J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, 2005.

Y. M. Marzouk, H. N. Najm, and L. A. Rahn, Stochastic spectral methods for efficient bayesian solution of inverse problems, Journal of Computational Physics, vol.224, issue.2, pp.560-586, 2007.

B. P. Carlin and T. A. Louis, Bayesian Methods for Data Analysis, 2009.

A. Stuart, Inverse problems: A Bayesian perspective, Acta Numerica, vol.19, pp.451-559, 2010.

A. Spantini, T. Cui, K. Willcox, L. Tenorio, and Y. Marzouk, Goal-oriented optimal approximations of bayesian linear inverse problems, SIAM Journal on Scientific Computing, vol.39, issue.5, pp.167-196, 2017.

J. Marin, P. Pudlo, C. Robert, and R. Ryder, Approximate bayesian computational methods, Statistics and Computing, vol.22, issue.6, pp.1167-1180, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00567240

P. Marjoram, J. Molitor, V. Plagnol, and S. Tavare, Markov chain monte carlo without likelihoods, Proceedings of the National Academy of Sciences of the United States of America, vol.100, pp.15324-15328, 2003.

E. T. Jaynes, Information theory and statistical mechanics, Physical Review, vol.106, issue.4, pp.620-630, 1957.

A. Bhattacharyya, On the measures of divergence between two statistical populations defined by their probability distributions, Bulletin of the Calcultta Mathematical Society, vol.35, pp.99-109, 1943.

S. Kullback and R. A. Leibler, On information and sufficiency, The Annals of Mathematical Statistics, vol.22, issue.1, pp.79-86, 1951.

J. N. Kapur and H. K. Kesavan, Entropy Optimization Principles with Applications, 1992.

H. Gish, A probabilistic approach to the understanding and training of neural network classifiers, Proceedings of the IEEE International Conference on Acoustics, speech, and signal processing, pp.1361-1364, 1990.

H. Shatkay and L. P. Kaelbling, Learning topological maps with weak local odometric information, Proceedings of IJCAI-97, INCIJCAI, pp.920-929, 1997.

D. Barber and C. M. Bishop, Ensemble learning for multi-layer networks, Proceedings of Advances in neural information processing systems, pp.395-401, 1998.

J. Hollmén, V. Tresp, and O. Simula, A learning vector quantization algorithm for probabilistic models, Proceedings of the 10th European Signal Processing Conference, pp.1-4, 2000.

A. Galata, N. Johnson, and D. Hogg, Learning variable-length markov models of behavior, Computer Vision and Image Understanding, vol.81, issue.3, pp.398-413, 2001.

B. Bigi, Using kullback-leibler distance for text categorization, Proceedings of the European Conference on information retrieval, pp.305-319, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01392500

S. Kaski and J. Sinkkonen, Principle of learning metrics for exploratory data analysis, Image and Video Technology, vol.37, issue.2-3, pp.177-188, 2004.

T. Lange, M. H. Law, A. K. Jain, and J. M. Buhmann, Learning with constrained and unlabelled data, Proceedings of the Computer Society Conference on Computer vision and pattern recognition (CVPR'05), vol.1, pp.731-738, 2005.

S. Peperkamp, R. L. Calvez, J. Nadal, and E. Dupoux, The acquisition of allophonic rules: Statistical learning with linguistic constraints, Cognition, vol.101, issue.3, pp.31-41, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00143852

S. Filippi, O. Cappé, and A. Garivier, Optimism in reinforcement learning and kullback-leibler divergence, Proceedings of the 48th Annual Allerton IEEE Conference on Communication, control, and computing, pp.115-122, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00476116

N. Vasconcelos, P. Ho, and P. Moreno, The kullback-leibler kernel as a framework for discriminant and localized representations for visual recognition, Proceedings of the European Conference on Computer Vision, pp.430-441, 2004.

W. Zhang, S. Shan, X. Chen, and W. Gao, Local gabor binary patterns based on kullback-leibler divergence for partially occluded face recognition, IEEE Signal Processing Letters, vol.14, issue.11, pp.875-878, 2007.

M. Koestinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof, Large scale metric learning from equivalence constraints, Proceedings of the IEEE Conference on Computer vision and pattern recognition, pp.2288-2295, 2012.

O. Cappé, A. Garivier, O. Maillard, R. Munos, and G. Stoltz, Kullback-leibler upper confidence bounds for optimal sequential allocation, The Annals of Statistics, vol.41, issue.3, pp.1516-1541, 2013.

Z. Ran and B. Hu, Determining structural identifiability of parameter learning machines, Neurocomputing, vol.127, pp.88-97, 2014.

M. Sun, Y. Li, J. F. Gemmeke, and X. Zhang, Speech enhancement under low snr conditions via noise estimation using sparse and low-rank nmf with kullback-leibler divergence, IEEE Transactions on Audio, Speech, and Language Processing, vol.23, issue.7, pp.1233-1242, 2015.

S. Nowozin, B. Cseke, and R. Tomioka, Training generative neural samplers using variational divergence minimization, Proceedings of the Conference on Advances in neural information processing systems, pp.271-279, 2016.

G. A. Hanasusanto, V. Roitch, D. Kuhn, and W. Wiesemann, Ambiguous joint chance constraints under mean and dispersion information, Operations Research, vol.65, issue.3, pp.751-767, 2017.

H. N. Najm, R. D. Berry, C. Safta, K. Sargsyan, and B. J. Debusschere, Data-free inference of uncertain parameters in chemical models, International Journal for Uncertainty Quantification, vol.4, issue.2, pp.111-132, 2014.

H. N. Najm and K. Chowdhary, Inference given summary statistics, Handbook of Uncertainty Quantification, pp.33-67, 2017.

B. Nguyen, C. Morell, and B. D. Baets, Supervised distance metric learning through maximization of the jeffrey divergence, Pattern Recognition, vol.64, pp.215-225, 2017.

S. J. Wetzel, Unsupervised learning of phase transitions: From principal component analysis to variational autoencoders, Physical Review E, vol.96, issue.2, p.22140, 2017.

M. Fan, X. Zhang, L. Du, L. Chen, and D. Tao, Semi-supervised learning through label propagation on geodesics, IEEE Transactions on Cybernetics, vol.48, issue.5, pp.1486-1499, 2018.

N. Saleem and G. Ijaz, Low rank sparse decomposition model based speech enhancement using gammatone filterbank and kullback-leibler divergence, International Journal of Speech Technology, vol.21, issue.2, pp.217-231, 2018.

M. Xu, M. Han, C. P. Chen, and T. Qiu, Recurrent broad learning systems for time series prediction, IEEE Transactions on Cybernetics (99), pp.1-13, 2018.

C. Soize and R. Ghanem, Data-driven probability concentration and sampling on manifold, Journal of Computational Physics, vol.321, pp.242-258, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01283842

C. Soize and R. Ghanem, Polynomial chaos representation of databases on manifolds, Journal of Computational Physics, vol.335, pp.201-221, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01448413

R. Ghanem and C. Soize, Probabilistic nonconvex constrained optimization with fixed number of function evaluations, International Journal for Numerical Methods in Engineering, vol.113, issue.4, pp.719-741, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01576263

C. Soize, R. G. Ghanem, C. Safta, X. Huan, Z. P. Vane et al., Entropy-based closure for probabilistic learning on manifolds, Journal of Computational Physics, vol.388, pp.528-533, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02100250

R. Ghanem, C. Soize, and C. Thimmisetty, Optimal well-placement using probabilistic learning, Data-Enabled Discovery and Applications, vol.2, issue.1, pp.1-16, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01703255

R. G. Ghanem, C. Soize, C. Safta, X. Huan, G. Lacaze et al., Design optimization of a scramjet under uncertainty using probabilistic learning on manifolds, Journal of Computational Physics, pp.xx-xx, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02341912

C. Soize and C. Farhat, Probabilistic learning for modeling and quantifying model-form uncertainties in nonlinear computational mechanics, International Journal for Numerical Methods in Engineering, vol.117, pp.819-843, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02052833

C. Soize, Polynomial chaos expansion of a multimodal random vector, SIAM/ASA Journal on Uncertainty Quantification, vol.3, issue.1, pp.34-60, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01105959

A. Bowman and A. Azzalini, Applied Smoothing Techniques for Data Analysis, 1997.

C. E. Shannon, A mathematical theory of communication, Bell System Technology Journal, vol.27, issue.14, pp.379-423, 1948.

E. T. Jaynes, Information theory and statistical mechanics, Physical Review, vol.108, issue.2, pp.171-190, 1957.

T. M. Cover and J. A. Thomas, Elements of Information Theory, 2006.

C. Soize, Uncertainty Quantification. An Accelerated Course with Advanced Applications in Computational Engineering, 2017.
URL : https://hal.archives-ouvertes.fr/hal-00826082

J. Guilleminot and C. Soize, On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties, Journal of Elasticity, vol.111, issue.2, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00724048

N. Agmon, Y. Alhassid, and R. D. Levine, An algorithm for finding the distribution of maximal entropy, Journal of Computational Physics, vol.30, issue.2, pp.250-258, 1979.

A. Batou and C. Soize, Calculation of lagrange multipliers in the construction of maximum entropy distributions in high stochastic dimension, SIAM/ASA Journal on Uncertainty Quantification, vol.1, issue.1, pp.431-451, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00851201

C. Soize, Construction of probability distributions in high dimension using the maximum entropy principle. applications to stochastic processes, random fields and random matrices, International Journal for Numerical Methods in Engineering, vol.76, issue.10, pp.1583-1611, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00684517

C. Soize, The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit Steady State Solutions, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00770411

R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler et al., Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, PNAS, vol.102, issue.21, pp.7426-7431, 2005.

C. Soize, Non gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.1-3, pp.26-64, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00686157

M. Shinozuka, Simulation of multivariate and multidimensional random processes, The Journal of the Acoustical Society of America, vol.49, issue.1B, pp.357-368, 1971.