tη
.

Proof of C.a. If q ∈ {1, 2}, we need 2
p∗

< ϕ(2) − q. This gives p < 2/(q + 2 − ϕ(2)) = pq with
pq, q = 1, 2 given in (1.9). And using (3.8) we obtain

‖gt‖q,p ≤
C

tκk∗+1
≤ C

tη
for p < pq.

�

Proof of Corollary 1.2 Recall that ν < γ
2γ+1 is equivalent with ϕ(0) > 0. So we may find p > 1 such

that 2
p∗
< ϕ(0). Using D in Lemma 3.1 with q = 0 and k = 0 we obtain ‖Φλ′ft‖p ≤ C

tκ1 with κ1 given
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in (3.3) (which coincides with κ defined in (1.12)) Then

ft(B
c
R(0)) =

∫
1Bc

R(0)(v)Φ
−1
λ′ (v)Φλ′(v)ft(v)dv

≤ (

∫
1Bc

R
(0)(v)e

−p∗|v|
λ′

dv)1/p∗ ‖Φλ′ft‖p

≤ e−
1
2
Rλ′

(

∫
1Bc

R(0)(v)e
− p∗

2
|v|λ

′

dv)1/p∗
C

tκ

≤ C

tκ
e−

1
2
Rλ′

.

�

Proof of Theorem 1.3. Since ν < γ
4γ+9 we may use C.a in Theorem 1.1 with q = 1 and we obtain

‖Φλ′f‖1,p ≤ Ct−η for every p < p1 (with p1 given in (1.9) and η given in (1.5)). Notice also that we
have p1 > 2 so we may use the point C in Theorem 1.4: (1.23) gives (1.13). Notice also that if λ′ < λ′′

then ∇̂Φλ′(x) ≤ CΦλ′′(x). So (1.25) gives (1.14). �

4 Appendix: A regularity criterion based on interpolation

Let us first recall some results obtained in [2] concerning the regularity of a measure µ on Rd. Fix
k, q, h ∈ N, with h ≥ 1, and p > 1 (we denote by p∗ the conjugate of p). For f ∈ C∞(Rd) we define

‖f‖k,∞ =
∑

0≤|α|≤k

sup
x∈Rd

|∂αf(x)| , (4.1)

‖f‖k,h,p =
∑

0≤|α|≤k

(E(

∫

Rd

(1 + |x|)h |∂αf(x)|p dx))1/p (4.2)

‖f‖k,p = ‖f‖k,0,p =
∑

0≤|α|≤k

‖∂αf‖p . (4.3)

Here α = (α1, ..., αm) ∈ {1, ..., d}m , is a multi-index of length |α| = m and ∂α is the derivative
associated to α. Moreover for two measures µ, ν we consider the distance

dk(µ, ν) = sup{
∣∣∣∣
∫
fdµ−

∫
fdν

∣∣∣∣ : ‖f‖k,∞ ≤ 1}. (4.4)

For k = 0 this is the total variation distance and for k = 1 this is the Fortèt Mourier distance.
For a finite measure µ and for a sequence of absolutely continuous finite measures µn(dx) = fn(x)dx
with fn ∈ C2h+q(Rd), we define

πk,q,h,p(µ, (µn)n) =

∞∑

n=0

2n(k+q+d/p∗)dk(µ, µn) +

∞∑

n=0

1

22nh
‖fn‖2h+q,2h,p (4.5)

and
πk,q,h,p(µ) = inf{πk,q,h,p(µ, (µn)n) : µn(dx) = fn(x)dx, fn ∈ C2h+q(Rd)}.

Remark 4.1 Notice that πk,q,h,p is a particular case of πk,q,h,e treated in [2]: just choose the Young
function e(x) ≡ ep(x) = |x|p (see Example 1 in [2]). Moreover, πk,q,h,p is strongly related to interpo-

lation spaces. More precisely, πk,q,h,p is equivalent with the interpolation norm of order ρ = k+q+d/p∗
2h

between the spaces W k,∞
∗ (the dual of W k,∞) and W 2h+q,2h,p = {f : ‖f‖2h+q,2h,p < ∞} (see [6] for

example). This is proved in [2], see Section 2.4 and Appendix B. So the inequality (4.6) below implies
that the Sobolev space W q,p is included in the above interpolation space. However we prefer to stick to
an elementary framework and to derive directly the consequences of (4.6) - see Lemma 4.3 and Lemma
4.2 below.
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The following result is the key point in our approach:

Lemma 4.2 Let p > 1, k, q ∈ N and h ∈ N∗ = N′{0} be given. There exists a constant C∗ (depending
on k, q, h and p only) such that the following holds. Let µ be a finite measure for which πk,q,h,p(µ) is
finite. Then µ(dx) = f(x)dx with f ∈W q,p and

‖f‖q,p ≤ C∗ × πk,q,h,p(µ). (4.6)

This is Proposition 2.5 in [2] in the particular case e(x) = ep(x) = |x|p . See also Proposition 3.2.1 in
[3] . So we will not give here the proof. We will use the following consequence:

Lemma 4.3 Let p > 1, k, q ∈ N and h ∈ N∗ be given and set

ρh(q) :=
k + q + d/p∗

2h
. (4.7)

We consider an increasing sequence θ(n) ≥ 1, n ∈ N such that limn θ(n) = ∞ and θ(n+1) ≤ Θ× θ(n)
for some constant Θ ≥ 1. Moreover, we consider a sequence of measures µn(dx) = fn(x)dx with
fn ∈ C2h+q(Rd), n ∈ N such that

‖fn‖2h+q,2h,p ≤ θ(n). (4.8)

Let µ be a finite measure such that, for some η > 0,

lim sup
n

dk(µ, µn)× θρh(q)+η(n) <∞. (4.9)

Then µ(dx) = f(x)dx with f ∈W q,p.
Moreover, fix n∗ ∈ N, δ > 0 and η > 0 such that (4.9) holds. We set

A(δ) = |µ| (Rd)× 2l(δ)(1+δ)(q+k+d/p∗) with (4.10)

l(δ) = min{l ≥ 1 : 2l
′× δ

1+δ ≥ l′,∀l′ ≥ l} (4.11)

B(η) =

∞∑

l=1

l2(q+k+d/p∗+η)

22hηl
, (4.12)

Ch,n∗(η) = sup
n≥n∗

dk(µ, µn)× θρh(q)+η(n). (4.13)

Then
‖f‖q,p ≤ C∗(Θ +A(δ)θ(n∗)

ρh(q)(1+δ) +B(η)Ch,n∗(η)) (4.14)

with C∗ the constant in (4.6) and ρh(q) given in (4.7).

Proof of Lemma 4.3. We will produce a sequence of measures νl(dx) = gl(x)dx, l ∈ N such that

πk,q,h,p(µ, (νl)l) ≤ Θ+A(δ)θ(n∗)
ρh(q)(1+δ) +B(η)Ch,n∗(η) <∞.

Then by Lemma 4.2 one gets µ(dx) = f(x)dx with f ∈ W q,p, and (4.14) follows from (4.6)). Let us
stress that the νl’s will be given by a suitable subsequence µn(l), l ∈ N.
Step 1. We define

n(l) = min{n : θ(n) ≥ 22hl

l2
}

and we notice that
1

Θ
θ(n(l)) ≤ θ(n(l)− 1) <

22hl

l2
≤ θ(n(l)). (4.15)
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Moreover we recall that n∗ is given and we define

l∗ = min{l : 2
2hl

l2
≥ θ(n∗)}.

Since

θ(n(l∗)) ≥
22hl∗

l2∗
≥ θ(n∗)

it follows that n(l∗) ≥ n∗.
We take now ε(δ) = hδ

1+δ which gives 2h
2(h−ε(δ)) = 1+ δ. And we take l(δ) ≥ 1 such that 2lδ/(1+δ) ≥ l for

l ≥ l(δ) (see (4.11)). Since h ≥ 1 it follows that ε(δ) ≥ δ
1+δ so that, for l ≥ l(δ) we also have 2lε(δ) ≥ l.

Now we check that
22(h−ε(δ))l∗ ≤ 22hl(δ)θ(n∗). (4.16)

If l∗ ≤ l(δ) then the inequality is evident (recall that θ(n) ≥ 1 for every n). And if l∗ > l(δ) then
2l∗ε(δ) ≥ l∗. By the very definition of l∗ we have

22h(l∗−1)

(l∗ − 1)2
< θ(n∗)

so that
22hl∗ ≤ 22h(l∗ − 1)2θ(n∗) ≤ 22h × 22l∗ε(δ)θ(n∗)

and, since l(δ) ≥ 1, this gives (4.16).
Step 2. We define

νl = 0 if l < l∗

= µn(l) if l ≥ l∗

and we estimate πk,q,h,p(µ, (νl)l). First, by (4.8) and (4.15)

∞∑

l=l∗

1

22hl

∥∥fn(l)
∥∥
q+2h,2h,p

≤
∞∑

l=l∗

1

22hl
θ(n(l)) ≤ Θ

∞∑

l=l∗

1

l2
≤ Θ.

Then we write
∞∑

l=1

2(q+k+d/p∗)ldk(µ, νl) = S1 + S2

with

S1 =

l∗−1∑

l=1

2(q+k+d/p∗)ldk(µ, 0), S2 =
∞∑

l=l∗

2(q+k+d/p∗)ldk(µ, µn(l)).

Since dk(µ, 0) ≤ d0(µ, 0) ≤ |µ| (Rd) we use (4.16) and we obtain

S1 ≤ |µ| (Rd)× 2(q+k+d/p∗)l∗ = |µ| (Rd)× (22(h−ε(δ))l∗ )(q+k+d/p∗)/2(h−ε(δ))

≤ |µ| (Rd)× (22hl(δ)θ(n∗))
ρh(q)(1+δ) = A(δ)θ(n∗)

ρh(q)(1+δ).

If l ≥ l∗ then n(l) ≥ n(l∗) ≥ n∗ so that, using (4.13) first and (4.15) then, we obtain

dk(µ, µn(l)) ≤
Ch,n∗(η)

θρh(q)+η(n(l))
≤ Ch,n∗(η)

( l2

22hl

)ρh(q)+η
=

Ch,n∗(η)

2(q+k+d/p∗)l
× l2(ρh(q)+η)

22hηl
.

We conclude that

S2 ≤ Ch,n∗(η)

∞∑

l=l∗

l2(ρh(q)+η)

22ηhl
≤ Ch,n∗(η)×B(η).

�

We give now a consequence of the above result which is more readable.
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Proposition 4.4 Let q, k, d ∈ N and p > 1 be fixed. We consider a family of measures µε(dx) =
fε(x)dx, ε > 0 with fε ∈ C∞(Rd) and a finite measure µ on Rd which verify the following hypothesis.
There exists ε∗ > 0, β > 0, a ≥ 0, b ≥ 0, C0 ≥ 1 and Qh(q, p) ≥ 1 such that for every h ∈ N∗ and every
0 < ε < ε∗

i) dk(µε, µ) ≤ C0ε
β , (4.17)

ii) ‖fε‖2h+q,2h,p ≤ Qh(q, p)ε
−b(2h+q+a), (4.18)

iii) r := β − b(k + q + d/p∗) > 0. (4.19)

We denote

h∗ =
1

ε∗
∨ b(q + a)(k + q + d/p∗)

r
∨ q + a

2
. (4.20)

Then, µ(dx) = f(x)dx with f ∈ W q,p(Rd). Moreover, for every δ > 0, there exists a constant C ≥ 1,
depending on q, k, d, p, δ, β, r and a, b only (but which does not depend neither on h nor on C0), such
that for every h ≥ h∗ one has

‖f‖q,p ≤ C × C0 ×
(
h2bQ

1/2h
h (q, p)

)(1+δ)(k+q+d/p∗)
(4.21)

Proof. All over this proof C designs a constant which depends on q, k, d, p, δ, β, r and a, b only (we
stress that in particular it may depend on C∗ from (4.6)). We will use Lemma 4.3. We take

η =
r

2b(2h + q + a)
∧ (δρh(q)) (4.22)

with ρh(q) given in (4.7). For h ≥ h∗ one has ρh(q)b(q + a) ≤ r
2 , and, by definition, r = β − 2hρh(q)b.

Using also (4.22) we obtain

β − (ρh(q) + η)b(2h + q + a) = (β − 2hρh(q)b)− ρh(q)b(q + a)− ηb(2h + q + a)

≥ r − r

2
− r

2
= 0.

It follows that for every ε ≤ ε∗ we have

dk(µε, µ) ‖fε‖ρh(q)+η
2h+q,2h,p ≤ C0Q

ρh(q)+η
h (q, p)εβ−(ρh(q)+η)b(2h+q+a) ≤ C0Q

ρh(q)(1+δ)
h (q, p). (4.23)

We take now εn = 1
n and n∗ = h and we define

gn = 0 if n < n∗

= fεn if n ≥ n∗.

We will use Lemma 4.3 for νn(dx) = gn(x)dx so we have to identify the quantities defined there. We
define

θ(n) = Qh(q, p)n
b(2h+q+a) if n ≥ n∗,

θ(n) = θ(n∗) if n ≤ n∗.

By (4.18) we have ‖gn‖2h+q,2h,p ≤ θ(n) and moreover, for n ≥ n∗ = h, we have

θ(n+ 1)

θ(n)
= (1 +

1

n
)n×

b(2h+q+a)
n ≤ e2b+

b(q+a)
h ≤ e3b.
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We conclude that Θ ≤ e3b. We estimate now B(η) defined in (4.12). Noticed first that

1

ηh
=

2b(2h + q + a)

rh
∨ 2

δ(q + k + d/p∗)

≤ 6b

r
∨ 2

δ(q + k + d/p∗)
=: C1

so ηh ≥ 1/C1. Then

B(η) =
∞∑

l=1

l2(q+k+d/p∗+η)

22hηl
≤

∞∑

l=1

l2(q+k+d/p∗+η)

22l/C1
≤ C.

Moreover, since h ≥ 1
2(q + a) it follows that

ρh(q)(1 + δ)b(2h + q + a) ≤ 2(1 + δ)b(k + q + d/p∗)

and consequently (recall that n∗ = h)

θ(n∗)
ρh(q)(1+δ) = Q

ρh(q)(1+δ)
h (q, p)n

ρh(q)(1+δ)b(2h+q+a)
∗

≤ Q
ρh(q)(1+δ)
h (q, p)h2(1+δ)b(k+q+d/p∗).

Finally we notice that, by (4.23), the constant Ch,n∗(η) defined in (4.13) verifies

Ch,n∗(η) ≤ C0Q
ρh(q)(1+δ)
h (q, p).

As for A(δ) defined in (4.10), this is already a constant C (which does not depend on h and on C0).
Now we use (4.14) and we obtain

‖f‖q,p ≤ C(1 +Q
ρh(q)(1+δ)
h (q, p)h2b(1+δ)(k+q+d/p∗) + C0Q

ρh(q)(1+δ)
h (q, p))

which gives (4.21). �

4.1 Proof of Theorem 1.4

The aim of this section is to prove Theorem 1.4 so we consider the framework given there: we have
a family of random variables Fε and Gε, ε > 0 such that the integration by parts formula (1.15) and
the estimate (1.16) hold; we also have a random variable F such that the estimate (1.17) holds. We
define the measures µ and µε by

∫
φdµ = E(φ(F )) and

∫
φdµε = E(φ(Fε)Gε). (4.24)

As a consequence of (1.15) and of (1.16) we have µε(dx) = fε(x)dx with fε ∈ C∞(Rd).
We also consider a function Φ ∈ C (so in particular Φ verifies (1.18)). All these hypothesis are in force
in this section.
Moreover, for v ∈ Rd we construct the ”exterior rectangle” Av in the following way. For y ∈ R we
denote Iy = (y,∞) if y ≥ 0 and Iy = (−∞, y) if y < 0. And for v = (v1, ..., vd) we define

Av =
d∏

i=1

Ivi . (4.25)

We will first prove the following two Lemmas.
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Lemma 4.5 For every q, h ∈ N and p > 1 there exists some constants C and θ (depending on q, h, d
and p only) and ε∗ > 0 such that, for every ε ∈ (0, ε∗)

‖Φfε‖q,h,p ≤ C × Cθ(Φ)× Ĥq+d,p∗ × ε−b(q+d+a) (4.26)

with Cθ(Φ) given in (1.19) and Ĥq+d,p∗ given in (1.16).

Proof. We denote

Iq,h,p(Φ)(x) = sup
|β|≤q

∫

Rd

(1 + |v|)h
∣∣∣∂βΦ(v)

∣∣∣
p
1Av (x)dv.

By (1.15) (we use a formal computation which may be done rigorous by regularization by convolution)

∂α(Φfε)(v) =
∑

(β,γ)=α

∂βΦ(v)∂γfε(v) =
∑

(β,γ)=α

∂βΦ(v)E(∂γδ0(Fε − v)Gε)

=
∑

(β,γ)=α

∂βΦ(v)E(1Av (Fε)H(γ,1,...,d),ε).

Using Hölder’s inequality first and then (1.16)

|∂α(Φfε)(v)| ≤
∑

(β,γ)=α

∣∣∣∂βΦ(v)
∣∣∣P 1/p(Fε ∈ Av)

∥∥H(γ,1,...,d),ε

∥∥
p∗

≤
∑

|β|≤q

∣∣∣∂βΦ(v)
∣∣∣P 1/p(Fε ∈ Av)× Ĥq+d,p∗ε

−b(q+d+a).

This gives

‖Φfε‖q,h,p =
∑

|α|≤q

(

∫
(1 + |v|)h |∂α(Φfε)(v)|p dv)1/p

≤ CĤq+d,p∗ε
−b(q+d+a)

∑

|β|≤q

[

∫
(1 + |v|)h

∣∣∣∂βΦ(v)
∣∣∣
p
E(1Fε∈Av )dv]

1/p

= CĤq+d,p∗ε
−b(q+d+a)[E(Iq,h,p(Φ)(Fε))]

1/p.

By using (1.18) we may find some constants c1 and c2 such that for every γ with |γ| ≤ q

|∂γΦ(v)|p ≤ c1
(1 + |v|)h+d+1

|Φ(v)|c2p

so we get

E(Iq,h,p(Φ)(Fε)) ≤ c1E(

∫

Rd

(1 + |v|)−(d+1) |Φ(v)|c2p 1Av (Fε)dv).

If x ∈ Av then |v| ≤ |x| and since Φ ∈ C this implies Φ(v) ≤ CΦ(x). So the above term is upper
bounded by

CE(

∫

Rd

(1 + |v|)−(d+1) |Φ(Fε)|c2p 1Av(Fε)dv) ≤ CE(|Φ(Fε)|c2p) ≤ C × Cθ(Φ)

with θ = c2p. �

Lemma 4.6 We recall that by (1.17)

‖1−Gε‖2 + ‖F − Fε‖1 ≤ C∗ε
β . (4.27)

Then, for every δ > 0 there exists θ(δ) ≥ 1 and C ≥ 1 such that

d1(Φµε,Φµ) ≤ C(C∗ + Cθ(δ)(Φ)))ε
β(1−δ) (4.28)

with Cθ(Φ) defined in (1.19).
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Proof. Let φ with ‖φ‖1,∞ ≤ 1. We estimate first

|E((φΦ)(Fε)(1−Gε))| ≤ ‖φ‖∞ ‖Φ(Fε)‖2 ‖1−Gε‖2 ≤ C2(Φ)× C∗ε
β . (4.29)

Then we write

|E((φΦ)(Fε)− (φΦ)(F ))| ≤ E

∫ 1

0
|∇(φΦ)(λF + (1− λ)Fε)(F − Fε)| dλ. (4.30)

Using (1.18) and the fact that Φ is a convex function

|∇(φΦ)(λF + (1− λ)Fε)| ≤ c1 ‖φ‖1,∞ |Φ(λF + (1− λ)Fε)|c2

≤ C(λ |Φ(F )|c2 + (1− λ) |Φ(Fε)|c2).

It follows that the last term in (4.30) is upper bounded by

C(E(|Φ(F )|c1 |F − Fε|) + E(|Φ(Fε)|c1 |F − Fε|)).

We take K > 0 and we write

E(|Φ(Fε)|c1 |F − Fε|) = IK(Fε) + JK(Fε)

with
IK(Fε) = E(|Φ(Fε)|c1 |F − Fε| 1{|Φ(Fε)|

c1≤K}) ≤ KC∗ε
β

and

JK(Fε) = E(|Φ(Fε)|c1 |F − Fε| 1{|Φ(Fε)|
c1>K})

≤ (‖F‖2 + ‖Fε‖2)(E(|Φ(Fε)|2c1 1{|Φ(Fε)|
c1>K}))

1/2

≤ (‖F‖2 + ‖Fε‖2)
Kθ

(E(|Φ(Fε)|2c1(1+θ))1/2.

By (1.18) ‖F‖2 + ‖Fε‖2 ≤ C × C
1/2
c2 (Φ) so finally

JK(Fε) ≤
C

Kθ
Cc2∨2c1(1+θ)(Φ).

These estimates hold for every θ ≥ 1 and K > 0. In order to optimize we take K = ε−β/(1+θ) and we
obtain

IK(Fε) + JK(Fε) ≤ C × Cc2∨2c1(1+θ)(Φ)× εβ×
θ

1+θ .

A similar inequality holds with F instead of Fε, so, using (4.29) as well we obtain

|E((φΦ)(Fε)− (φΦ)(F ))| ≤ C(C∗ + Cc2∨2c1(1+θ)(Φ))× εβ×
θ

1+θ

Then, taking θ = (1− δ)/δ we get (4.28). �
We are now ready to give:
Proof of Theorem 1.4. We will use the Proposition 4.4 with k = 1 for the measures (Φµ)(dx) and
(Φµε)(dx) = Φ(x)fε(x)dx with µ and µε given in (4.24). By (1.20) we may find (and fix) δ > 0 such
that

b− δ > b(1 + q +
d

p∗
). (4.31)

By (4.28) we have
d1(Φµε,Φµ) ≤ C(C0 + Cθ(δ)(Φ)))ε

β(1−δ)
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so (4.17) holds with the constant C0 = C(C∗ + Cθ(δ)(Φ))). By (4.26)

‖Φfε‖2h+q,2h,p ≤ C × Cθ(Φ)× Ĥ2h+q+d,p∗ε
−b(2h+q+d+a).

So (4.18) holds with Qh(q, p) = CCθ(Φ)Ĥ2h+q+d,p∗. Notice that a from (4.18) is replaced by a′ = a+d.
This changes nothing except the value of h∗ (see (4.20)) which anyway, is not explicit in our statement.
As a consequence of (4.31) hypothesis (4.19) is verified so we are able to use Proposition 4.4 in order
to obtain (Φµ)(dx) = g(x)dx with g ∈ W q,p(Rd). It follows that µ(dx) = f(x)dx with f = g/Φ and
by (4.21) (the value of θ changes from a line to another and we use the inequality Cθ′

θ (Φ) ≤ Cθ×θ′(Φ))

‖Φf‖q,p ≤ C × (C∗ + Cθ(Φ))×
(
h2bQ

1/2h
h (q, p)

)(1+δ)(k+q+d/p∗)

≤ C × (C∗ + Cθ(Φ))×
(
h2bC

1/2h
θ (Φ)Ĥ

1/2h
2h+q+d,p∗

)(1+δ)(k+q+d/p∗)

≤ ΓΦ,θ(q, h, p).

So (1.21) is proved.
We prove now the point C. If the above inequality holds with q = 1 and p > d, then, by Morrey’s
lemma Φf is χ− Hölder continuous with χ = 1− d

p and

‖Φf‖∞ ≤ ‖Φf‖C0,χ ≤ C ‖Φf‖1,p ≤ CΓΦ(1, h, p).

So we obtain (1.23). Let us prove (1.25). Recall the definition of ∇̂Φ(x) defined in (1.24). We write

(Φf)(y)− (Φf)(x) = Φ(x)(f(y)− f(x)) + (Φ(y)− Φ(x))f(x)

so that, if |x− y| ≤ 1, then

|Φ(x)(f(y)− f(x))| ≤ ‖Φf‖C0,χ |x− y|χ + ∇̂Φ(x) |f(x)| |x− y|

≤ C ‖Φf‖1,p |x− y|χ +
∇̂Φ(x)

Φ(x)
‖Φf‖1,p |x− y|

≤ CΓΦ(1, h, p) |x− y|χ + ∇̂Φ(x)× ΓΦ(1, h, p)

Φ(x)
|x− y|

where, in order to obtain the second inequality we have used (1.23). So (1.25) is proved. �

5 Appendix 2: The integration by parts formula.

The aim of this section is to give a hint to the proof of (2.14) and of the estimates (2.15) and (2.16).
The integration by parts formula (2.14) has been established in [5] by using a version of Malliavin
calculus for jump processes introduced in [4]. All this machinery is quit heavy and we are not able to
give here a detailed technical view (we refer to [5] for a complete presentation). We just try to give
an overlook which permits to the reader to understand which are the main objects and arguments
involved in the proof of these results. And also to precise the dependence with respect to t of the
constants in (2.15) and (2.16).

20



5.1 Real chock and fictive chock representation

A first step is to give some appropriate alternative representations for V ε,ζ
t , solution of the equation

(see (2.7)):

V ε,ζ
t = V0 +

∫ t

0

∫

E×R+

A(θ)(V ε,ζ
s− − v)1

{u≤ϕγ
ε (

∣

∣

∣

V ε,ζ
s− −v

∣

∣

∣

)}
Iζ(θ)N(ds, dθ, dv, du). (5.1)

We recall E = [−π
2 ,

π
2 ]×R2 and N(dt, dθ, dv, du) is a Poisson point measure on E×R+ with intensity

measure dt × b(θ)dθ × dft(dv) × du where ft(dv) is the solution (which exists and is unique) of the
equation (1.1).
Step 1. In a first stage we use some change of variable in order to write the above equation in an
alternative form which is appropriate for our calculus (see Section 3 in [5] for details; the motivation
of this new representation is just technical). Using the Skorohod representation theorem we may find
a measurable function vt : [0, 1] → R2 such that for every ψ : R2 → R+

∫ 1

0
ψ(vt(ρ))dρ =

∫

R2

ψ(v)ft(dv).

This allows to replace the measure ft(dv) on R2 by dρ on [0, 1].

Moreover, for x ∈ (0, π2 ], let G(x) =
∫ π/2
x b(θ)dθ and let g : (0,∞) → (0, π2 ] be the inverse of G, that

is G(g(z)) = z (since b(θ) ≃ |θ|−(1+ν) by assumption, it follows that G(x) ≃ ν−1(x−ν − (π/2)−ν) and
g(z) ≃ (1 + z)−ν). For z < 0 we define g(z) = −g(−z). With this construction we will have

∫ π/2

−π/2
ψ(θ)b(θ)dθ =

∫ ∞

R∗

ψ(g(z))dz

and this allows to replace the measure b(θ)dθ on (−π
2 ,

π
2 ) by dz on R∗ := R�{0}.

Finally we consider a function Iζ : R → [0, 1] which is smooth, with all derivatives bounded and such
that Iζ(z) = 1 for |z| ≤ G(ζ) and Iζ(z) = 0 for |z| ≥ G(ζ) + 1. And we choose the function Iζ in
equation (5.1) in such a way that

Iζ(z) = Iζ(g(z)). (5.2)

Then we may write the equation (5.1) as

V ε,ζ
t = V0 +

∫ t

0

∫ 1

0

∫ G(ζ)+1

−G(ζ)−1

∫ 2Γγ
ε

0
A(g(z))(V ε,ζ

s− − vs(ρ))1{u≤ϕγ
ε (

∣

∣

∣
V ε,ζ
s− −vs(ρ)

∣

∣

∣
)}
Iζ(z)M(ds, dρ, dz, du)

(5.3)
withM a Poisson point measure on [0, T ]×[0, 1]×R∗×(0,∞) with intensity measurem(ds, dρ, dz, du) =
dsdρdzdu. Notice that we may take u ≤ 2Γγ

ε because we know that ϕε(v) ≤ Γε (we use 2Γε instead of
Γε just for technical reasons).
Step 2. Since m is a finite measure we may represent the above equation by using a compound
Poisson process as follows. We consider a standard Poisson process Jε

t =
∑∞

k=1 1{Tk≤t} of parameter

λ = 4(G(ζ) + 1)Γγ
ε and a sequence (Rk, Zk, Uk), k ∈ N of independent random variables, uniformly

distributed on [0, 1] × [−G(ζ) − 1, G(ζ) + 1] × [0, 2Γγ
ε ], which are independent of J (all these objects

depend on ε and ζ, but, as they are fixed, we do not mention it in the notation). Now the equation
(5.3) may be written as

V ε,ζ
t = V0 +

∑

Tk≤t

A(g(Zk))(V
ε,ζ
Tk−1

− vTk
(Rk))1{Uk≤ϕγ

ε (
∣

∣

∣

V ε,ζ
Tk−1

−vTk (Rk)
∣

∣

∣

)}
Iζ(Zk). (5.4)

This equation is known as ”the fictive chock” representation (see for example [25]).
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Step 3. The idea of the approach by means of the Malliavin calculus is to look to V ε,ζ
t as a functional

f(Z1, ..., ZJt) of Zk, k = 1, ..., Jε
t and to use an elementary integration by parts formula based on the

(uniform) law of Zk. But this is not possible directly because of the indicator function of the set {Uk ≤
ϕγ
ε (
∣∣∣V ε,ζ

Tk−1
− vTk

(Rk)
∣∣∣)} which appears in the equation : as a consequence Zk → f(Z1, ..., ZJε

t
) = V ε,ζ

Tk
is

not differentiable. In order to avoid this difficulty we introduce the so called ”real chock representation”
that we present now. We consider the equation

V ε,ζ
t = V0 +

∑

Tk≤t

A(g(Zk))(V
ε,ζ
Tk−1

− vTk
(Rk))Iζ(Zk). (5.5)

This is the same equation as (5.4) but the indicator function disappears. But now the law of (Rk, Zk)
is no more the uniform law (as above). We define this law as follows: we assume that conditionally to

Tk = t and V ε,ζ
Tk

= w the law of (Rk, Zk) is given by

Pt,w(Rk ∈ dρ, Zk ∈ dz) = qt,w(ρ, z)dzdρ

with

qt,w(ρ, z) =
1

λ
ϕγ
ε (|w − v(ρ)|)1{|z|≤G(ζ)+1} + gt,w(z).

Here gt,w(z) is an auxiliary smooth function which is null on {|z| ≤ G(ζ) + 1} and which is chosen in
such a way that

∫ ∫
qt,w(ρ, z)dρdz = 1 (it plays the role of a cemetery and does not come on in the

computations). Notice that qt,w(ρ, z)dzdρ gives the precise way in which the law of (Rk, Zk) (and so

the law of the jump) depends on the position V ε,ζ
Tk−

= w of the particle. One may check (see Section 3

in [5] for details) that the law of the solution of the equation (5.5) coincides with the law of V ε,ζ
t , the

solution of (5.4). So we may (and do) work with V ε,ζ
t solution of (5.5) now on. This is the ”real chock

representation”. Now the machinery which produces V ε,ζ
t as a function of Zk is a smooth function

and we may use a differential calculus for it. Notice that we know nothing about the regularity of the
function ρ→ vt(ρ) and consequently we are not able to use Rk - we will just use Zk. We also mention

that V ε,ζ
Tk

is a function of Ti, Ri, Zi, i = 1, ..., k so we will use the (slightly abusive notation)

V ε,ζ
Tk

= Hk(ω,Z1, ..., Zk) (5.6)

where ω indicates the dependence on Ti, Ri, i = 1, ..., k.

5.2 Finite dimensional Malliavin calculus.

In this section we present the results concerning the Malliavin calculus based on the random variables
Zk, k ∈ N from the previous section. We add two standard normal random variables Z−1, Z0 which
are independent of Zk, k = 1, 2, ... as well (they correspond to the two dimensional standard normal
random variable Z in introduced (2.13)). Given t > 0 we denote Zt = (Z−1, Z0, Z1, ..., ZJε

t
). The law

of Zt is absolutely continuous with respect to the Lebesgue measure on RJε
t +2 and has the density

pt(ω, z) = cte
|z−1|

2
+|z0|

2

2

Jε
t∏

k=1

qTk,Hk−1(ω,z1,...,zk−1)(Rk, zk). (5.7)

The integration by parts formula which we derive in the sequel will be based on the logarithmic
derivative of this density. In order to avoid border terms in the integration by parts formula we
introduce the weights

π−1 = π0 = 1 and πk = aζ(Zk)

where aζ is a smooth version of 1(1,G(ζ))(z).
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We follow the strategy established in Malliavin calculus. A simple functional F is a random variable
of the form F = h(ω,Zt) where ω designees the dependence on Ti, Ri, i ∈ N and z → h(ω, z) is a
smooth function on RJε

t +2 which has bounded derivatives of any order. Then we define the derivatives

DkF = πk∂zkh(ω,Zt)

and for a multi-index κ = (k1, ..., km) ∈ {−1, 0, 1, ..., Jε
t }m we denote |κ| = m and we define

DκF = Dkm ...Dk1F.

For a d dimensional simple functional F = (F1, ..., Fd) the Malliavin covariance matrix is given by

σi,jF = 〈DFi,DFj〉 =
Jε
t∑

k=−1

DkFi ×DkFj

and, for a one dimensional simple functional F, the divergence operator is defined by

LF = −
Jε
t∑

k=−1

[
1

πk
Dk(πkDkF ) +DkF ×Dk log pt(ω,Zt)

]
. (5.8)

Using elementary integration by parts on RJε
t +2 one obtains the following duality formula

E(〈DF,DG〉) = E(FLG) = E(GLF ).

We will work with the norms
|F |m = |F |+

∑

1≤|κ|≤m

|DκF | .

The standard arguments from Malliavin calculus give the following integration by parts formula (see
Theorem 1 and 3 in [4])): let G and F = (F1, ..., Fd) be simple functionals. We suppose that 1/det σF ∈
∩p>1L

p. Then for every ψ ∈ C∞
b (Rd) and every multi-index β = (β1, ..., βq) ∈ {1, ..., d}q one has

E(∂βψ(F )G)) = E(ψ(F )Kβ(F,G)) (5.9)

where Kβ(F,G) is a random variable which verifies

|Kβ(F,G)| ≤ C ×Kβ(F,G)× |det σF |−(3q−1) with (5.10)

Kβ(F,G) = |G|q (1 + |F |q+1)
q(6d+1)


1 +

q∑

j=1

∑

k1+...+kj=q−j

j∏

i=1

|LF |ki


 . (5.11)

In our approach (see Section 3) we choose ζ(ε) = ε(1+γ+α)/(1−ν) and we use above estimate for (see
(2.13)):

F
ε,ζ(ε)
t =

√
uζ(ε)(t)Z + V

ε,ζ(ε)
t with uζ(t) = tζ4+ν .

We also recall that in (2.12) we have introduced Gε,ζ
t which is a smooth version of the indicator function

of the set {sups≤t

∣∣∣V ζ,ε
s

∣∣∣ ≤ Γε}. In particular, for every q, we have
∣∣∣Gε,ζ

t

∣∣∣
q
= 0 on {sups≤t

∣∣∣V ζ,ε
s

∣∣∣ > Γε}.
It follows that

Kβ(F
ε,ζ(ε)
t , G

ε,ζ(ε)
t ) = Kβ(F

ε,ζ(ε)
t , G

ε,ζ(ε)
t )1

{sups≤t

∣

∣

∣

V ζ,ε
s

∣

∣

∣

≤Γε}
. (5.12)
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Remark 5.1 The main difficulty in our approach comes from the estimate of LF
ε,ζ(ε)
t which blows

up as ε→ 0. In order to understand this we stress that the definition of LF
ε,ζ(ε)
t involves

∂zk log pε,t(ω, z) =

Jε
t∑

i=k

∂zr log qTi,Hi−1(ω,z1,...,zi−1)(Ri, zi).

If qt,w(ρ, z) does not depend on w (this means that the law of the jump does not depend on the position
of the particle) then only the first term corresponding to i = k in the sum is non null. But if it does
depend (and this is our case), then all the terms are non null because of Hi−1(ω, z1, ..., zi−1) depends
on zk for every i = k+1, ..., Jε

i (the perturbation of zk propagates in the future). So we have Jε
t terms

in the sum and, since E(Jε
t ) → ∞ as ε→ 0, this generates a blow-up and we have to give an accurate

estimate of it. It represents the main difficulty in our approach.

Our aim now is to give an upper bound for the Lp norm of Kβ(F
ε,ζ
t , Gε,ζ

t ) more precisely (see (2.15))

∥∥∥Kβ(F
ε,ζ
t , Gε,ζ

t )
∥∥∥
p
≤ CeCΓγ

ε

t4(3q−1)× 2+ν
ν

(ε−qζ−νq + e−Γκ
ε ζ−2νq) (5.13)

with q = |β| .
Sketch of the proof. In Proposition 4.11 in [5] one proves that for each p > 1, l ∈ N and T > 0

E(1
{sup[0,T ]

∣

∣

∣
V ε,ζ
s

∣

∣

∣
≤Γε}

sup
[0,T ]

∣∣∣V ε,ζ
s

∣∣∣
p

l
) ≤ CeCΓγ

ε and

E(1
{sup[0,T ]

∣

∣

∣
V ε,ζ
s

∣

∣

∣
≤Γε}

sup
[0,T ]

∣∣∣LV ε,ζ
s

∣∣∣
p

l
) ≤ CeCΓγ

ε

εp(l+1)ζνp

where C is a constant which depends on p, l and T. Using the above estimates (recall (5.12)) and
Hölder’s inequality one obtains

sup
t≤T

∥∥∥Kβ(F
ε,ζ
t , Gε,ζ

t )
∥∥∥
p
≤ CeCΓγ

ε (ε−qζ−νq + e−Γκ
ε ζ−2νq). (5.14)

See the proof of Theorem 4.1 in [5] for detailed computations.
Moreover, in Proposition 4.4 in [5] one denotes dt = det σ

F ε,ζ
t

and proves that

E(d−p
t ) ≤ Cp,te

cpΓ
γ
ε .

Here cp is a constant which depends on p and Cp,t depends on p but also on t. The dependence in t is
not specified there, so we will check here that

Cp,t = ct−4p× 2+ν
ν . (5.15)

We go in the proof of Proposition 4.4 in [5] and we find the inequality

E(d−p
t ) ≤ Cpe

CpΓ
γ
ε

(∫

ξ∈R2

|ξ|8p−2 exp(−ct |ξ|ν/(2+ν))dξ

)1/2

.

Using the change of variable ξ = t(2+ν)/νξ one obtains (5.15) so that

∥∥d−1
t

∥∥
p
≤ 1

t
4(2+ν)

ν

Cpe
CpΓ

γ
ε .

This, together with (5.14) and Schwarz’s inequality gives (5.13). �
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