, episodic behaviour of earthquake faults. Sci. Rep, vol.7, p.894

P. Galli, P. Messina, B. Giaccio, E. Peronace, and B. Quadrio, Early Pleistocene to Late Holocene activity 895 of the Magnola fault (Fucino fault system, central Italy), Boll. Geofis. Teor. Ed Appl, vol.53, pp.435-458, 2012.

B. Giaccio, P. Galli, P. Messina, E. Peronace, G. Scardia et al., , p.898

S. Silvestri, Fault and basin depocentre migration over the last 2 Ma in the L'Aquila 2009 earthquake 899 region, central Italian Apennines, Quat. Sci. Rev, vol.56, pp.69-88, 2012.

B. Giaccio, E. Regattieri, G. Zanchetta, B. Wagner, P. Galli et al., , p.902

P. R. Nomade, S. Cavinato, G. P. Messina, P. Sposato, A. Boschi et al., 903 A key continental archive for the last 2 Ma of climatic history of the central Mediterranean region: A pilot 904 drilling in the Fucino Basin, central Italy. Sci. Drill, vol.20, pp.13-19, 2015.

C. Giraudi and M. Frezzotti, Late Pleistocene glacial events in the central Apennines, Italy. Quat. Res, vol.48, pp.280-290, 1997.

C. Giraudi and M. Frezzotti, Palaeoseismicity in the Gran Sasso Massif, vol.909, pp.81-93, 1995.

J. C. Gosse and F. M. Phillips, Terrestrial in situ cosmogenic nuclides: theory and application, Quat. Sci. Rev, vol.912, issue.20, pp.1475-1560, 2001.

H. He, Z. Wei, and A. Densmore, Quantitative morphology of bedrock fault surfaces and identification of 915 paleo-earthquakes, 2016.

N. Lifton, T. Sato, and T. J. Dunai, Scaling in situ cosmogenic nuclide production rates using 918 analytical approximations to atmospheric cosmic-ray fluxes, Earth and Planetary Science Letters, vol.386, pp.919-149, 2014.

S. G. Mitchell, A. Matmon, P. R. Bierman, Y. Enzel, M. Caffee et al., Displacement history of a 922 limestone normal fault scarp, northern Israel, from cosmogenic 36 Cl, J. Geophys. Res. Solid Earth, vol.106, pp.4247-923, 2001.

V. Mouslopoulou, D. Moraetis, L. Benedetti, V. Guillou, O. Bellier et al., Normal faulting in 926 the forearc of the Hellenic subduction margin: Paleoearthquake history and kinematics of the Spili Fault, p.927, 2014.

, Greece. J. Struct. Geol, vol.66, pp.298-308

L. Piccardi, Y. Gaudemer, P. Tapponnier, and M. Boccaletti, Active oblique extension in the central 930, 1999.

, Apennines (Italy): evidence from the Fucino region, Geophys. J. Int, vol.139, pp.499-530

M. Sambridge, Geophysical inversion with a neighbourhood algorithm-II, 1999.

, Geophys. J. Int, vol.138, pp.727-746

A. Schlagenhauf, Identification des forts séismes passés sur les failles normales actives de la région 935, 2009.

. Lazio-abruzzo, Italie centrale) par'datations cosmogéniques'(36Cl) de leurs escarpements

A. Schlagenhauf, Y. Gaudemer, L. Benedetti, I. Manighetti, L. Palumbo et al., , p.937

K. Pou, Using in situ Chlorine-36 cosmonuclide to recover past earthquake histories on limestone normal 938 fault scarps: a reappraisal of methodology and interpretations: Using 36Cl to recover past earthquakes, Geophys. 939 J. Int, p.941, 2010.

A. Schlagenhauf, I. Manighetti, L. Benedetti, Y. Gaudemer, R. Finkel et al., , 2011.

, Earthquake supercycles in Central Italy, inferred from 36Cl exposure dating, Earth Planet. Sci. Lett, vol.307, pp.487-943

J. Tesson, B. Pace, L. Benedetti, F. Visini, M. Delli-rocioli et al., , p.946

K. Keddadouche, Seismic slip history of the Pizzalto fault (central Apennines, Italy) using in situ-947 produced 36 Cl cosmic ray exposure dating and rare earth element concentrations, J. Geophys. Res. Solid Earth, vol.948, issue.121, 1983.

G. E. Tucker, S. W. Mccoy, A. C. Whittaker, G. P. Roberts, S. T. Lancaster et al., Geomorphic 951 significance of postglacial bedrock scarps on normal-fault footwalls, J. Geophys. Res. Earth Surf, vol.116, 2011.

F. Visini and B. Pace, Insights on a Key Parameter of Earthquake Forecasting, the Coefficient of Variation 955 of the Recurrence Time, Using a Simple Earthquake Simulator, Seismol. Res. Lett, vol.85, pp.703-713, 2014.

T. Wiatr, I. Papanikolaou, T. Fernández-steeger, and K. Reicherter, Bedrock fault scarp history: Insight 959 from t-LiDAR backscatter behaviour and analysis of structure changes, Geomorphology, vol.228, pp.421-431, 2015.

M. Wilkinson, G. P. Roberts, K. Mccaffrey, P. A. Cowie, J. P. Walker et al., , p.963

A. M. Michetti, E. Vittori, L. Gregory, L. Wedmore, and Z. K. Watson, Slip distributions on active normal 964 faults measured from LiDAR and field mapping of geomorphic offsets: an example from L'Aquila, Italy, and 965 implications for modelling seismic moment release, Geomorphology, vol.237, pp.130-141, 2015.

,

A. Table, 1: Parameters used for the modeling of

, Site-specific parameters Geometric parameters: Hfinal = 18 m, ? = 20°, ? = 50°, ? = 30°D ensity: ? rock = 2.7 g.cm ?3

. Schimmelpfennig, Spallation on K: ? 36 Cl K = 162 ± 24 at. of 36 Cl. g of K.yr ?1 (Evans et al. 1997) Spallation on Ti: ? 36 Cl Ti = 13 ± 3 at. of 36 Cl. g of Ti.yr ?1 (Fink et al. 2000) Spallation on Fe: ? 36 Cl Fe = 1.9 ± 0.2 at. of 36 Cl. g of Fe.yr ?1 (Stone et al. 2005) Slow negative muons stopping rate at land surface: ??,0 = 190 muon.g ?1 .yr ?1 (Heisinger et al. 2002) Neutron attenuation length: ?f = 208 g.cm ?2 (Gosse and Phillips, 2001) Neutron apparent attenuation length for a horizontal unshielded surface: ?f, Spallation on Ca: ? 36 Cl CaO = 42.2 ± 4.5 at. of 36 Cl. g of Ca.yr ?1, 2011.