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Abstra
t This work 
onsiders the 
hallenging problem of identifying the sta-

tisti
al properties of random �elds from indire
t observations. To this end,

a Bayesian approa
h is introdu
ed, whose key step is the nonparametri
 ap-

proximation of the likelihood fun
tion from limited information. When the

likelihood fun
tion is based on the evaluation of an expensive 
omputer 
ode,

this work also proposes a method to sele
t iteratively new design points to re-

du
e the un
ertainties on the results that are due to the approximation of the

likelihood. Two appli
ations are �nally presented to illustrate the e�
ien
y of

the proposed pro
edure: a �rst one based on analyti
 data, and a se
ond one

dealing with the identi�
ation of the random elasti
ity �eld of an heteroge-

neous mi
rostru
ture.

Keywords Bayesian framework · un
ertainty quanti�
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1 Introdu
tion

Random �eld analysis has be
ome a major tool in many s
ienti�
 �elds, su
h

as un
ertainty quanti�
ation, material s
ien
e, biology, medi
ine, signal pro-


essing, quantitative �nan
e, et
. However, in most of these appli
ations, the

knowledge of these random �elds, whi
h we write X, is limited. Numeri
al

methods are therefore needed to identify the probability distribution of X

from the available information.
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When the information is 
onstituted of dire
t measurements of the �eld

to model, several te
hniques have been proposed to perform su
h an identi-

�
ation. For instan
e, the AutoRegressive-Moving-Average (ARMA) models

[Whittle, 1951,Whittle, 1983,Box and Jenkins, 1970℄, allow the des
ription of

Gaussian stationary random �elds as a parameterized integral of a Gaus-

sian white noise. When 
onsidering a priori non-Gaussian and nonstation-

ary random �elds, the identi�
ation is generally based on a two-step pro
e-

dure. The �rst step is the approximation of the random �eld by its proje
tion

on a redu
ed number of deterministi
 fun
tions [Ghanem and Spanos, 2003,

Le Maître and Knio, 2010℄, using for instan
e the proper orthogonal de
ompo-

sition [Atwell and King, 2001℄, the proper generalized de
omposition [Nouy, 2010℄,

or the Karhunen-Loève expansion [Williams, 2011,Perrin et al., 2014,Perrin et al., 2013℄.

The se
ond step is the identi�
ation of general sto
hasti
 representations of the

proje
tion 
oe�
ients in high sto
hasti
 dimension [Soize, 2010,Soize, 2011,

Perrin et al., 2012,Nouy and Soize, 2014,Soize and Ghanem, 2016,Perrin et al., 2018℄.

The main spe
i�
ity of this work 
omes from the fa
t that only indi-

re
t observations are available for the identi�
ation, in the sense that the

experimental data is made of the transformations of a limited number of

independent realizations of X through a bla
k-box time-
onsuming nonlin-

ear mapping, denoted by g. To make this identi�
ation tra
table, we as-

sume that the random �eld to identify belongs to a known parametri
 
lass.

Thus, identifying the distribution of X amounts to identifying the values of

these parameters, whi
h are gathered in the ve
tor z. A Bayesian framework

is then 
onsidered [Marzouk and Najm, 2009,Stuart, 2010,Arnst et al., 2010,

Matthies et al., 2016,Emery et al., 2016℄: parameter z is supposed to be ran-

dom, and we sear
h its posterior distribution given the available data.

Markov Chain Monte Carlo (MCMC) [Rubinstein and Kroese, 2008,Tian et al., 2016℄

is generally 
onsidered as a powerful tool to explore the posterior distribution

for these parameters. However it 
an be 
omputationally prohibitive when

ea
h posterior evaluation requires evaluations of a 
omputationally expensive


ode, as it the 
ase here. To 
ir
umvent this problem, a standard approa
h is to

repla
e the 
ode by a surrogate model, and to dire
tly sample from the approxi-

mated posterior distribution asso
iated with the modi�ed likelihood using 
las-

si
al MCMC pro
edures. The surrogate model 
an be based on polynomial rep-

resentations [Marzouk and Najm, 2009,Marzouk and Xiu, 2009,Wan and Zabaras, 2011,

Li and Marzouk, 2014,Tsili�s et al., 2017℄, Gaussian pro
ess regression [Kennedy and O'Hagan, 2001,

Santner et al., 2003,Higdon et al., 2008,Bilionis and Zabaras, 2015,Sinsbe
k and Nowak, 2017,

Damblin et al., 2013℄, or runs of the 
ode at di�erent resolution levels [Higdon et al., 2003,

Chen and S
hwab, 2015℄. Alternatively, the surrogate model 
an be used to

adapt the proposal distribution. In that 
ase, the number of expensive pos-

terior evaluations per MCMC step 
an be strongly redu
ed, while sampling

asymptoti
ally from the exa
t posterior distribution (see [Rasmussen, 2003,

Fielding et al., 2011,Conrad et al., 2016,Conrad et al., 2018℄ for further details

about this approa
h).

This work 
an be seen as an extension of these methods to the 
ase of

sto
hasti
 
odes. Indeed, for a given value of z, as X(z) is random, g(X(z))
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is also a random quantity. But if the distribution of X(z) is known on
e

z is �xed, the distribution of g(X(z)) is unknown, and its identi�
ation is


omputationally demanding. Therefore, instead of 
onstru
ting a surrogate

model of the 
ode, we fo
us on the approximation of the probability density

fun
tion (PDF) of g(X(z)).
To run a MCMC pro
edure based on the asso
iated approximated likeli-

hood in a reasonable 
omputational time, this approximation of the PDF of

g(X(z)) in any z has to be 
onstru
ted from a �xed number of already 
om-

puted 
ode evaluations. To this end, we �rst propose to dire
tly work on the

joint PDF of (g(X(z)), z). Then, we fo
us on the Gaussian kernel density esti-

mation (G-KDE) [Wand and Jones, 1995,S
ott and Sain, 2004,Perrin et al., 2018℄

for the PDF approximation. Indeed, this method is parti
ularly interesting

for its ability to model non-Gaussian distributions with 
omplex dependen
e

stru
tures, but also be
ause it allows an expli
it derivation of the PDF of

g(X(z))|z on
e the joint PDF is known. To 
onstru
t relevant PDF ap-

proximations of this potentially high-dimensional random ve
tor from a re-

du
ed number of 
ode evaluations, we �nally introdu
e two adaptations of

the 
lassi
al G-KDE formalism. First, an optimal partitioning of the 
om-

ponents of g(X(z)) is introdu
ed, whi
h 
onsists in de
omposing the ran-

dom ve
tor to model in well-
hosen groups of 
omponents that 
an reason-

ably be 
onsidered as independent. Se
ondly, a sequential strategy is proposed

to 
hoose the evaluations points on whi
h the G-KDE relies. Starting from

a spa
e-�lling design, the obje
tive is to sequentially add new 
ode evalu-

ations in the regions where the posterior distribution of the parameters is

high. We refer to [M
Kay et al., 1979,Fang and Lin, 2003,Fang et al., 2006,

Dragulji¢ et al., 2012,Joseph et al., 2015℄ for the 
onstru
tion of the initial

spa
e-�lling designs when the input spa
es is an hyperre
tangle, and to [Stinstra et al., 2003,

Stinstra et al., 2010,Au�ray et al., 2012,Dragulji¢ et al., 2012,Lekivetz and Jones, 2015,

Mak and Joseph, 2016,Perrin and Cannamela, 2017℄ for the general 
ase.

The outline of this work is as follows. Se
tion 2 presents the theoreti
al

framework of the proposed method. Se
tion 3 �rst illustrates the e�
ien
y

of the method on an analyti
al example, and then shows its potential for

the identi�
ation of the me
hani
al properties of an unknown heterogeneous

medium.

2 Indire
t identi�
ation of the statisti
al properties of random

�elds

The obje
tive of this se
tion is to des
ribe the adaptive pro
edure we propose

for the identi�
ation of the statisti
al properties of random �elds when the

available information is a set of indire
t observations.

2.1 De�nitions and notations

Let (Ω,A,P) be a probability spa
e. For dx, dy, dz ≥ 1,
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� P(X,Rdx) denotes the spa
e of all the se
ond-order random �elds de�ned

on (Ω,A,P), with values in R
dx
, indexed by a 
ompa
t and 
onne
ted spa
e

X;

� L2(X,Rdx) is the spa
e of all the square-integrable fun
tions de�ned on X

with values in R
dx
;

� g is a nonlinear measurable mapping whose 
omputational 
ost 
an be

high:

g :

{
L2(X,Rdx) → R

dy

h 7→ g(h)
; (1)

� X (Rdz ,Rdx) refers to a parti
ular 
lass of random �elds in P(X,Rdx), whose
statisti
al properties are parameterized by a deterministi
 ve
tor z ∈ R

dz
.

For instan
e, X (Rdz ,Rdx) 
an 
orrespond to the set of Gaussian random

�elds, whose mean and 
ovarian
e fun
tions are parameterized by the same

dz 
oe�
ients.

� For all z in R
dz
, X(z) is an element of X (Rdz ,Rdx).

Let X⋆
be a parti
ular element of P(X,Rdx), whi
h 
an belong or not to

X (Rdz ,Rdx), and Y ⋆
be its transformation by g. By 
onstru
tion, Y ⋆

is a

dy-dimensional random ve
tor. For ea
h realization of X⋆
, whi
h we denote

by X⋆(θ) with θ ∈ Ω, Y ⋆(θ) := g(X⋆(θ)) de�nes a parti
ular realization of

Y ⋆
.

Given N independent realizations of Y ⋆
, gathered in the set

S(N) := {Y ⋆(θn)}1≤n≤N , θn ∈ Ω,

the purpose of this work is to propose a Bayesian formalism for the identi�-


ation of z⋆
, su
h that the probability distribution of X(z⋆) is the 
losest to

the one of X⋆
.

Remarks

� As mentioned in Introdu
tion, it is important to noti
e that for ea
h z ∈
R

dz
, g(X(z)) is random. This strongly limits the possibility of repla
ing

mapping z 7→ g(X(z)) by a surrogate model, as it is 
lassi
ally done when

solving inverse problems that invoke 
omputationally expensive models.

� In the following, for the sake of simpli
ity, we assume thatX⋆ ∈ X (Rdz ,Rdx).
If it was not the 
ase, it 
ould be ne
essary to introdu
e an error term to

model the di�eren
e betweenX⋆
andX(z) [Kennedy and O'Hagan, 2001℄.

2.2 Bayesian formulation of the problem

In this work, z⋆
is modeled by the random ve
tor Z, to take into a

ount

the fa
t that its value is unknown. Let fZ be the probability density fun
tion
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(PDF) of Z, whi
h is supposed to be known as a prior model. Hen
e, identify-

ing z⋆
amounts to sear
hing the posterior PDF of Z | S(N), whi
h we denote

by fZ|S(N). Using the Bayes theorem, it 
omes:

fZ|S(N)(z) =
LS(N)(z)fZ(z)

E
[
LS(N)(Z)

] , z ∈ R
dz . (2)

There, E [·] is the mathemati
al expe
tation and LS(N) is the likelihood

fun
tion. The elements of S(N) being statisti
ally independent, it follows:

LS(N)(z) =
N∏

n=1

fY (z)(Y
⋆(θn)), z ∈ R

dz , (3)

in whi
h fY (z) is the PDF of Y (z) := g(X(z)) for given z in R
dz
, and is un-

known. To approximate fY (z), a �rst possibility is to generateM independent

realizations of Y (z). Thus, based on this set, the value fY (z)(y) of fY (z) in

any point y in R
dy


an be approximated using any parametri
 or nonparamet-

ri
 statisti
al learning te
hnique. However, this means that fun
tion g has to

be evaluated M ×Q times to evaluate fun
tion LS(N) in Q points for z. This

qui
kly be
omes burdensome when the 
omputational 
ost for ea
h evaluation

of g is relatively high (between several minutes to several hours CPU for the


onsidered appli
ations). One possible approa
h to 
ir
umvent this problem is

to dire
tly approximate the joint PDF of the (dy + dz)-dimensional random

ve
tor (Y (Z),Z) [Soize and Ghanem, 2017℄. Indeed, M independent realiza-

tions of (Y (Z),Z) 
an be obtained from the following two-step pro
edure:

� we �rst draw at randomM independent realizations of Z a

ording to the

distribution fZ , whi
h we denote by Z(ω1), . . ., Z(ωM ), where ω1, . . . , ωM

are in Ω;

� for ea
h value of z in {Z(ω1), . . . ,Z(ωM )}, we draw, at random and inde-

pendently the ones from the others, a parti
ular realization of X(z), and
we dedu
e a realization of Y (z) by evaluating g in this realization of X(z).

For the sake of simpli
ity, we denote these realizations by Y (ωm), 1 ≤ m ≤
M . Based on these realizations, the kernel estimator of fY ,Z is:

f̂Y ,Z(y, z;H) :=
det(H)−1/2

M

M∑

m=1

K
(
H−1/2 ((y, z)− (Y (ωm),Z(ωm)))

)
.

(4)

Here, det(·) is the determinant operator, K is any positive fun
tion whose

integral over R
dy+dz

is one, and H is a ((dy + dz) × (dy + dz))-dimensional

positive-de�nite symmetri
 matrix, whi
h is generally referred as the "band-

width matrix". In the following, we fo
us on the 
ase where K is the Gaussian

multidimensional density, and where H is proportional to the empiri
al esti-

mation of the 
ovarian
e matrix of (Y (Z),Z), denoted by Ĉ:

H = h2Ĉ, h ∈ R. (5)
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The main interest of this hypothesis 
omes from the fa
t that it strongly

redu
es the number of parameters that need to be identi�ed for the 
onstru
-

tion of H , while generally leading to very interesting results for the modeling

of multivariate PDFs (see [Perrin et al., 2018℄ for more details). Other parsi-

monious parameterizations 
ould be proposed for H, su
h as diagonal repre-

sentations, but for su�
iently high values ofM , the in�uen
e of this 
hoi
e on

the identi�
ation results is expe
ted to be small.

Hen
e, the PDF of (Y (Z),Z) is approximated by a mixture ofM Gaussian

PDFs, for whi
h the means are the available realizations of (Y (Z),Z) and the


ovarian
e matri
es are all parameterized by a unique s
alar h:

f̂Y ,Z(y, z;h) =
1

M

M∑

m=1

φ
(
(y, z); (Y (ωm),Z(ωm)), h2Ĉ

)
. (6)

There, for any R
d
-dimensional ve
tor µ and for any (Rd×R

d)-dimensional

symmetri
 positive-de�nite matrixC, φ(·;µ,C) is the PDF of any R
d
-dimensional

Gaussian random ve
tor with mean µ and 
ovarian
e matrix C:

φ (x;µ,C) :=
exp

(
− 1

2 (x− µ)T C−1 (x− µ)
)

(2π)d/2
√
det(C)

, x ∈ R
d. (7)

In addition, the blo
k de
omposition of Ĉ is written as:

Ĉ =

[
ĈY Y ĈY Z

Ĉ
T

Y Z ĈZZ

]
. (8)

For all (y, z) ∈ R
dy ×R

dz
, the kernel approximation of fY (z)(y), whi
h we

denote by f̂Y (z)(y;h), 
an therefore be written as follows (see Appendix for

more details about this expression):

f̂Y (z)(y;h) =
f̂Y ,Z(y, z;h)∫

R
dy f̂Y ,Z(v, z;h)dv

=

M∑

m=1

γm(z;h)
∑M

m′=1 γm′(z;h)
φ (y;µm(z),Cm(h)) ,

(9)

γm(z;h) := exp

(
−

1

2h2
(z −Z(ωm))

T
Ĉ

−1

ZZ (z −Z(ωm))

)
, (10)

µm(z) := Y (ωm) + ĈY ZĈ
−1

ZZ
(z −Z(ωm)), (11)

Cm(h) := h2
(
ĈY Y − ĈY ZĈ

−1

ZZĈ
T

Y Z

)
. (12)

It follows that the posterior PDF of Z is estimated for ea
h z in R
dz

by:



Adaptive method for indire
t identi�
ation 7

fZ|S(N)(z) ≈
L̂S(N)(z;h)fZ(z)

E

[
L̂S(N)(Z)

] , L̂S(N)(z;h) :=
N∏

n=1

f̂Y (z)(Y
⋆(θn);h). (13)

Remarks

� One key step of these methods is the exploration of the whole spa
e of the

input variables. To maximize this 
overing, it is generally worth 
hoosing

{Z(ω1), . . . ,Z(ωM )} as a spa
e �lling design of experiments that preserves

good proje
tion properties for ea
h s
alar input (see [Fang and Lin, 2003,

Fang et al., 2006,Perrin and Cannamela, 2017℄ for the 
onstru
tion of su
h

designs when prior density fZ is uniform or not).

� Another 
ru
ial aspe
t of these Bayesian approa
hes is the 
hoi
e of prior

distribution fZ . Indeed, the more informative it is, the less measurements

we need to get a useful posterior distribution for Z. But if it is over
on�-

dent around values that are potentially biased, the un
ertainty 
arried by

the posterior distribution may not be large enough to adequately 
apture

the true value of Z (see [Marin and Robert, 2007℄ for more details on the


onstru
tion of this prior distribution).

� In the standard 
ase, the M 
ode evaluations are generally used to 
on-

stru
t a surrogate model of a 
omputationally expensive but determin-

isti
 
ode. Hen
e, depending on the dimension of the input spa
e and

the regularity of the 
ode output with respe
t to the inputs, interest-

ing approximations 
an be obtained using relatively small values of M

[Perrin et al., 2017℄. On the 
ontrary, in our 
ase, as z 7→ g(X(z)) is a

sto
hasti
 simulator, the value of M is likely to be higher, as we want the


ode evaluations to allow a pre
ise approximation of the dependen
e stru
-

ture between Y (Z) and Z in the 
onstru
tion of their joint PDF. And the

higher dy + dz is, the higher value of M we may need. However, when 
on-

fronted to expensive simulators, the maximal number of 
ode evaluations

is generally limited (M must be less than 1000 for instan
e). In that 
ase,

it is parti
ularly important to work on methods that allow the most pre
ise

identi�
ation of the parameters at the minimal 
ost. This is the obje
tive of

the following se
tions. In Se
tion 2.3, we �rst propose to de
ompose Y (Z)
in several groups to improve the relevan
e of the nonparametri
 represen-

tation of PDF fY ,Z for a �xed value of M . Then, sele
tion 
riteria are

proposed in Se
tion 2.5 to sequentially 
on
entrate the 
ode evaluations in

the most likely regions for Z, and therefore redu
e the un
ertainties on its

posterior PDF fZ|S(N).

2.3 Optimal partitioning

As it is explained in [Perrin et al., 2018℄, when dy be
omes high, separating

in di�erent groups the 
omponents of Y (Z)|Z that 
ould reasonably be 
on-

sidered as independent 
an strongly improve the relevan
e of f̂Y (z) for a �xed
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number of 
ode evaluations. Let b = (b1, . . . , bdy
) be a parti
ular group de-


omposition of Y (Z)|Z in the sense that:

� if bi = bj , Yi(Z)|Z and Yj(Z)|Z are supposed to be dependent and there-

fore belong to the same blo
k,

� if bi 6= bj, Yi(Z)|Z and Yj(Z)|Z are supposed to be independent and they


an belong to two di�erent blo
ks.

To avoid redundan
ies in this blo
k by blo
k representation, ve
tor b 
an

be 
hosen in the set:

B(dy) :=

{
b ∈ {1, . . . , dy}

dy | b1 = 1, 1 ≤ bj ≤ 1 + max
1≤i≤j−1

bi, 2 ≤ j ≤ dy

}
.

(14)

Hen
e, for any b in B(dy), we 
an de�ne

� Max(b) as the maximal value of b,

� Y (ℓ)(z, b) as the random ve
tor that gathers all the 
omponents of Y (Z)|Z =
z with a blo
k index equal to ℓ,

� y(ℓ)(y, b) as the ve
tor that gathers all the 
omponents of y with a blo
k

index equal to ℓ.

For all b in B(dy), z in R
dz

and h := (h1, . . . , h
Max(b)) in R

Max(b)
, if

f̂
Y (ℓ)(z,b)(y

(ℓ)(y, b);hℓ) is the kernel estimator of the PDF of Y (ℓ)(z, b), it

omes:

fY (z)(y) ≈ f̃Y (z)(y;h, b) :=

Max(b)∏

ℓ=1

f̂
Y (ℓ)(z,b)(y

(ℓ)(y, b);hℓ), y ∈ R
dy , (15)

leading to another approximation of fZ|S(N)(z) for ea
h z in R
dz
:

fZ|S(N)(z) ≈ f̃Z|S(N)(z) :=
L̃S(N)(z;h, b)fZ(z)

E

[
L̃S(N)(Z)

] , (16)

L̃S(N)(z;h, b) :=
N∏

n=1

f̃Y (z)(Y
⋆(θn);h, b). (17)

2.4 Estimation of the kernel parameters

To evaluate L̃S(N), the values of h and b have to be identi�ed. This 
an be

done by solving the following optimization problem:

(hAIC, bAIC) ≈ arg min
h∈]0,+∞[Max(b), b∈B(dy)

AIC

LOO(h, b), (18)
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AIC

LOO(h, b) := 2Max(b)−2 log




M∏

m=1

Max(b)∏

ℓ=1

f̂
(−m)

Y (ℓ)(Z(ωm),b)
(Y (ℓ)(Y (ωm), b);hℓ)


 ,

(19)

where f̂
(−m)

Y (ℓ)(Z(ωm),b)
is the kernel estimator of the PDF of Y (ℓ)(Z(ωm), b) that

is based on all the evaluations of g but the mth

one. Indeed, given Eq. (9), this

amounts to minimizing a "Leave-One-Out" version of the Akaike information


riterion (AIC) [Akaike, 1974℄ asso
iated with the PDF of Y (Z)|Z (very 
lose

results would be obtained by 
onsidering another information 
riterion su
h

as the Bayesian information 
riterion (BIC)). We refer to [Perrin et al., 2018℄

for more details about the solving of this optimization problem.

2.5 Adaptive strategy

By 
onstru
tion, the pre
ision of the estimation of z⋆
depends on the num-

ber of experimental measurements, N , and the number of 
ode evaluations,

M . Classi
ally, the value of N is �xed, whereas it should be possible to im-

prove the a

ura
y of f̃Y (z), whi
h is de�ned by Eq. (15), by adding new


ode evaluations in the learning set. For instan
e, Mnew

new points 
ould be

added to the learning set by evaluating the 
ode inMnew

independent realiza-

tions of Z|S(N) (we remind that no 
ode evaluations are required to 
hoose

these new points). However, as the kernel density estimator is based on the

post-pro
essing of independent and identi
ally distributed realizations of the

random ve
tor to model, non 
onsistent results 
ould be obtained by mixing

realizations of Z|S(N) with realizations of Z. If su
h a sele
tion 
riterion was


hosen, this would mean that theM 
ode evaluations at the initial step should

not be used for the re�ning.

As an alternative, we propose to evaluate the fun
tion

z 7→ f̃(z) := L̃S(N)(z;h
AIC, bAIC)fZ(z)

in ea
h value of {Z(ω1), . . . ,Z(ωM )}. For ea
h 1 ≤ m ≤ M , let πm be the

following weights:

0 ≤ πm :=
f̃(Z(ωm))

∑M
m′=1 f̃(Z(ωm′))

≤ 1. (20)

Without loss of generality, these weights are assumed to be sorted in de-


reasing order, π1 ≥ π2 ≥ . . . ≥ πM . Hen
e, for 0 < α < 1, if we denote by Qα

the smallest integer su
h that:

Qα−1∑

m=1

πm ≥ α, (21)
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the domain Zα := {z ∈ R
dz | f̃(z) ≥ f̃(Z(ωQα

)} 
an be seen as a 
onservative

α-
redible set for Z|S(N), in the sense that the probability for Z|S(N) to

be in Zα is likely to be higher than α. Therefore, adding new realizations of

Z|Z ∈ Zα seems a good mean to enri
h the set of points on whi
h the kernel

density estimator is based. Indeed, the most likely values of z at the former

step are kept in the adaptive pro
edure, while a good exploration of the input

domain is expe
ted if the value of α is 
hosen su�
iently high.

Finally, 
hoosing fZ|Z∈Zα
instead of fZ for the prior distribution of Z,

and repeating several times this pro
edure, it is possible to iteratively redu
e

the un
ertainties about z⋆
.

Remarks

� By adding new 
ode evaluations, the obje
tive is to make f̃Y (z) be as 
lose

to fY (z) as possible, su
h that the approximate posterior f̃Z|S(N) is as 
lose

to the true (but unknown) posterior fZ|S(N) as possible. Choosing a value

of α that is stri
tly inferior to one only aims at limiting the number of new


ode evaluations that will be in the region where true posterior fZ|S(N) is

almost zero. However, this value has not to be 
hosen too small, as it would

arti�
ially redu
e the un
ertainty asso
iated with the estimation of z⋆
by


utting too mu
h the tails of the true posterior. Hen
e, in the appli
ations

that will be presented in Se
tion 3, α is 
hosen equal to 0.99.
� A

ording to Eq. (21), we deliberately add one to the value of Qα to be


onservative for the estimation of the α-
redible set. This is parti
ularly

important for 
ases when after the �rst iteration, π1 ≈ 1. Indeed, even if

one value of z appears to be mu
h more relevant than the others, we do

not want to fo
us too mu
h around a single mode.

3 Appli
ations

The purpose of this se
tion is to illustrate the method proposed in Se
tion 2

on two appli
ations.

3.1 Analyti
al appli
ation

In this �rst appli
ation, X(z) refers to the Gaussian random �elds whose

mean is equal to t 7→ sin(2πz3t + z4), and whose 
ovarian
e fun
tion is equal

to (t, t′) 7→ z21 exp
(
− (t−t′)2

2z2
2

)
.

This 
lass of random �elds is therefore parameterized by four quantities:

two parameters for the mean value, denoted by z3 and z4, and two parameters

for the 
ovarian
e fun
tion, denoted by z1 and z2. We then introdu
e U(X(z))
as the image of X(z) by the following nonlinear mapping:
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Fig. 1 Comparison of independent realizations U(X(Z)) and U(X(Z))|Z = z⋆.

U(X(z)) := {X(t; z) sin(X(t; z)), t ∈ [0, 1]} . (22)

The value of z⋆
is 
hosen equal to (0.3, 0.2, 2, 1), and it is a priori modeled

by a uniformly distributed over [0.1, 1]× [0.05, 1]× [1, 3]× [0, 2] random ve
tor,

denoted by Z. To identify z⋆
, the available information is made of N = 10

independent realizations of U(X(Z))|Z = z⋆
, denoted by U⋆(θ1), . . . , U

⋆(θN ).
To solve the inferen
e problem, M = 500 independent realizations of Z have

been drawn, whi
h we write {Z(ω1), . . . ,Z(ωM )}. For ea
h 1 ≤ m ≤ M , we

then draw at random one realization of U(X(Z(ωm))), and we denote it by

U(ωm) for the sake of simpli
ity. As an illustration, several realizations of

U(X(Z)) and U(X(Z))|Z = z⋆
are 
ompared in Figure 1.

In prin
iple, the Bayesian formulation 
an be applied to any multi-variate

output 
ode. But in pra
ti
e, it is generally very 
onvenient to 
ondense (if

it is possible) the statisti
al 
ontent of the 
ode output in a low-dimensional

ve
tor [Perrin, ress℄. In our 
ontext, it is even more important, as a key step of

the proposed method is the identi�
ation of the joint distribution between the

parameters to be identi�ed and the asso
iated 
ode output, whose 
omplexity

strongly in
reases with the dimension of the 
ode output. In that prospe
t, we

introdu
e ψp, p ≥ 1 as the solutions of the following eigenvalue problem:

∫ 1

0

M∑

m=1

U(t, ωm)U(t′, ωm)ψp(t
′)dt′ = λpψp(t), (23)
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λ1 ≥ λ2 ≥ · · · → 0,

∫ 1

0

ψp(t
′)ψq(t

′)dt′ = δpq, (24)

where δpq is the Krone
ker symbol that is equal to 1 if p = q and 0 otherwise. To

solve the inferen
e problem, we �nally introdu
e Y (z) as the ve
tor gathering
the proje
tion 
oe�
ients of U(X(Z)) on the former eigenfun
tions asso
iated

with the dy highest eigenvalues:

Y (Z) :=

(∫ 1

0

U(t;X(Z))ψ1(t)dt, . . . ,

∫ 1

0

U(t;X(Z))ψdy
(t)dt

)
. (25)

The value of dy 
an then be 
hosen to guarantee a relevant representation

of the observations. To this end, we introdu
e ε2 as the following quantity:

ε2(dy) :=

∑N
n=1

∫ 1

0

(
U⋆(t, θn)− Û⋆(t, θn; dy)

)2
dt

∑N
n=1

∫ 1

0 (U⋆(t, θn))
2
dt

, (26)

Û⋆(t, θn; dy) :=

dy∑

p=1

ψp(t)

(∫ 1

0

U⋆(t′, θn)ψp(t
′)dt′

)
. (27)

As an illustration, Figure 2 shows the evolution of ε2(dy) with respe
t to

dy, as well as the di�eren
e between U
⋆(t, θ1) and Û

⋆(t, θ1; dy) for three values
of dy. For this appli
ation, dy was 
hosen equal to 12, whi
h 
orresponds to a

value of ε2 that is less than 1%.

Based on theseM realizations of (Y (Z),Z), and on these N realizations of

Y (z⋆) := Y (Z)|Z = z⋆
, the adaptive Bayesian formalism presented in Se
tion

2 is now applied. For this appli
ation, the parameter α, whi
h was introdu
ed

in Se
tion 2.5, is 
hosen equal to 0.99. At ea
h iteration, new samples are

therefore added in the region where fZ|S(N) is not too small using a reje
tion

approa
h until we get a total of M points (in
luding the points 
omputed at

the former iterations) in the α-
redible set Zα, whose de�nition is also given

in Se
tion 2.5. After 5 iterations, the total number of 
alls to the 
ode is

equal to 2300, whi
h means that around 450 new points have been added at

ea
h iteration. The results are summarized in Table 3.1 and Figures 3 and

4. As a �rst 
omment, we verify that the identi�
ation of z⋆
after only one

iteration is not very pre
ise, in the sense that the predi
tion un
ertainties are

very high. This is not surprising, as we are trying to approximate the PDF

of a 16-dimensional random ve
tor (dy = 12, dz = 4) on its whole de�nition

domain from only 500 realizations. Moving from M = 500 to M = 2300,
that is to say spending the total budget at the �rst iteration, does not really

help. Indeed, the results we get in terms of mean and varian
e of Z|S(N)
are approximatively the same. This is explained by the fa
t that even if the

number of points is almost multiplied by �ve, the 
overage of the de�nition
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Fig. 2 Evolution of the proje
tion error with respe
t to dy .

Z1 Z2 Z3 Z4

Referen
e 0.3 0.2 2 1

E [Z|S(N)], M = 2300, i = 1 0.25 0.57 2.00 1.02

E [Z|S(N)], M = 500, i = 1 0.24 0.59 2.00 1.02

E [Z|S(N)], M = 500, i = 2 0.35 0.31 2.00 1.04

E [Z|S(N)], M = 500, i = 3 0.34 0.23 2.00 1.04

E [Z|S(N)], M = 500, i = 4 0.34 0.24 2.00 1.04

E [Z|S(N)], M = 500, i = 5 0.29 0.19 2.00 1.04

Table 1 Evolution of the posterior mean with respe
t to the iteration number.

domain stays very sparse. On the 
ontrary, adding iteratively around 450 new

ode evaluations in the most likely region, whose volume is mu
h smaller than

the initial volume, allows E [Z|S(N)] to tend to z⋆
, and strongly redu
es the


redible intervals. This 
onvergen
e is qui
ker for the mean parameters than

for the 
ovarian
e parameters, whi
h was also expe
ted, as the mean fun
tion

is generally easier to identify than the 
ovarian
e. Fo
using on Figure 4, it is

also interesting to noti
e that the referen
e value does not need to be in the

99%-
redible ellipse asso
iated with Z|S(N) at the �rst iteration to be in the

99%-
redible ellipses at the next iterations.
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3.2 Appli
ation to the identi�
ation of the me
hani
al properties of an

unknown anisotropi
 material

The se
ond appli
ation deals with the identi�
ation of the me
hani
al proper-

ties of an heterogeneous mi
ro-stru
ture, whi
h is modeled by a random elasti


medium. To this end, several experimental tests are performed on a series of

spe
imens made of the same material. To be 
oherent with the notations in-

trodu
ed in Se
tion 2, we denote by X the elasti
ity �eld 
hara
terizing the
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Fig. 5 One potential spatial variation of the Young modulus and the Poisson ratio asso
i-

ated with the sto
hasti
 model X(z⋆).

Fig. 6 Representation of the studied me
hani
al phenomenon.
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me
hani
al properties of the material that 
onstitutes the spe
imens. Several

sto
hasti
 models have been proposed in the framework of the heterogeneous

anisotropi
 linear elasti
ity [Soize, 2006,Soize, 2008,Clouteau et al., 2013,Guilleminot and Soize, 2013℄.

It should be noted that the elasti
ity �eld is not a real-valued random �eld, but

a tensor-valued random �eld, and that the di�erent 
omponents of this ran-

dom �eld 
annot be identi�ed separately due to algebrai
 
onstraints. For this

appli
ation, the sto
hasti
 model for the elasti
ity �eld is based on the model

proposed in [Soize, 2006℄ and [Guilleminot and Soize, 2013℄ in 2D plan stresses

for the sake of simpli
ity. Hen
e, the distribution of X is non-Gaussian, and

it is parameterized by a 5-dimensional deterministi
 ve
tor z = (z1, . . . , z5),
where:

� z1 is a positive dispersion 
oe�
ient that 
ontrols the level of �u
tuations,

� z2, z3 are two spatial 
orrelation lengths,

� z4 is the mean value of the Young Modulus (×109 Pa);
� z5 is the mean value of the Poisson ratio.

We then assume that N = 100 
ubi
 spe
imens are available, whose re-

spe
tive me
hani
al properties are 
hara
terized by one parti
ular realization

of X(z⋆), with z⋆ = (2000, 0.1, 0.15, 210, 0.3). As an illustration, Figure 5

shows, for one parti
ular spe
imen, the evolution of the Young modulus and

the Poisson ratio in ea
h point of [0, 1]2. The same pressure �eld fS = −fSe2
is then imposed on the top of ea
h spe
imen, and we only have a

ess to the

indu
ed displa
ement �eld on the boundaries of these spe
imens (see Figure

6 for an illustration of the experimental proto
ol). Let U⋆(θ1), . . . ,U
⋆(θN ) be

these measured displa
ements.

Based on this set of measurements, the method des
ribed in Se
tion 2 
ould

dire
tly be applied to the identi�
ation of z⋆
. To speed up this identi�
ation,

following the works a
hieved in [Nguyen et al., 2015℄, we propose an alterna-

tive method, whi
h is based on a two-step pro
edure. First, z⋆4 and z⋆5 will

be identi�ed by 
onfronting the measured displa
ements to the homogeneous


ase. On
e z⋆4 and z⋆5 have been found, a Bayesian formalism will be proposed

for the identi�
ation of the three remaining 
omponents of z⋆
.

Indeed, if the spe
imens were made of a homogeneous material, 
hara
-

terized by its young modulus E and its Poisson ratio ν, it is well known

[Lai et al., 2010℄ that the indu
ed displa
ement in ea
h point s ∈ [0, 1]2 would
be equal to uhomo(s) = (as1, bs2), with

(
a

b

)
=

[
λ λ+ 2µ

λ+ 2µ λ

]−1(
0

−fS

)
, µ =

E

2(1 + ν)
, λ =

2µν

(1 − 2ν)
. (28)

Hen
e, as we are 
onsidering a 
lass of stationary random pro
esses, the

values of z⋆4 and z⋆5 
an be identi�ed as the arguments that minimize the L2

distan
e between the N measured displa
ements and the asso
iated homoge-

neous displa
ements. In this two-step approa
h, the Bayesian identi�
ation is
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no longer 
arried out in dimension 5, but in dimension 3. This strongly redu
es

the number of 
ode evaluations that will be needed for a 
orre
t identi�
ation

of (z⋆1 , z
⋆
2 , z

⋆
3).

Thus, in the following, only z⋆1 , z
⋆
2 and z⋆3 are modeled by random quan-

tities. They are gathered in the ve
tor Z, whose 
omponents are assumed

independent and distributed a

ording to the following distributions:

log(Z1) ∼ U(4.6, 11.5), Z2 ∼ U(0.01, 0.3), Z3 ∼ U(0.01, 0.3), (29)

where for all a < b, U(a, b) is the uniform distribution over [a, b]. For a given

value of Z, it is possible to simulate independent realizations of X(Z), and
to approximate (using the Finite Element Method) the displa
ements indu
ed

by the experimental for
e �eld, whi
h we write U(X(Z)). Thus, for this se
-
ond appli
ation, we �rst 
hose at random M = 1000 values of Z a

ording to

its prior distribution. For ea
h of these values, a parti
ular realization of the

elasti
ity tensor was then generated over [0, 1]2, and the me
hani
al problem

that 
orresponds to the experimental proto
ol was solved (using the software

Cast3M) to get the displa
ements at the boundary of the 
ube. In the same

manner than in Se
tion 3.1, we �nally introdu
e Y (Z) as the proje
tion of

U(X(Z)) on the dy �rst eigenfun
tions asso
iated with the empiri
al estima-

tion of the 
ovarian
e of U(X(Z)) based on the M 
ode evaluations. In the

same manner, we gather in S(N) the proje
tion 
oe�
ients of ea
h measured

displa
ement U⋆(θn) on this redu
ed basis. To 
hoose the value of dy, the

normalized error de�ned by Eq. (26) is on
e again 
onsidered. For this appli-


ation, dy is 
hosen equal to 23 in order to 
orre
tly represent most of the lo
al

os
illations of the displa
ements. A

ording to Figure 7, this 
orresponds to a

proje
tion error that is less than 0.1%.

Following the framework proposed in Se
tion 2, the PDF of Z|S(N) is

dedu
ed from the kernel estimator of the PDF of (Y (Z),Z). An adaptive

pro
edure (with α = 0.99) is moreover introdu
ed to better 
on
entrate the

distribution of Z|S(N) on the true value of z⋆
. To be more pre
ise, 900 new


ode evaluations were added between the two �rst iterations, and 620 between
the two last iterations, leading to a total budget of 2520 
ode evaluations. The
relevan
e of this approa
h is shown in Figure 8, where the blue 
ontinuous

lines 
orrespond to the 95%-
redible ellipses asso
iated with the distribution

of Z|S(N). After three iterations, the values of z⋆1 , z
⋆
2 and z⋆3 are indeed iden-

ti�ed with a high pre
ision. To emphasize the interest of the partitioning pre-

sented in Se
tion 3.2, these results are 
ompared to the 
ase where there is no

optimization of the blo
k stru
ture (the ellipses in red dotted lines). Although

these two approa
hes are based on the same information, there is no denying

that sear
hing groups of independent 
omponents of Y (Z)|Z is really helpful.

This is espe
ially true for the �rst iteration, where 23 groups of independent


omponents were 
hosen, and for the se
ond iteration, where 8 groups of in-

dependent 
omponents were 
hosen. For the third iteration, as only 4 groups
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Fig. 8 Evolution of the 95%-
redible ellipses with respe
t to the iteration number. Blue


ontinuous line: dy = 23 with optimization of the blo
k stru
ture. Red dotted line: dy = 23
without optimization of the blo
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ture. Green dashed line: dy = 5 without optimization

of the blo
k stru
ture.
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were 
hosen, introdu
ing the partitioning does not make a big di�eren
e for

the PDF identi�
ation, whi
h explains the similarities between the blue and

the red 
urves.

This set of �gures also emphasizes the importan
e of 
onsidering a high

value of dy , even if it 
ompli
ates the PDF identi�
ation. For instan
e, 
hoosing

dy = 5 leads to the results in green dashed lines, whi
h are 
learly less relevant

than the results in blue that 
orrespond to dy = 23. Intermediate results were

obtained for values of dy between 5 and 23, whereas still in
reasing dy did not

really 
hange the results.

In order to emphasize the e�
ien
y of the proposed method to re
over

the true underlying sto
hasti
ity, three additional bat
hes of Q = 104 sim-

ulations are laun
hed. These simulations are asso
iated with the same 
ubi


system than in Figure 6, but with di�erent boundary 
onditions (by 
hang-

ing the boundary 
onditions, we want to verify that the identi�ed values of

Z are not dependent of a �xed 
on�guration). While the boundary 
ondi-

tions on the inferior side of the 
ube do not 
hange, the left and right sides

are now free of 
onstraints, and the displa
ements on the superior side are


hosen equal to 0.002e1 − 0.01e2. We then denote by

{
X(1,q), 1 ≤ q ≤ Q

}
,

{
X(2,q), 1 ≤ q ≤ Q

}
and

{
X(3,q), 1 ≤ q ≤ Q

}
the elasti
ity �elds 
hara
teriz-

ing the material properties of the di�erent 
ubes of the three sets respe
tively.

For all 1 ≤ q ≤ Q,

� X(1,q)
is an independent realization of the true elasti
ity �eld, X(z⋆);

� X(2,q)
is an independent realization of X((zq,prior, z⋆4 , z

⋆
5)), where zq,prior

is a realization of Z, whose distribution is given by Eq. (29),

� X(3,q)
is an independent realization of X((zq,post, z⋆4 , z

⋆
5)), where z

q,post
is

a realization of Z|S(N) after the three formerly presented iterations.

For ea
h simulation, we denote by U(X(i,q)), 1 ≤ i ≤ 3, the 
on
atena-

tion of the verti
al and horizontal displa
ements that are indu
ed on the left

and right sides of the 
ube. To 
ompare the statisti
al information gathered

in these displa
ements, we then 
ompute, for ea
h 1 ≤ i ≤ 3, the eigenval-

ues

{
v
(i)
j , j ≥ 0

}
asso
iated with the empiri
al estimate of their 
ovarian
e

matri
es. In addition, we denote by σVM(X(i,q)) the maximum value over the


ubi
 domain of the Von Mises stress. This Von Mises 
riterion is 
ommonly

used to 
hara
terize the resistan
e of the system (see [Lai et al., 2010℄ for more

details). The de
rease of these eigenvalues and the PDF of these Von Mises


riteria are �nally 
ompared in Figure 9. Looking at these �gures, we see that

the results asso
iated with the posterior distribution of Z are very 
lose to the

ones asso
iated with the true elasti
ity �eld, whi
h is not true for the results

asso
iated with the prior distribution of Z. This underlines the 
apa
ity of the

proposed method to take into a

ount indire
t observations for the identi�
a-
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Fig. 9 Representation of the eigenvalues de
reases (a) and of the PDFs of the Von Mises


riteria (b) for the three 
ompared 
on�gurations. In ea
h �gure, the blue 
ontinuous lines are

asso
iated with the referen
e 
ase, the red dashed line 
orrespond to the results asso
iated

with the prior distribution of Z, when the bla
k two-dashed lines 
orrespond to the results

asso
iated with the posterior distribution of Z.

tion of the parameters 
hara
terizing the distribution of an unknown random

pro
ess of interest.
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4 Con
lusion

The in
reasing of the 
omputational resour
es and the generalization of the

monitoring of me
hani
al systems have en
ouraged many s
ienti�
 �elds to

take into a

ount random �elds in their modeling. In that prospe
t, this work

proposes an adaptive Bayesian framework to e�
iently identify the statisti
al

properties of these random �elds when the available information is a redu
ed

set of indire
t observations. Two examples based on simulated data are �nally

presented to show the potential of this approa
h.

Extending this approa
h to the 
ases where the number of parameters to

identify and the number of observations are very high would be interesting for

future work.

Appendix

A.1. Proof of the equality of Eq. 9

Let A,B,D be the blo
k de
omposition matri
es of Ĉ
−1
:

Ĉ
−1

=

[
A B

BT D

]
. (30)

Using the S
hur 
omplement, if follows that:





Ĉ
−1

ZZ = D −BTA−1B,

(ĈY Y − ĈY ZĈ
−1

ZZ
Ĉ

T

Y Z
)−1 = A,

− ĈY ZĈ
−1

ZZ
= A−1B.

(31)

It 
omes

((y, z)− (Y (ωm),Z(ωm)))
T
(h2Ĉ)−1 ((y, z)− (Y (ωm),Z(ωm)))

=
1

h2

(
(y − Y (ωm))TA(y − Y (ωm)) + 2(y − Y (ωm))TAA−1B (z −Z(ωm))

+ (z −Z(ωm))TD(z −Z(ωm))

)

=
1

h2



(y − Y (ωm) +A−1B (z −Z(ωm)))TA(y − Y (ωm) +A−1B (z −Z(ωm)))

+ (z −Z(ωm))T
(
D −BTA−1B

)
(z −Z(ωm))




= (y − µn(z))
TC−1

n (y − µn(z)) +
1

h2
(z −Z(ωm))

T
C−1

ZZ
(z −Z(ωm))

(32)

This leads to the sear
hed result.
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