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Abstract This work considers the challenging problem of identifying the sta-
tistical properties of random fields from indirect observations. To this end,
a Bayesian approach is introduced, whose key step is the nonparametric ap-
proximation of the likelihood function from limited information. When the
likelihood function is based on the evaluation of an expensive computer code,
this work also proposes a method to select iteratively new design points to re-
duce the uncertainties on the results that are due to the approximation of the
likelihood. Two applications are finally presented to illustrate the efficiency of
the proposed procedure: a first one based on analytic data, and a second one
dealing with the identification of the random elasticity field of an heteroge-
neous microstructure.

Keywords Bayesian framework - uncertainty quantification - statistical
inference - stochastic process - kernel density estimation

1 Introduction

Random field analysis has become a major tool in many scientific fields, such
as uncertainty quantification, material science, biology, medicine, signal pro-
cessing, quantitative finance, etc. However, in most of these applications, the
knowledge of these random fields, which we write X, is limited. Numerical
methods are therefore needed to identify the probability distribution of X
from the available information.
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When the information is constituted of direct measurements of the field
to model, several techniques have been proposed to perform such an identi-
fication. For instance, the AutoRegressive-Moving-Average (ARMA) models
[Whittle, 1951,[Whittle, 1983|[Box and Jenkins, 1970], allow the description of
Gaussian stationary random fields as a parameterized integral of a Gaus-
sian white noise. When considering a priori non-Gaussian and nonstation-
ary random fields, the identification is generally based on a two-step proce-
dure. The first step is the approximation of the random field by its projection
on a reduced number of deterministic functions |[Ghanem and Spanos, 2003,
[Le Maitre and Knio, 2010|, using for instance the proper orthogonal decompo-
sition [Atwell and King, 2001], the proper generalized decomposition [Nouy, 2010],
or the Karhunen-Loéve expansion [Williams, 2011,[Perrin et al., 2014.[Perrin et al., 2013].
The second step is the identification of general stochastic representations of the
projection coefficients in high stochastic dimension [Soize, 2010L[Soize, 2011,
[Perrin et al., 2012, Nouy and Soize, 2014}Soize and Ghanem, 2016, Perrin et al., 2018].
The main specificity of this work comes from the fact that only indi-
rect observations are available for the identification, in the sense that the
experimental data is made of the transformations of a limited number of
independent realizations of X through a black-box time-consuming nonlin-
ear mapping, denoted by g. To make this identification tractable, we as-
sume that the random field to identify belongs to a known parametric class.
Thus, identifying the distribution of X amounts to identifying the values of
these parameters, which are gathered in the vector z. A Bayesian framework
is then considered [Marzouk and Najm, 2009, Stuart, 2010,{Arnst et al., 2010,
|Matthies et al., 2016L[Emery et al., 2016|: parameter z is supposed to be ran-
dom, and we search its posterior distribution given the available data.
Markov Chain Monte Carlo (MCMC) [Rubinstein and Kroese, 2008|[Tian et al., 2016]
is generally considered as a powerful tool to explore the posterior distribution
for these parameters. However it can be computationally prohibitive when
each posterior evaluation requires evaluations of a computationally expensive
code, as it the case here. To circumvent this problem, a standard approach is to
replace the code by a surrogate model, and to directly sample from the approxi-
mated posterior distribution associated with the modified likelihood using clas-
sical MCMC procedures. The surrogate model can be based on polynomial rep-
resentations [Marzouk and Najm, 2009, Marzouk and Xiu, 2009,(Wan and Zabaras, 2011,
[Li and Marzouk, 2014\ Tsilifis et al., 2017], Gaussian process regression [Kennedy and O’Hagan, 2001},
[Santner et al., 2003,[Higdon et al., 2008,Bilionis and Zabaras, 2015|/Sinsbeck and Nowak, 2017,
[Damblin et al., 2013], or runs of the code at different resolution levels [Higdon et al., 2003,
[Chen and Schwab, 2015]. Alternatively, the surrogate model can be used to
adapt the proposal distribution. In that case, the number of expensive pos-
terior evaluations per MCMC step can be strongly reduced, while sampling
asymptotically from the exact posterior distribution (see [Rasmussen, 2003,
[Fielding et al., 2011}[Conrad et al., 2016,/Conrad et al., 2018| for further details
about this approach).
This work can be seen as an extension of these methods to the case of
stochastic codes. Indeed, for a given value of z, as X (z) is random, g(X (z))
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is also a random quantity. But if the distribution of X (z) is known once
z is fixed, the distribution of g(X (z)) is unknown, and its identification is
computationally demanding. Therefore, instead of constructing a surrogate
model of the code, we focus on the approximation of the probability density
function (PDF) of g(X (2)).

To run a MCMC procedure based on the associated approximated likeli-
hood in a reasonable computational time, this approximation of the PDF of
g(X(z)) in any z has to be constructed from a fixed number of already com-
puted code evaluations. To this end, we first propose to directly work on the
joint PDF of (g(X (z)), z). Then, we focus on the Gaussian kernel density esti-
mation (G-KDE) [Wand and Jones, 1995|[Scott and Sain, 2004,[Perrin et al., 201§
for the PDF approximation. Indeed, this method is particularly interesting
for its ability to model non-Gaussian distributions with complex dependence
structures, but also because it allows an explicit derivation of the PDF of
g(X (2))|z once the joint PDF is known. To construct relevant PDF ap-
proximations of this potentially high-dimensional random vector from a re-
duced number of code evaluations, we finally introduce two adaptations of
the classical G-KDE formalism. First, an optimal partitioning of the com-
ponents of g(X(z)) is introduced, which consists in decomposing the ran-
dom vector to model in well-chosen groups of components that can reason-
ably be considered as independent. Secondly, a sequential strategy is proposed
to choose the evaluations points on which the G-KDE relies. Starting from
a space-filling design, the objective is to sequentially add new code evalu-
ations in the regions where the posterior distribution of the parameters is
high. We refer to [McKay et al., 1979|[Fang and Lin, 2003|[Fang et al., 2006,
[Dragulji¢ et al., 2012|[Joseph et al., 2015] for the construction of the initial
space-filling designs when the input spaces is an hyperrectangle, and to [Stinstra et al., 2003,
[Stinstra et al., 2010,/Auffray et al., 2012/[Dragulji¢ et al., 2012||Lekivetz and Jones, 2015,
[Mak and Joseph, 2016}[Perrin and Cannamela, 2017| for the general case.

The outline of this work is as follows. Section [2] presents the theoretical
framework of the proposed method. Section [B] first illustrates the efficiency
of the method on an analytical example, and then shows its potential for
the identification of the mechanical properties of an unknown heterogeneous
medium.

2 Indirect identification of the statistical properties of random

fields
The objective of this section is to describe the adaptive procedure we propose

for the identification of the statistical properties of random fields when the
available information is a set of indirect observations.

2.1 Definitions and notations

Let (12, A,P) be a probability space. For d,,d,,d, > 1,
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— P(X,R%) denotes the space of all the second-order random fields defined
on (£2, A, P), with values in R indexed by a compact and connected space
X;

— L%(X,R%) is the space of all the square-integrable functions defined on X
with values in R%;

— g is a nonlinear measurable mapping whose computational cost can be
high:

{f(X’R%) - Rdy; (1)
— g(h)

— X(R% R%) refers to a particular class of random fields in P (X, R% ), whose
statistical properties are parameterized by a deterministic vector z € R%.
For instance, X' (R% R ) can correspond to the set of Gaussian random
fields, whose mean and covariance functions are parameterized by the same
d, coefficients.

— For all z in R%, X (z) is an element of X'(R% R).

Let X* be a particular element of P(X,R%), which can belong or not to
X (R4, R%=), and Y* be its transformation by g. By construction, Y* is a
dy-dimensional random vector. For each realization of X™, which we denote
by X*(6) with 6 € 2, Y*(0) := g(X™*(0)) defines a particular realization of
Y*.

Given N independent realizations of Y, gathered in the set

S(N) :={Y"(0,) } 1<n<n, 0, € 2,

the purpose of this work is to propose a Bayesian formalism for the identifi-
cation of z*, such that the probability distribution of X (z*) is the closest to
the one of X™*.

Remarks

— As mentioned in Introduction, it is important to notice that for each z €
R?, g(X(2)) is random. This strongly limits the possibility of replacing
mapping z — g(X (z)) by a surrogate model, as it is classically done when
solving inverse problems that invoke computationally expensive models.

— In the following, for the sake of simplicity, we assume that X* € X' (R% Rdx).
If it was not the case, it could be necessary to introduce an error term to
model the difference between X* and X (z) [Kennedy and O’Hagan, 2001].

2.2 Bayesian formulation of the problem

In this work, z* is modeled by the random vector Z, to take into account
the fact that its value is unknown. Let fz be the probability density function
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(PDF) of Z, which is supposed to be known as a prior model. Hence, identify-
ing z* amounts to searching the posterior PDF of Z | S(IV), which we denote
by fz|s(n)- Using the Bayes theorem, it comes:

Lsw)(2)fz(2)

E [Lsn)(Z)]
There, E[-] is the mathematical expectation and Lg(y) is the likelihood

function. The elements of S(IV) being statistically independent, it follows:

fzisv)(2) = , z € R%. (2)

Lsny(z) = H Sy (Y (0r)), z € R%, (3)

in which fy () is the PDF of Y (z) := g(X(z)) for given z in R%, and is un-
known. To approximate fy ), a first possibility is to generate M independent
realizations of Y (z). Thus, based on this set, the value fy(.)(y) of fy(z) in
any point ¢ in R% can be approximated using any parametric or nonparamet-
ric statistical learning technique. However, this means that function g has to
be evaluated M x @ times to evaluate function Ls(yy) in @ points for z. This
quickly becomes burdensome when the computational cost for each evaluation
of g is relatively high (between several minutes to several hours CPU for the
considered applications). One possible approach to circumvent this problem is
to directly approximate the joint PDF of the (d, + d.)-dimensional random
vector (Y (Z), Z) [Soize and Ghanem, 2017]. Indeed, M independent realiza-
tions of (Y (Z), Z) can be obtained from the following two-step procedure:

— we first draw at random M independent realizations of Z according to the

distribution fz, which we denote by Z(w1), ..., Z(wa), where wy, ..., war
are in {2,
— for each value of z in {Z(w1),...,Z(wn)}, we draw, at random and inde-

pendently the ones from the others, a particular realization of X (z), and
we deduce a realization of Y (z) by evaluating g in this realization of X (z).

For the sake of simplicity, we denote these realizations by Y (w,), 1 < m <
M. Based on these realizations, the kernel estimator of fy z is:

R ot (F)-1/2 M
Pty =) = IS g (B2 (g 2) - (V). Z(00))

m=1

(4)
Here, det(:) is the determinant operator, K is any positive function whose
integral over R%*4= is one, and H is a ((d, + d.) x (d, + d.))-dimensional
positive-definite symmetric matrix, which is generally referred as the "band-
width matrix". In the following, we focus on the case where K is the Gaussian
multidimensional density, and where H is proportional to the empirical esti-
mation of the covariance matrix of (Y (Z), Z), denoted by C":

H =hC, heR. (5)
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The main interest of this hypothesis comes from the fact that it strongly
reduces the number of parameters that need to be identified for the construc-
tion of H, while generally leading to very interesting results for the modeling
of multivariate PDFs (see [Perrin et al., 2018|] for more details). Other parsi-
monious parameterizations could be proposed for H, such as diagonal repre-
sentations, but for sufficiently high values of M, the influence of this choice on
the identification results is expected to be small.

Hence, the PDF of (Y (Z), Z) is approximated by a mixture of M Gaussian
PDFs, for which the means are the available realizations of (Y (Z), Z) and the
covariance matrices are all parameterized by a unique scalar h:

P2,z = 12 3 0 ((9,2): (¥ (@n), Zwn)), 7€) . (6)

m=1

There, for any R?-dimensional vector g and for any (R? x R%)-dimensional
symmetric positive-definite matrix C, ¢(-; i, C) is the PDF of any R%-dimensional
Gaussian random vector with mean g and covariance matrix C':

exp (<3 (@ - C7 @ p) ]
¢($;/L, C) = (27T)d/2 det(C) . zeR (7)

In addition, the block decomposition of C is written as:

e |Cyr Cvz| (8)
Cyz Czz
For all (y,2z) € R% x R? the kernel approximation of fy () (y), which we

denote by fy(z)(y; h), can therefore be written as follows (see Appendix for
more details about this expression):

N J?Y Z(yaz;h)
z sh) = =
fY( )(y ) f]Rdy fY,Z(U’Z; h)dv )
& Ym (23 )

- iy, (2),Crn(h)),
2SIy Wik Cn)

(2 1) 1= oxp ( ! (zzwm))Té;lZ(zzwm))), (10)

202
~ ~—1
1 (2) =Y (W) + CyzC57(2 = Z(wn)), (11)
~ ~ ~—1 ~T

It follows that the posterior PDF of Z is estimated for each z in R? by:
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v (2) (Y™ (0n); h). (13)

Fason () ~ Lsny(z;h) fz(2) H

{»CS(N)(Z):| ; ES(N) z;h)

Remarks

— One key step of these methods is the exploration of the whole space of the
input variables. To maximize this covering, it is generally worth choosing
{Z(w1),...,Z(wm)} as a space filling design of experiments that preserves
good projection properties for each scalar input (see [Fang and Lin, 2003,
[Fang et al., 2006,[Perrin and Cannamela, 2017 for the construction of such
designs when prior density fz is uniform or not).

— Another crucial aspect of these Bayesian approaches is the choice of prior
distribution fz. Indeed, the more informative it is, the less measurements
we need to get a useful posterior distribution for Z. But if it is overconfi-
dent, around values that are potentially biased, the uncertainty carried by
the posterior distribution may not be large enough to adequately capture
the true value of Z (see [Marin and Robert, 2007] for more details on the
construction of this prior distribution).

— In the standard case, the M code evaluations are generally used to con-
struct a surrogate model of a computationally expensive but determin-
istic code. Hence, depending on the dimension of the input space and
the regularity of the code output with respect to the inputs, interest-
ing approximations can be obtained using relatively small values of M
[Perrin et al., 2017]. On the contrary, in our case, as z — g(X(z)) is a
stochastic simulator, the value of M is likely to be higher, as we want the
code evaluations to allow a precise approximation of the dependence struc-
ture between Y (Z) and Z in the construction of their joint PDF. And the
higher d, +d. is, the higher value of M we may need. However, when con-
fronted to expensive simulators, the maximal number of code evaluations
is generally limited (M must be less than 1000 for instance). In that case,
it is particularly important to work on methods that allow the most precise
identification of the parameters at the minimal cost. This is the objective of
the following sections. In Section 23] we first propose to decompose Y (Z)
in several groups to improve the relevance of the nonparametric represen-
tation of PDF fy z for a fixed value of M. Then, selection criteria are
proposed in Section 23] to sequentially concentrate the code evaluations in
the most likely regions for Z, and therefore reduce the uncertainties on its
posterior PDF fZ|S(N)-

2.3 Optimal partitioning

As it is explained in [Perrin et al., 2018|, when d, becomes high, separating
in different groups the components of Y (Z)|Z that could reasonably be con-

sidered as independent can strongly improve the relevance of fAy(z) for a fixed
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number of code evaluations. Let b = (b1,...,bq,) be a particular group de-
composition of Y (Z)|Z in the sense that:

— if b; = b;, Yi(Z)|Z and Y;(Z)|Z are supposed to be dependent and there-
fore belong to the same block,

— if b; # bj, Yi(Z)|Z and Y;(Z)|Z are supposed to be independent and they
can belong to two different blocks.

To avoid redundancies in this block by block representation, vector b can
be chosen in the set:

B(dy)::{be{l, d}y|b1—1 1<0b, <1+1<max bi, 2<j<d,
(14)
Hence, for any b in B(d, ), we can define

— Max(b) as the maximal value of b,

— Y (z,b) as the random vector that gathers all the components of Y (Z)|Z =
z with a block index equal to ¢,

— y©(y,b) as the vector that gathers all the components of y with a block
index equal to /.
For all b in B(d,), z in R% and h := (hi,..., hyaxp)) in RMax®) | if

fy<e)(z7b)(y(e)(y,b);hg) is the kernel estimator of the PDF of YY) (z,b), it
comes:

Max(b)
Fy()(¥) = fy(z)(y; h,b) H fyu) »Y O (y,b);he), y € R, (15)

leading to another approximation of fz|s(n)(z) for each z in R9=:

Ls(v)(z:h,b)fz(2)
E [ES(N)(Z)}

faisv)(2) = fzisn)(2) = ; (16)

Ls(n)(z; h,b) H Fy () (Y*(0,): hb). (17)

2.4 Estimation of the kernel parameters

To evaluate ES(N), the values of h and b have to be identified. This can be
done by solving the following optimization problem:

(RC M) & arg min AICYOO (R, b), (18)
h€]0,+o0o[Max(b)  beB(d,)
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M Max(b)
LOO o —m) ¢ .
AIC™9°(h, b) := 2Max(b)—2log 1'_[1 E f&m(z(w’b)(w Y (wi), b): he) |
(19)
where f}(;(,f?()z (wn).b) is the kernel estimator of the PDF of Y¥)(Z(w,,), b) that

is based on all the evaluations of g but the m*" one. Indeed, given Eq. (@), this
amounts to minimizing a "Leave-One-Out" version of the Akaike information
criterion (AIC) [Akaike, 1974] associated with the PDF of Y (Z)|Z (very close
results would be obtained by considering another information criterion such
as the Bayesian information criterion (BIC)). We refer to [Perrin et al., 2018
for more details about the solving of this optimization problem.

2.5 Adaptive strategy

By construction, the precision of the estimation of z* depends on the num-
ber of experimental measurements, N, and the number of code evaluations,
M. Classically, the value of IV is fixed, whereas it should be possible to im-
prove the accuracy of fy(,y, which is defined by Eq. (I3)), by adding new
code evaluations in the learning set. For instance, M™®" new points could be
added to the learning set by evaluating the code in M™" independent realiza-
tions of Z|S(N) (we remind that no code evaluations are required to choose
these new points). However, as the kernel density estimator is based on the
post-processing of independent and identically distributed realizations of the
random vector to model, non consistent results could be obtained by mixing
realizations of Z|S(N) with realizations of Z. If such a selection criterion was
chosen, this would mean that the M code evaluations at the initial step should
not be used for the refining.
As an alternative, we propose to evaluate the function

2 f(2) = Loy (2 RN 0N f4(2)

in each value of {Z(w1),...,Z(wp)}. For each 1 < m < M, let m,, be the
following weights:

(2w
M -~ f—
o=t f(Z(wnr))
Without loss of generality, these weights are assumed to be sorted in de-

creasing order, m; > 7wy > ... > . Hence, for 0 < a < 1, if we denote by Q,,
the smallest integer such that:

(20)

Qa—1

Z Tm = Q, (21)
m=1
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the domain Z,, := {z € R% | f(z) > f(Z(wq., )} can be seen as a conservative
a-credible set for Z|S(N), in the sense that the probability for Z|S(N) to
be in Z, is likely to be higher than «. Therefore, adding new realizations of
Z\|Z € Z, seems a good mean to enrich the set of points on which the kernel
density estimator is based. Indeed, the most likely values of z at the former
step are kept in the adaptive procedure, while a good exploration of the input
domain is expected if the value of « is chosen sufficiently high.

Finally, choosing f zcz, instead of fz for the prior distribution of Z,
and repeating several times this procedure, it is possible to iteratively reduce
the uncertainties about z*.

Remarks

— By adding new code evaluations, the objective is to make fy(z) be as close

to fy(z) as possible, such that the approximate posterior fz|s(v) is as close
to the true (but unknown) posterior fz s(ny as possible. Choosing a value
of a that is strictly inferior to one only aims at limiting the number of new
code evaluations that will be in the region where true posterior fz s is
almost zero. However, this value has not to be chosen too small, as it would
artificially reduce the uncertainty associated with the estimation of z* by
cutting too much the tails of the true posterior. Hence, in the applications
that will be presented in Section B, « is chosen equal to 0.99.

— According to Eq. (1), we deliberately add one to the value of @, to be
conservative for the estimation of the a-credible set. This is particularly
important for cases when after the first iteration, m; =~ 1. Indeed, even if
one value of z appears to be much more relevant than the others, we do
not want to focus too much around a single mode.

3 Applications

The purpose of this section is to illustrate the method proposed in Section
on two applications.

3.1 Analytical application

In this first application, X (z) refers to the Gaussian random fields whose
mean is equal to ¢ — sin(2mzst + 24), and whose covariance function is equal

to (t,t') — 23 exp (— (t;;éf

This class of random fields is therefore parameterized by four quantities:
two parameters for the mean value, denoted by z3 and z4, and two parameters
for the covariance function, denoted by z; and z5. We then introduce U (X (z))

as the image of X (z) by the following nonlinear mapping;:
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1.5;
1t
—U(t,w1)
Ut wa)
- U(t,ws)
0.5r
0 0.2 0.4 ¢ 0.6 0.8 1
(a) Realizations of U(X(Z))
—U*(t,01)
—--U*(t, 02)
o -mU*(t,05)
N L V)

0 0.2 0.4 . 0.6 0.8 1

(b) Realizations of U(X(2))|Z = z*

Fig. 1 Comparison of independent realizations U(X(Z)) and U(X(Z))|Z = =z*.

U(X(z)) :={X(t;z)sin(X(t;2)), t €[0,1]}. (22)

The value of z* is chosen equal to (0.3,0.2,2,1), and it is a priori modeled
by a uniformly distributed over [0.1, 1] x [0.05, 1] x [1, 3] x [0, 2] random vector,
denoted by Z. To identify z*, the available information is made of N = 10
independent realizations of U(X (Z))|Z = z*, denoted by U*(61),...,U*(0n).
To solve the inference problem, M = 500 independent realizations of Z have
been drawn, which we write {Z(w1),...,Z(wp)}. For each 1 < m < M, we
then draw at random one realization of U(X(Z(w,))), and we denote it by
U(wm) for the sake of simplicity. As an illustration, several realizations of
U(X(Z)) and U(X(Z))|Z = z* are compared in Figure [Il

In principle, the Bayesian formulation can be applied to any multi-variate
output code. But in practice, it is generally very convenient to condense (if
it is possible) the statistical content of the code output in a low-dimensional
vector [Perrin, ress|. In our context, it is even more important, as a key step of
the proposed method is the identification of the joint distribution between the
parameters to be identified and the associated code output, whose complexity
strongly increases with the dimension of the code output. In that prospect, we
introduce 1, p > 1 as the solutions of the following eigenvalue problem:

1 M
/O S Ut wm) Ut wm )y (#)d = Ay (1), (23)
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1
A > > =0, /0 Vp (1)1 (t)dt = 6pq, (24)

where d,, is the Kronecker symbol that is equal to 1 if p = q and 0 otherwise. To
solve the inference problem, we finally introduce Y (z) as the vector gathering
the projection coefficients of U (X (Z)) on the former eigenfunctions associated
with the d, highest eigenvalues:

Y(Z) = ( /0 Ut: X(Z))r ()t . .. /0 U(t;X(Z))wdy(t)dt). (25)

The value of d,, can then be chosen to guarantee a relevant representation
of the observations. To this end, we introduce 2 as the following quantity:

~ 2
Z'r]y:l fOl (U*(tﬂ en) - U*(tv on; dy)) dt

EQ(dy) = N 1 2
Dot Jo (U(t,0,))" dt

; (26)

dy 1
O (1,0n:dy) = 3 (1) ( /0 U, Gn)wp(t’)dt’> . (27)

As an illustration, Figure B shows the evolution of €%(d,) with respect to
dy, as well as the difference between U* (¢, 6;) and U*(t,01; d,) for three values
of dy. For this application, d, was chosen equal to 12, which corresponds to a
value of €2 that is less than 1%.

Based on these M realizations of (Y (Z), Z), and on these N realizations of
Y (z*) :=Y(Z)|Z = z*, the adaptive Bayesian formalism presented in Section
is now applied. For this application, the parameter «, which was introduced
in Section 2.5 is chosen equal to 0.99. At each iteration, new samples are
therefore added in the region where fz|s(x) is not too small using a rejection
approach until we get a total of M points (including the points computed at
the former iterations) in the a-credible set Z,, whose definition is also given
in Section After 5 iterations, the total number of calls to the code is
equal to 2300, which means that around 450 new points have been added at
each iteration. The results are summarized in Table B and Figures Bl and
[ As a first comment, we verify that the identification of z* after only one
iteration is not very precise, in the sense that the prediction uncertainties are
very high. This is not surprising, as we are trying to approximate the PDF
of a 16-dimensional random vector (d, = 12, d, = 4) on its whole definition
domain from only 500 realizations. Moving from M = 500 to M = 2300,
that is to say spending the total budget at the first iteration, does not really
help. Indeed, the results we get in terms of mean and variance of Z|S(N)
are approximatively the same. This is explained by the fact that even if the
number of points is almost multiplied by five, the coverage of the definition
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Fig. 2 Evolution of the projection error with respect to dy.

1

Z1 Z Z3 Zy
Reference 0.3 0.2 2 1

E[Z|S(N)], M =2300,i=1 0.25 0.57 2.00 1.02
E[Z|S(N)], M =500,i=1 024 0.59 2.00 1.02
E[Z|S(N)], M =500,i=2 0.35 0.31 2.00 1.04
E[Z|S(N)], M =500,i=3 0.34 0.23 2.00 1.04
E[Z|S(N)], M =500,i=4 034 0.24 200 1.04
E[Z|S(N)], M =500,i=5 0.29 0.19 2.00 1.04

Table 1 Evolution of the posterior mean with respect to the iteration number.

domain stays very sparse. On the contrary, adding iteratively around 450 new
code evaluations in the most likely region, whose volume is much smaller than
the initial volume, allows E [Z|S(N)] to tend to z*, and strongly reduces the
credible intervals. This convergence is quicker for the mean parameters than
for the covariance parameters, which was also expected, as the mean function
is generally easier to identify than the covariance. Focusing on Figure @ it is
also interesting to notice that the reference value does not need to be in the
99%-credible ellipse associated with Z|S(N) at the first iteration to be in the

99%-credible ellipses at the next iterations.
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Fig. 3 Evolution of the 99%-credible intervals and of the mean values of the components

of Z|S(N) with respect to the iteration number.
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Fig. 4 Evolution of the 99%-credible ellipses of the two first elements of Z|S(N) with

respect to the iteration number.

3.2 Application to the identification of the mechanical properties of an

unknown anisotropic material

The second application deals with the identification of the mechanical proper-
ties of an heterogeneous micro-structure, which is modeled by a random elastic

medium. To this end, several experimental tests

are performed on a series of

specimens made of the same material. To be coherent with the notations in-
troduced in Section 2 we denote by X the elasticity field characterizing the
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mechanical properties of the material that constitutes the specimens. Several
stochastic models have been proposed in the framework of the heterogeneous
anisotropic linear elasticity [Soize, 2006,Soize, 2008||Clouteau et al., 2013||Guilleminot and Soize, 2013].
It should be noted that the elasticity field is not a real-valued random field, but
a tensor-valued random field, and that the different components of this ran-
dom field cannot be identified separately due to algebraic constraints. For this
application, the stochastic model for the elasticity field is based on the model
proposed in [Soize, 2006] and [Guilleminot and Soize, 2013] in 2D plan stresses
for the sake of simplicity. Hence, the distribution of X is non-Gaussian, and
it is parameterized by a 5-dimensional deterministic vector z = (z1,...,25),
where:

— 7z is a positive dispersion coefficient that controls the level of fluctuations,
— 29, z3 are two spatial correlation lengths,

24 is the mean value of the Young Modulus (x10° Pa);

— 25 is the mean value of the Poisson ratio.

We then assume that N = 100 cubic specimens are available, whose re-
spective mechanical properties are characterized by one particular realization
of X (z*), with z* = (2000, 0.1,0.15,210,0.3). As an illustration, Figure
shows, for one particular specimen, the evolution of the Young modulus and
the Poisson ratio in each point of [0, 1]2. The same pressure field fg = —fses
is then imposed on the top of each specimen, and we only have access to the
induced displacement field on the boundaries of these specimens (see Figure
[6 for an illustration of the experimental protocol). Let U*(61),...,U* () be
these measured displacements.

Based on this set of measurements, the method described in Section 2lcould
directly be applied to the identification of z*. To speed up this identification,
following the works achieved in [Nguyen et al., 2015|, we propose an alterna-
tive method, which is based on a two-step procedure. First, 2z and z5 will
be identified by confronting the measured displacements to the homogeneous
case. Once z; and zf have been found, a Bayesian formalism will be proposed
for the identification of the three remaining components of z*.

Indeed, if the specimens were made of a homogeneous material, charac-
terized by its young modulus E and its Poisson ratio v, it is well known

[Lai et al., 2010] that the induced displacement in each point s € [0, 1]? would

be equal to u'°™°(s) = (asy, bsz), with

()L () v - o

Hence, as we are considering a class of stationary random processes, the
values of zJ and zZ can be identified as the arguments that minimize the L2
distance between the IV measured displacements and the associated homoge-
neous displacements. In this two-step approach, the Bayesian identification is
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no longer carried out in dimension 5, but in dimension 3. This strongly reduces
the number of code evaluations that will be needed for a correct identification

Thus, in the following, only 27,25 and 23 are modeled by random quan-
tities. They are gathered in the vector Z, whose components are assumed
independent and distributed according to the following distributions:

log(Z1) ~ U(4.6,11.5), Zy ~U(0.01,0.3), Zs ~1(0.01,0.3),  (29)

where for all a < b, U(a,b) is the uniform distribution over [a,b]. For a given
value of Z, it is possible to simulate independent realizations of X (Z), and
to approximate (using the Finite Element Method) the displacements induced
by the experimental force field, which we write U (X (Z)). Thus, for this sec-
ond application, we first chose at random M = 1000 values of Z according to
its prior distribution. For each of these values, a particular realization of the
elasticity tensor was then generated over [0, 1]?, and the mechanical problem
that corresponds to the experimental protocol was solved (using the software
Cast3M) to get the displacements at the boundary of the cube. In the same
manner than in Section B} we finally introduce Y (Z) as the projection of
U(X(Z)) on the d, first eigenfunctions associated with the empirical estima-
tion of the covariance of U (X (Z)) based on the M code evaluations. In the
same manner, we gather in S(N) the projection coefficients of each measured
displacement U*(6,,) on this reduced basis. To choose the value of d,, the
normalized error defined by Eq. (26) is once again considered. For this appli-
cation, d, is chosen equal to 23 in order to correctly represent most of the local
oscillations of the displacements. According to Figure [d this corresponds to a
projection error that is less than 0.1%.

Following the framework proposed in Section 2] the PDF of Z|S(N) is
deduced from the kernel estimator of the PDF of (Y (Z), Z). An adaptive
procedure (with o = 0.99) is moreover introduced to better concentrate the
distribution of Z|S(N) on the true value of z*. To be more precise, 900 new
code evaluations were added between the two first iterations, and 620 between
the two last iterations, leading to a total budget of 2520 code evaluations. The
relevance of this approach is shown in Figure [§] where the blue continuous
lines correspond to the 95%-credible ellipses associated with the distribution
of Z|S(N). After three iterations, the values of z7, z5 and z3 are indeed iden-
tified with a high precision. To emphasize the interest of the partitioning pre-
sented in Section [3.2] these results are compared to the case where there is no
optimization of the block structure (the ellipses in red dotted lines). Although
these two approaches are based on the same information, there is no denying
that searching groups of independent components of Y (Z)|Z is really helpful.
This is especially true for the first iteration, where 23 groups of independent
components were chosen, and for the second iteration, where 8 groups of in-
dependent components were chosen. For the third iteration, as only 4 groups
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Fig. 7 Influence of truncation parameter dy on the representation of the measured data.
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were chosen, introducing the partitioning does not make a big difference for
the PDF identification, which explains the similarities between the blue and
the red curves.

This set of figures also emphasizes the importance of considering a high
value of d,, even if it complicates the PDF identification. For instance, choosing
d, = 5 leads to the results in green dashed lines, which are clearly less relevant
than the results in blue that correspond to d, = 23. Intermediate results were
obtained for values of d, between 5 and 23, whereas still increasing d, did not
really change the results.

In order to emphasize the efficiency of the proposed method to recover
the true underlying stochasticity, three additional batches of @ = 10* sim-
ulations are launched. These simulations are associated with the same cubic
system than in Figure [ but with different boundary conditions (by chang-
ing the boundary conditions, we want to verify that the identified values of
Z are not dependent of a fixed configuration). While the boundary condi-
tions on the inferior side of the cube do not change, the left and right sides
are now free of constraints, and the displacements on the superior side are

chosen equal to 0.002e; — 0.0les. We then denote by {X(l’q), 1<¢< Q},

{X(Q’Q), 1<g< Q} and {X(S’Q), 1<qg< Q} the elasticity fields characteriz-
ing the material properties of the different cubes of the three sets respectively.
Forall1 <¢g<@Q,

— X9 is an independent realization of the true elasticity field, X (z*);

— X249 is an independent realization of X ((z%Prior, 2% 2*)), where z®Prior
is a realization of Z, whose distribution is given by Eq. (29)),

— X9 is an independent realization of X (24P, 2¥, 2¥)), where 2405t ig
a realization of Z|S(N) after the three formerly presented iterations.

For each simulation, we denote by U (X (i’Q)), 1 < ¢ < 3, the concatena-
tion of the vertical and horizontal displacements that are induced on the left
and right sides of the cube. To compare the statistical information gathered
in these displacements, we then compute, for each 1 < i < 3, the eigenval-

ues {v§i), j> 0} associated with the empirical estimate of their covariance

matrices. In addition, we denote by o VM (X (#9) the maximum value over the
cubic domain of the Von Mises stress. This Von Mises criterion is commonly
used to characterize the resistance of the system (see for more
details). The decrease of these eigenvalues and the PDF of these Von Mises
criteria are finally compared in Figure[@ Looking at these figures, we see that
the results associated with the posterior distribution of Z are very close to the
ones associated with the true elasticity field, which is not true for the results
associated with the prior distribution of Z. This underlines the capacity of the
proposed method to take into account indirect observations for the identifica-
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tion of the parameters characterizing the distribution of an unknown random

process of interest.
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4 Conclusion

The increasing of the computational resources and the generalization of the
monitoring of mechanical systems have encouraged many scientific fields to
take into account random fields in their modeling. In that prospect, this work
proposes an adaptive Bayesian framework to efficiently identify the statistical
properties of these random fields when the available information is a reduced
set, of indirect observations. Two examples based on simulated data are finally
presented to show the potential of this approach.

Extending this approach to the cases where the number of parameters to
identify and the number of observations are very high would be interesting for
future work.

Appendix

A.1. Proof of the equality of Eq.

Let A, B, D be the block decomposition matrices of 6'_1:

o= [;T g} . (30)
Using the Schur complement, if follows that:
C,y=D - BTA'B,
(ayy —éyzéglzaq;;z)_l =A, (31)
— éyzéglz = A'B.
It comes
(4,2) = (Y(wm), Z(wm)" (R2C)7" (4, 2) = (Y (Wm), Z(wm)))
_ L ((y ~Y (@) Ay — Y (wm)) +2(y ~ ¥ (wn)) AAT'B (= - zw»)
h? \ + (z = Z(wm))" D(z — Z(wm))
1 (- Yem) + AT'B(z = Z(wn) " A(y — Y (wn) + AT B (2 — Z(wn)))
2 ¥ (2 — Z(wn))" (D—BTA”B (2 — Z(wm))

= (4 () Oy~ 1 (2)) + 35 (2~ Zwn))” Oy (2~ Zlon)
(52)

This leads to the searched result.
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