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Self-similar measures and the Rajchman

property

Julien Brémont

Université Paris-Est-Créteil, novembre 2020

Abstract

For Bernoulli convolutions, the convergence to zero of the Fourier transform at infinity was
characterized by successive works of Erdös [4] and Salem [17]. We provide a quasi-complete
extension of these results to general self-similar measures on the real line.

1 Introduction

Rajchman measures. In the present article we consider the question of extending some classical
results on Bernoulli convolutions to a more general context of self-similar measures. For a Borel
probability measure µ on R, define its Fourier transform as :

µ̂(t) =

∫
R
e2iπtx dµ(x), t ∈ R.

We say that µ is Rajchman, whenever µ̂(t)→ 0, as t→ +∞. When µ is a Borel probability measure
on the torus T = R\Z, we introduce its Fourier coefficients, defined as :

µ̂(n) =

∫
T
e2iπnx dµ(x), n ∈ Z.

In this study, starting from a Borel probability measure µ on R, Borel probability measures on T
will naturally appear, quantifying the non-Rajchman character of µ.

For a Borel probability measure µ on R, the Rajchman property holds for example if µ is absolutely
continuous with respect to Lebesgue measure LR, by the Riemann-Lebesgue lemma. The situation
can be more subtle and for instance there exist Cantor sets of zero Lebesgue measure and even
of zero-Hausdorff dimension which support a Rajchman measure; cf Menshov [13], Bluhm [2].
Questions on the Rajchman property of a measure naturally arise in Harmonic Analysis, for example
when studying sets of multiplicity for trigonometric series; cf Lyons [12] or Zygmund [29]. We shall
say a word on this topic at the end of the article. A classical counter-example is the uniform
measure µ on the standard middle-third Cantor set, which is a continuous singular measure, not
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Rajchman (due to µ̂(3n) = µ̂(n), n ∈ Z). As in this last example, the obstructions for a measure to
be Rajchman are often seen to be of arithmetical nature. The present work goes in this direction.

As it concerns t → +∞, the Rajchman character of a measure µ on R is an information of local
regularity. As is well-known, it says for example that µ has no atom; if µ̂ ∈ L2(R), then µ is
absolutely continuous with respect to LR with an L2(R) density; if µ̂ has some polynomial decay
at infinity, one gets a lower bound on the Hausdorff dimension of µ; etc. The Rajchman character
can be reformulated as an equidistribution property modulo 1. Since µ̂(t) → 0 is equivalent to
µ̂(mt)→ 0 for any integer m 6= 0, if X is a real random variable with law µ, then µ is Rajchman if
and only if the law of tX mod 1 converges, as t→ +∞, to Lebesgue measure LT on T.

Self-similar measures. We now recall standard notions about self-similar measures on the real
line R, with a probabilistic point of view. We write L(X) for the law of a real random variable X.
Let N ≥ 0 and real affine maps ϕk(x) = rkx + bk, with rk > 0, for 0 ≤ k ≤ N , and at least one
rk < 1. We shall talk of “strict contractions” in the case when 0 < rk < 1, for all 0 ≤ k ≤ N .
This assumption will be considered principally in the second half of the article. For the sequel, we
introduce the vectors r = (rk)0≤k≤N and b = (bk)0≤k≤N .

Notice for what follows that for n ≥ 0, a composition ϕkn−1
◦ · · · ◦ ϕk0 has the explicit expression :

ϕkn−1 ◦ · · · ◦ ϕk0(x) = rkn−1 · · · rk0x+

n−1∑
l=0

bklrkn−1 · · · rkl+1
.

Consider the convex set CN = {p = (p0, · · · , pN ) | ∀j, pj > 0,
∑
j pj = 1}, open for the topology

of the affine hyperplane {
∑
j pj = 1}. We denote its closure by C̄N . Define :

DN (r) = {p ∈ C̄N |
∑

0≤j≤N

pj log rj < 0}.

This is a non-empty open subset of C̄N , for the relative topology. Notice that DN (r) = C̄N , in the
case when the (ϕk)0≤k≤N are strict contractions.

Fixing a probability vector p ∈ DN (r), we now compose the contractions at random, independently,
according to p. Precisely, let X0 be any real random variable and (εn)n≥0 be independent and
identically distributed (i.i.d.) random variables, independent from X0, and with law p, in other
words P(ε0 = k) = pk, 0 ≤ k ≤ N . We consider the Markov chain (Xn)n≥0 on R defined by :

Xn = ϕεn−1 ◦ · · · ◦ ϕε0(X0), n ≥ 0.

The condition p ∈ DN (r), of contraction on average, can be rewritten as E(log rε0) < 0. It implies
that (Xn)n≥0 has a unique stationary (time invariant) measure, written as ν. This follows for
example from the fact that L(Xn) = L(Yn), where :

Yn := ϕε0 ◦ · · · ◦ ϕεn−1(X0) = rε0 · · · rεn−1X0 +

n−1∑
l=0

bεlrε0 · · · rεl−1
.

As usual, (Yn) is more stable than (Xn). Since n−1 log(rε0 · · · rεn−1
) → E(log rε0) < 0, a.-s., as

n→ +∞, by the Law of Large Numbers, we get that Yn converges a.-s., as n→ +∞, to :
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X :=
∑
l≥0

bεlrε0 · · · rεl−1
.

Setting ν = L(X), we obtain that L(Xn) weakly converges to ν. By construction, we have
L(Xn+1) =

∑
0≤j≤N pjL(Xn) ◦ ϕ−1

j . Taking the limit as n→ +∞, the measure ν verifies :

ν =
∑

0≤j≤N

pjν ◦ ϕ−1
j . (1)

The previous convergence implies that the solution of this “stable fixed point equation” is
unique among Borel probability measures. Also, ν has to be of pure type, i.e. either purely atomic
or absolutely continuous with respect to LR or else singular continuous, since each term in its
Radon-Nikodym decomposition with respect to LR verifies (1). A few remarks are in order :

i) If p ∈ CN , the measure ν is purely atomic if and only if the ϕj have a common fixed point c,
in which case ν is the Dirac mass at c. Indeed, consider the necessity and suppose that ν has an
atom. Let a > 0 be the maximal mass of an atom and E the finite set of points having mass a.
Fixing any c ∈ E, the relation ν({c}) =

∑
j pjν({ϕ−1

j (c)}) furnishes ϕ−1
j (c) ∈ E, 0 ≤ j ≤ N . Hence

ϕ−nj (c) ∈ E, n ≥ 0, for all j. If ϕj 6= id, then ϕ−1
j (c) = c, the set {ϕ−nj (c), n ≥ 0} being infinite

otherwise. If ϕj = id, it fixes all points.

ii) The equation for a hypothetical density f of ν with respect to LR, coming from (1), is :

f =
∑

0≤j≤N

pjr
−1
j f ◦ ϕ−1

j .

This “unstable fixed point equation” is difficult to solve directly. It is equivalently reformulated into
the fact that ((r−1

εn−1
· · · r−1

ε0 )f ◦ ϕ−1
εn−1
· · · ◦ ϕ−1

ε0 (x))n≥0 is a non-negative martingale (for its natural
filtration), for Lebesgue a.-e. x ∈ R. Notice that when f exists and is bounded, then pj ≤ rj for
all j, because pjr

−1
j ‖f‖∞ = ‖pjr−1

j f ◦ ϕ−1
j ‖∞ ≤ ‖f‖∞ and ‖f‖∞ 6= 0.

iii) Let f(x) = ax + b be an affine map, with a 6= 0. With the same p ∈ DN (r), consider the
conjugate system (ψj)0≤j≤N , with ψj(x) = f ◦ ϕj ◦ f−1(x) = rjx + b(1 − rj) + abj . It has an
invariant measure w = L(aX + b) verifying the relation ŵ(t) = ν̂(at)e2iπtb, t ∈ R. In particular, ν
is Rajchman if and only if w is Rajchman.

iv) When supposing that the (ϕk)0≤k≤N are strict contractions, some self-similar set F can be
introduced, where F ⊂ R is the unique non-empty compact set verifying the self-similarity relation
F = ∪0≤k≤Nϕk(F ). See for example Huchinson [7] for general properties of such sets. Introducing
N = {0, 1, · · · } and the compact S = {0, · · · , N}N, the hypothesis that the (ϕk)0≤k≤N are strict
contractions implies that F is a continuous (and even hölderian) image of S, in other words we
have the following description :

F =

∑
l≥0

bxlrx0
· · · rxl−1

, (x0, x1, · · · ) ∈ S

 .
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Whereas in the general case a self-similar invariant measure can have R as topological support,
when the (ϕk)0≤k≤N are strict contractions the compact self-similar set F exists and supports any
self-similar measure.

Background and content of the article. Coming back to the general case, we assume in the
sequel that the (ϕj)0≤j≤N do not have a common fixed point (in particular N ≥ 1), so that µ is a
continuous measure. A difficult problem is to characterize the absolute continuity of ν with respect
to LR in terms of the parameters r, b and p. An example with a long and well-known history is
that of Bernoulli convolutions, corresponding to N = 1, the affine contractions ϕ0(x) = λx − 1,
ϕ1(x) = λx+ 1, 0 < λ < 1, and the probability vector p = (1/2, 1/2). Notice that when the ri are
all equal (to some real in (0, 1)), the situation is a little simplified, as ν is an infinite convolution
(this is not true in general). Although we discuss below some works in this context, we will not
present here the vast subject of Bernoulli convolutions, addressing the reader to detailed surveys,
such as Peres-Schlag-Solomyak [15] or Solomyak [21].

For general self-similar measures, an important aspect of the problem, that we shall not enter,
and an active line of research, concerns the Hausdorff dimension of the measure ν; cf the recent
fundamental work of Hochman [6] for example. In a large generality, see Falconer [5] and more
recently Jaroszewska and Rams [9], there is an “entropy/Lyapunov exponent” upper-bound :

DimH(ν) ≤ min{1, s(p, r)}, where s(p, r) :=
−
∑N
i=0 pi log pi

−
∑N
i=0 pi log ri

.

The quantity s(p, r) is called the singularity dimension of the measure and can be > 1. The equality
DimH(ν) = 1 does not mean that ν is absolutely continuous, but the inequality s(p, r) < 1 surely
implies that ν is singular. The interesting domain of parameters for the question of the absolute
continuity of the invariant measure therefore corresponds to s(p, r) ≥ 1.

We focus in this work on another fundamental tool, the Fourier transform ν̂. If ν is not Rajch-
man, the Riemann-Lebesgue lemma implies that ν is singular. This property was used by Erdös [4]
in the context of Bernoulli convolutions. He proved that if 1/2 < λ < 1 is such that 1/λ is a Pisot
number, then ν is not Rajchman. The reciprocal statement (for 1/2 < λ < 1) was next shown by
Salem [17]. As a result, for Bernoulli convolutions the Rajchman property always holds, except for
a very particular set of parameters. Some works have next focused on the decay on average of the
Fourier transform for general self-similar measures associated to strict contractions; cf Strichartz
[24, 25], Tsuji [26]. In the same context, the non-Rajchman character was recently shown to hold
for only a very small set of parameters by Li and Sahlsten [11], who showed that ν is Rajchman
when log ri/ log rj is irrational for some (i, j), with moreover some logarithmic decay of ν̂ at infinity,
under a Diophantine condition. Next, Solomyak [22] proved that outside a set of r of zero Hausdorff
dimension, ν̂ even has a power decay at infinity.

The aim of the present article is to study for general self-similar measures the exceptional set
of parameters where the Rajchman property is not true, trying to follow the line of [4] and [17].
We essentially show that r and b have to be closely related to some fixed Pisot number, as for
Bernoulli convolutions. We first prove a general extension of the result of Salem [17], reducing to
a small island the set of parameters where the Rajchman property may not hold. Focusing then
on this island of parameters, we provide a general characterization of the Rajchman character,
appearing in this particular case as equivalent to absolute continuity with respect to LR. Next,
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supposing that the (ϕk)0≤k≤N are strict contractions, we prove a partial extension of the theorem
of Erdös [4], showing that for most parameters in the small island the Rajchman property is not
true, with in general a few exceptions. We finally give some complements, first rather surprising
numerical simulations involving the Plastic number, then an application to sets of uniqueness for
trigonometric series.

2 Statement of the results

Let us place in the general context considered in the Introduction. Pisot numbers will play a
central role in the analysis. Let us introduce a few definitions concerning Algebraic Number Theory;
cf for example Samuel [19] for more details.

Definition 2.1
A Pisot number is a real algebraic integer θ > 1, with conjugates (the other roots of its minimal
unitary polynomial) of modulus strictly less than 1. Fixing such a θ > 1, denote its minimal
polynomial as Q = Xs+1 +asX

s+ · · ·+a0 ∈ Z[X], of degree s+1, with s ≥ 0. If s = 0, then θ is an
integer ≥ 2. The images of µ ∈ Q[θ] by the s + 1 Q-homomorphisms Q[θ] → C are the conjugates
of µ corresponding to the field Q[θ], in general denoted by µ = µ(0), µ(1), · · · , µ(s).

i) For α ∈ Q[θ], the trace Trθ(α) is the trace of the linear operator x 7−→ αx of multiplication by
α, considered from Q[θ] to itself. As a general fact, Trθ(α) ∈ Q.

ii) Let Z[θ] = Zθ0 + · · ·+Zθs be the subring generated by θ of the ring of algebraic integers of Q[θ].
We write D(θ) for its Z-dual (as a Z-lattice), i.e. :

D(θ) = {α ∈ Q[θ], T rθ(θ
nα) ∈ Z, for 0 ≤ n ≤ s}.

It can be shown that D(θ) = (1/Q′(θ))Z[θ]. As a classical fact, Trθ(θ
nα) ∈ Z, for all n ≥ 0, if this

holds for 0 ≤ n ≤ s. Define :

T (θ) = {α ∈ Q[θ], T rθ(θ
nα) ∈ Z, for large n ≥ 0}.

Then T (θ) = ∪n≥0θ
−nD(θ) =

Z[θ, 1/θ]

Q′(θ)
, with Z[θ, 1/θ] the subring of Q[θ] generated by {θ, 1/θ}.

Remark. — In the context of the previous definition, introduce the integer-valued (s+ 1)× (s+ 1)-
companion matrix M of Q :

M =


0 1 · · · 0
...

. . .
. . .

...
...

... 0 1
−a0 · · · −as−1 −as

 .

One may show that for any µ ∈ Q[θ], setting V = (Trθ(θ
0µ), · · · , T rθ(θsµ)), then µ ∈ T (θ) if and

only if there exists n ≥ 0 such that VMn has integral entries.

We introduce special families of affine maps, that will play the role of canonical models for the
analysis of the Rajchman property.
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Definition 2.2
Let N ≥ 1. A family of real affine maps (ϕk)0≤k≤N is said in Pisot form, if there exist a Pisot
number 1/λ > 1, relatively prime integers (nk)0≤k≤N and µk ∈ T (1/λ), 0 ≤ k ≤ N , such that
ϕj(x) = λnjx+ µj, for all 0 ≤ j ≤ N .

Remark. — If (ϕj)0≤j≤N is in Pisot form, then the (λ, (nj), (µj)) are uniquely determined. Indeed,
if the (λ′, (n′j), (µ

′
j)) also convene, we just need to show that λ = λ′. Taking some collection of

integers (aj) realizing a Bezout relation 1 =
∑
j ajnj , we have :

λ = λ
∑
j ajnj = λ′

∑
j ajn

′
j = λ′p,

for some p ≥ 1. Idem, λ′ = λq, for some q ≥ 1. Hence pq = 1, giving p = q = 1 and λ = λ′.

As a first result, extending [17], the analysis of the non-Rajchman character of the invariant
measure requires to consider families in Pisot form.

Theorem 2.3
Let N ≥ 1, p ∈ CN and affine maps ϕk(x) = rkx + bk, rk > 0, for 0 ≤ k ≤ N , with no common
fixed point, and

∑
0≤j≤N pj log rj < 0. The invariant measure ν is not Rajchman if and only if

there exists f(x) = ax + b, a 6= 0, such that the conjugate system (f ◦ ϕj ◦ f−1)0≤j≤N is in Pisot
form, for some Pisot number 1/λ > 1, with invariant measure w verifying ŵ(λ−k) 6→k+∞ 0.

In particular, one gets that rj = λnj , for all j, for some Pisot number 1/λ > 1 et relatively prime
integers (nk)0≤k≤N . Hence, up to an affine change of variables, the non-Rajchman character of the
invariant measure ν can be read on the sequence (λ−k)k≥0, as in [4]. In a second step, we provide
a general analysis of families in Pisot form.

We now fix a Pisot number 1/λ > 1, an integer N ≥ 1, relatively prime integers (nk)0≤k≤N
and (µk)0≤k≤N ∈ (T (1/λ))N+1, such that ϕk(x) = λnkx+ µk, for 0 ≤ k ≤ N . Let p ∈ CN be such
that

∑
0≤j≤N pjnj > 0 and i.i.d. random variables (εn)n∈Z, with P(ε0 = k) = pk, 0 ≤ k ≤ N . We

introduce cocycle notations (Sl)l∈Z, where S0 = 0 and for l ≥ 1 :

Sl = nε0 + · · ·+ nεl−1
, S−l = −nε−l − · · · − nε−1

.

An important preliminary remark is that when µ ∈ T (1/λ) and k ≥ 0 is large enough, we have :

λ−kµ+
∑

1≤j≤s

αkjµ
(j) = Tr1/λ(λ−kµ) ∈ Z,

where the (αj)0≤j≤s are the conjugates of 1/λ =: α0 and the (µ(j))0≤j≤s that of µ = µ(0), corre-
sponding to the field Q[λ]. Since |αj | < 1, for 1 ≤ j ≤ s, and (Sl) is a.-s. transient with a non-zero
linear speed to −∞, as l → −∞, by the Law of Large Numbers, this ensures that for any k ∈ Z,
the random variable

∑
l∈Z µεlλ

k+Sl mod 1 is well-defined as a T-valued random variable.

In the sequel we use standard inner products and Euclidean norms on all spaces Rn.

Theorem 2.4
Let 1/λ > 1 be a Pisot number of degree s + 1. Let N ≥ 1, relatively prime integers (nk)0≤k≤N
and (µk)0≤k≤N ∈ (T (1/λ))N+1, such that ϕk(x) = λnkx + µk, 0 ≤ k ≤ N . Let p ∈ CN be such
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that
∑

0≤j≤N pjnj > 0 and i.i.d. random variables (εn)n∈Z, with law p. Let (Sl)l∈Z be the cocycle

notations associated to the (nεi)i∈Z. The real random variable X =
∑
l≥0 µεlλ

Sl has law ν.

i) Let the T-valued random variables Zk =
∑
l∈Z µεlλ

k+Sl , k ∈ Z. Then λ−nX mod 1 converges,
as n→ +∞, to a probability measure m on T, verifying, for all f ∈ C(T,R) and all k ∈ Z :∫

T
f(x) dm(x) =

1

E(nε0)

∑
0≤r<n∗

E
[
f (Zk+r) 1S−u<−r,u≥1

]
,

where n∗ = max0≤k≤N nk. More generally, λ−n(X,λ−1X, · · · , λ−sX) mod Zs+1 converges in law,
as n→ +∞, to a probability measure M on Ts+1, with one-dimensional marginals m, verifying :

∫
Ts+1

f(x) dM(x) =
1

E(nε0)

∑
0≤r<n∗

E
[
f (Zk+r, Zk+r−1, · · · , Zk+r−s) 1S−u<−r,u≥1

]
,

for all f ∈ C(Ts+1,R) and all k ∈ Z.

ii) If the (ϕk)0≤k≤N do not have a common fixed point (i.e. if ν is continuous), denoting by Z
a Ts+1-valued random variable with law M, then for any 0 6= n = (n0, · · · , ns)t ∈ Zs+1, 〈Z, n〉
has a continuous law; in particular, m and M are continuous measures. If the (ϕk)0≤k≤N have a
common fixed point, there exists a rational number p/q such that m = δp/q and M = (δp/q)

⊗(s+1).

iii) Either M⊥ LTs+1 or M = LTs+1 . Also, M = LTs+1 ⇔ ν is Rajchman ⇔ ν � LR.

In the context of the previous theorem, ν and M are always of the same nature, with respect
to the uniform measure of the space they live on. In particular, M is also of pure type. We finally
consider families in Pisot form, when supposing that the (ϕk)0≤k≤N are strict contractions.

Theorem 2.5
Let N ≥ 1 and ϕk(x) = λnkx+ µk, for 0 ≤ k ≤ N , with 1/λ > 1 a Pisot number, relatively prime
integers (nk)0≤k≤N , with nk ≥ 1 and µk ∈ T (1/λ), for 0 ≤ k ≤ N . When p ∈ CN is fixed, we
denote by m the measure on T of Theorem 2.4, i).

i) For any p ∈ CN , if the invariant measure ν is Rajchman, then it is absolutely continuous with
respect to LR, with a density bounded and with compact support.

ii) There exists 0 6= a ∈ Z such that for any k 6= 0, for any p ∈ CN outside finitely many real-
analytic graphs of dimension ≤ N − 1 (points if N = 1), we have m̂(ak) 6= 0. In this case, m 6= LT
and ν is not Rajchman.

Remark. — In Theorem 2.5 ii), observe that when making k vary, we obtain that for all p ∈ CN
outside a countable number of real-analytic graphs of dimension less than or equal to N −1 (points
if N = 1), then m̂(ak) 6= 0, for all k ∈ Z. Part ii) of Theorem 2.5 relies on an indirect argument,
based on the analysis of the regularity of m̂(n), for some fixed n ∈ Z, as a function of p ∈ CN .

Remark. — On the existence of singular measures in the non-homogeneous case, we are essentially
aware of the non-explicit examples, using algebraic curves, of Neunhäuserer [14]. As suggested
by the referee, Theorem 2.5 allows to give in the non-homogeneous case an explicit example of a
continuous singular and not Rajchman invariant measure ν with singularity dimension > 1. Indeed,
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take for 1/λ > 1 the Plastic number, i.e. the real root of X3 −X − 1. This is the smallest Pisot
number; cf Siegel [20]. We have 1/λ = 1.3247.... Let N = 1 and ϕ0(x) = λx, ϕ1(x) = λ2x+ 1. For
p = (p0, p1) ∈ C1, if ν is absolutely continuous with respect to LR, then, by Theorem 2.5 i), the
density has to be bounded. By remark ii) in the Introduction, this implies that p0 ≤ λ = 0.7548...
and p1 ≤ λ2. Now, as detailed in the last section, the similarity dimension in this case is > 1 if and
only if 0, 203... < p0 < 0, 907... For example we can conclude that for p0 ∈ [0.76, 0.90], the measure
ν is continuous, singular with respect to LR, not Rajchman and with similarity dimension > 1. Still
for the system ϕ0(x) = λx, ϕ1(x) = λ2x + 1, we will give in the last section a strong numerical
support for the fact that ν is in fact continuous singular and not Rajchman for all p ∈ C1.

Remark. — In the context of Theorem 2.5, it would be important to determine all the excep-
tional parameters where ν is absolutely with respect to LR. Let us give some examples where the
exceptional set in Theorem 2.5 ii) is non-empty :

1) Let 1/λ = N ≥ 1 and ϕk(x) = (x+ k)/(N + 1), with pk = 1/(N + 1), for 0 ≤ k ≤ N ; then ν is
Lebesgue measure on [0, 1].

2) Take for 1/λ > 1 the Plastic number, N = 1 and this time ϕ0(x) = λ2x, ϕ1(x) = λ3x+ 1. One
may verify that the similarity dimension is < 1 for all p ∈ C1, except for p = (λ2, λ3), where it
equals one. Thus the invariant measure ν is singular for p ∈ C1 with p 6= (λ2, λ3). Another way,
if ν is absolutely continuous with respect to LR, then its density has to be bounded by Theorem
2.5. Therefore, p0 ≤ λ2 and p1 ≤ λ3, using remark ii) in the Introduction. Since λ2 + λ3 = 1, we
have p0 = λ2 and p1 = λ3. As a result, when p = (p0, p1) 6= (λ2, λ3) and p0 > 0, p1 > 0, then ν
is continuous singular and not Rajchman. When p = (λ2, λ3), set I = [0, 1 + λ] and notice that
ϕ0(I) = [0, 1], ϕ1(I) = [1, 1 + λ]. Hence, Lebesgue a.-e. :

1I = 1ϕ0(I) + 1ϕ1(I) = p0λ
−21ϕ0(I) + p1λ

−31ϕ1(I),

meaning that ν = 1
1+λLI . Taking for 1/λ the supergolden ratio (the real root of X3 −X2 − 1; the

fourth Pisot number), one gets the same situation with the system (λx + 1, λ3x), the exceptional
parameters being then (λ, λ3), giving for ν the uniform probability measure on [0, λ−3].

3) When 1/λ > 1 is the Plastic number, N = 2, ϕ0(x) = λ2x, ϕ1(x) = λ3x+1, ϕ2(x) = λ3x+1 and
p0 = λ2, p1 = λ3α, p2 = λ3(1 − α), then ν = 1

1+λL[0,1+λ], for all 0 < α < 1. This is an example,
a little degenerated, of a one-dimensional real-analytic graph where the corresponding invariant
measure ν is absolutely continuous with respect to LR.

It would be interesting to find more developed examples, where ν is absolutely continuous with
respect to LR. A difficulty is that a priori the probability vector p has to be chosen in accordance
with the polynomial equations verified by λ.

3 Proof of Theorem 2.3

Let N ≥ 1 and (ϕk)0≤k≤N , with ϕk(x) = rkx+ bk, where rk > 0, and having no common fixed
point. Fixing p ∈ CN , introduce i.i.d. random variables (εn)n≥0 with law p, to which P and E refer.
By hypothesis, E(log rε0) < 0. Recall that the invariant measure ν is the law of the random variable∑
l≥0 bεlrε0 · · · rεl−1

and that ν is supposed to be non Rajchman. Without loss of generality, we
assume that 0 < r0 ≤ r1 ≤ · · · ≤ rN , with therefore r0 < 1.
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The proof has three parts. First we show that log ri/ log rj ∈ Q, for all 0 ≤ i 6= j ≤ N . From
this, we will get that rj = λnj , for some 0 < λ < 1 and integers (nj). We then show that the non
Rajchman character of ν can be seen on a subsequence of the form (αλ−k)k≥0. We finally prove
that 1/λ is a Pisot number and the family (ϕk)0≤k≤N is affinely conjugated with one in Pisot form.

Step 1. Let us show that if ever log ri/ log rj 6∈ Q, for some 0 ≤ i 6= j ≤ N , then ν is Rajchman.
This is established in [11] for strict contractions. We simplify their proof.

For n ≥ 1, consider the random walk Sn = − log rε0 − · · · − log rεn−1 , with S0 = 0. For a
real s ≥ 0, introduce the finite stopping time τs = min{n ≥ 0, Sn > s} and write Ts for the
corresponding sub-σ-algebra of the underlying σ-algebra. Taking α > 0 and s ≥ 0 :

ν̂(αes) = E
(
e2πiαes

∑
l≥0 bεle

−Sl
)

= E
(
e2πiαes

∑
0≤l<τs bεle

−Sl
e2πiαe−Sτs+s∑

l≥τs bεle
−Sl+Sτs

)
.

In the expectation, the first exponential term is Ts-measurable. Also, the conditional expectation of
the second exponential term with respect to Ts is just ν̂(αe−Sτs+s), as a consequence of the strong
Markov property. It follows that :

ν̂(αes) = E
(
ν̂(αe−Sτs+s)e2πiαes

∑
0≤l<τs bεle

−Sl
)
.

This gives |ν̂(αes)| ≤ E
(
|ν̂(αe−Sτs+s)|

)
, so by the Cauchy-Schwarz inequality and the Fubini the-

orem, which directly applies, consecutively :

|ν̂(αes)|2 ≤ E
(
|ν̂(αe−Sτs+s)|2

)
= E

(∫
R2

e2πiαe−Sτs+s(x−y) dν(x)dν(y)

)
=

∫
R2

E
(
e2πiαe−Sτs+s(x−y)

)
dν(x)dν(y)

≤
∫
R2

∣∣∣E(e2πiαe−Sτs+s(x−y)
)∣∣∣ dν(x)dν(y).

Let Y := − log rε0 . The law of Y is non-lattice, since some log ri/ log rj 6∈ Q and pk > 0 for all
0 ≤ k ≤ N . As Y is integrable, with 0 < E(Y ) <∞, it is a well-known consequence of the Blackwell
theorem on the law of the overshoot that (see for instance Woodroofe [28], chap. 2, thm 2.3), that :

E(g(Sτs − s))→
1

E(Sτ0)

∫ +∞

0

g(x)P(Sτ0 > x) dx, as s→ +∞,

for any Riemann-integrable g defined on R+. Here, all Sτs−s, for s ≥ 0, (and in particular Sτ0) have
support in some [0, A]. Therefore, P(Sτ0 > x) = 0 for large x > 0. For any α > 0, by dominated
convergence (letting s→ +∞) :

lim sup
t→+∞

|ν̂(t)|2 ≤ 1

E(Sτ0)

∫
R2

∣∣∣∣∫ +∞

0

e2πiαe−u(x−y)P(Sτ0 > u)du

∣∣∣∣ dν(x)dν(y).
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The inside term (in the modulus) is uniformly bounded with respect to (x, y) ∈ R2. We shall
use dominated convergence once more, this time with α → +∞. It is sufficient to show that for
ν⊗2-almost every (x, y), the inside term goes to zero. Since the measure ν is non-atomic, ν⊗2-
almost-surely, x 6= y. If for example x > y :∫ +∞

0

e2πiαe−u(x−y)P(Sτ0 > u)du =

∫ x−y

0

e2πiαtP(Sτ0 > log((x− y)/t)
dt

t
,

making the change of variable t = e−u(x − y). The last integral now converges to 0, as α → +∞,
by the Riemann-Lebesgue lemma. Hence, limt→+∞ ν̂(t) = 0. This ends the proof of this step.

Step 2. As ν is not Rajchman, from Step 1, log ri/ log rj ∈ Q, for all (i, j). Hence rj = r
pj/qj
0 , with

integers pj ∈ Z, qj ≥ 1, for 1 ≤ j ≤ N . Let :

n0 =
∏

1≤l≤N

ql ≥ 1 and nj = pj
∏

1≤l≤N,l 6=j

ql ∈ Z, 1 ≤ j ≤ N.

Recall that 0 < r0 < 1. Setting λ = r
1/n0

0 ∈ (0, 1), one has rj = λnj , 0 ≤ j ≤ N . Up to taking some
positive integral power of λ, one can assume that gcd(n0, · · · , nN ) = 1. Recall in passing that the
set of Pisot numbers is stable under positive integral powers. The condition E(log rε0) < 0 rewrites
into E(nε0) > 0 and we have nN ≤ · · · ≤ n0, with n0 ≥ 1.

Using some sub-harmonicity, we shall now show that one can reinforce the assumption that ν̂(t)
is not converging to 0, as t→ +∞.

Lemma 3.1
There exists 1 ≤ α ≤ 1/λ and c > 0 such that ν̂(αλ−k) = cke

2iπθk , written in polar form, verifies
ck → c, as k → +∞.

Proof of the lemma :
Let us write this time Sn = nε0 + · · · + nεn−1

, for n ≥ 1, with S0 = 0. Since E(nε0) > 0, (Sn)
is transient to +∞. Introduce the random ladder epochs 0 = σ0 < σ1 < · · · , where inductively
σk+1 is the first time n ≥ 0 with Sn > Sσk . Let S′k = Sσk . The (S′k − S′k−1)k≥1 are i.i.d. random
variables with law L(Sτ0) and support in {1, · · · , n0}. Since gcd(n0, · · · , nN ) = 1, the support of
the law of Sτ0 generates Z as an additive group (cf for example Woodroofe [28], thm 2.3, second
part). For an integer u ≥ 1 large enough, we can fix integers r ≥ 1 and s ≥ 1 such that the support
of the law of S′r contains u and that of S′s contains u + 1, both supports being included in some
{1, · · · ,M}, with therefore 1 ≤ u ≤ u+ 1 ≤M . Proceeding as in Step 1, for any t ∈ R :

ν̂(t) = E
(
e2πit

∑
l≥0 bεlλ

Sl
)

= E
(
ν̂(tλS

′
r )e2πit

∑
0≤l<σr bεlλ

Sl
)
.

Doing the same thing with S′s and taking modulus gives :

|ν̂(t)| ≤ E
(
|ν̂(tλS

′
r )|
)

and |ν̂(t)| ≤ E
(
|ν̂(tλS

′
s)|
)
. (2)

In particular, |ν̂(t)| ≤ max1≤l≤M |ν̂(λlt)|. We now set :
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Vα(k) := max
k≤l<k+M

|ν̂(αλl)|, k ∈ Z, α > 0.

The previous remarks imply that Vα(k) ≤ Vα(k + 1), k ∈ Z, α > 0.

Since ν is not Rajchman, |ν̂(tl)| ≥ c′ > 0, along some sequence tl → +∞. Write tl = αlλ
−kl ,

with 1 ≤ αl ≤ 1/λ and kl → +∞. Up to taking a subsequence, αl → α ∈ [1, 1/λ]. Fixing k ∈ Z :

c′ ≤ Vαl(−kl) ≤ Vαl(−k),

as soon as l is large enough. By continuity, letting l → +∞, we get c′ ≤ Vα(−k), k ∈ Z. As
k 7−→ Vα(−k) is non-increasing, Vα(−k) → c ≥ c′, as k → +∞. We now show that necessarily
|ν̂(αλ−k)| → c, as k → +∞.

If this were not true, there would exist ε > 0 and (mk)→ +∞, with |ν̂(αλ−mk)| ≤ c− ε. Using
Vα(−k)→ c and |ν̂(αλ−mk)| ≤ c− ε, as k → +∞, consider (2) with r and t = αλ−mk−u and next
with s and t = αλ−mk−u−1. Since u is in the support of the law of S′r and u+ 1 is in the support
of the law of S′s, we obtain the existence of some c1 < c such that for k large enough :

max{|ν̂(αλ−mk−u)|, |ν̂(αλ−mk−u−1)|} ≤ c1 < c.

Again via (2), with successively r and t = αλ−mk−2u, next r and t = αλ−mk−2u−1 and finally s
and t = αλ−mk−2u−2, still using that u is in the support of the law of S′r and u+ 1 in the support
of the law of S′s, we get some c2 < c such that for k large enough :

max{|ν̂(αλ−mk−2u)|, |ν̂(αλ−mk−2u−1)|, |ν̂(αλ−mk−2u−2)|} ≤ c2 < c.

Etc, for some cM−1 < c and k large enough :

max{|ν̂(αλ−mk−(M−1)u)|, · · · , |ν̂(αλ−mk−(M−1)u−(M−1))|} ≤ cM−1 < c.

This contradicts the fact that Vα(−k)→ c, as k →∞. We conclude that |ν̂(αλ−k)| → c, as k →∞,
and this ends the proof of the lemma.

�

Step 3. We complete the proof of Theorem 2.3. In this part, introduce the notation ‖x‖ = dist(x,Z),
for x ∈ R. Let us consider any 1 ≤ α ≤ 1/λ, with ν̂(αλ−k) = cke

2iπθk , verifying ck → c > 0, as
k → +∞. The existence of such a α was shown in Step 2. We start from the relation :

ν̂(αλ−k) =
∑

0≤j≤N

pje
2iπαλ−kbj ν̂(αλ−k+nj ),

obtained when conditioning with respect to the value of ε0. This furnishes for k ≥ 0 :

ck =
∑

0≤j≤N

pje
2iπ(αλ−kbj+θk−nj−θk)ck−nj .

We rewrite this as :
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∑
0≤j≤N

pj

[
e2iπ(αλ−kbj+θk−nj−θk) − 1

]
ck−nj = ck −

∑
0≤j≤N

pjck−nj =
∑

0≤j≤N

pj(ck − ck−nj ).

Let K > 0 be such that ck−nj ≥ c/2 > 0, for k ≥ K and all 0 ≤ j ≤ N . For L > n∗, where
n∗ = max0≤j≤N |nj |, we sum the previous equality on K ≤ k ≤ K + L :

∑
0≤j≤N

pj

K+L∑
k=K

ck−nj

[
e2iπ(αλ−kbj+θk−nj−θk) − 1

]
=

∑
0≤j≤N

pj

K+L∑
k=K

ck −
K+L−nj∑
k=K−nj

ck

 .

Observe that the right-hand side involves a telescopic sum and is bounded by 2n∗ (using that
|ck| ≤ 1), uniformly in K and L. In the left hand-hand side, we take the real part and use that
1 − cos(2πx) = 2(sinπx)2, which, as is well-known, has the same order as ‖x‖2. We obtain, for
some constant C, that for K and L large enough :

c

2

∑
0≤j≤N

pj

K+L∑
k=K

‖αλ−kbj + θk−nj − θk‖2 ≤ C.

Introducing the constants p∗ = min0≤j≤N pj > 0 and C ′ = 2C/(cp∗), we get that for all 0 ≤ j ≤ N
and K,L large enough :

K+L∑
k=K

‖αλ−kbj + θk−nj − θk‖2 ≤ C ′. (3)

In the sequel, we distinguish two cases : there exists a non-zero translation among the (ϕk)0≤k≤N
(case 1) or not (case 2).

- Case 1. For any non-zero-translation ϕj(x) = x+ bj , we have nj = 0 and bj 6= 0. Then (3) gives
that for K,L large enough :

K+L∑
k=K

‖αλ−kbj‖2 ≤ C ′.

This implies that (‖αbjλ−k‖)k≥0 ∈ l2(N). By a classical theorem of Pisot, cf Cassels [3], chap. 8,
Theorems I and II, we obtain that 1/λ is a Pisot number and bj = (1/α)µj , with µj ∈ T (1/λ).
Consider now the non-translations ϕj(x) = λnjx+ bj , nj 6= 0. By (3), for any r ≥ 0 and K,L large
enough (depending on r) :

K+L∑
k=K

‖αλ−k+rnj bj + θk−(r+1)nj − θk−rnj‖
2 ≤ C ′.

Fixing lj ≥ 1 and summing over 0 ≤ r ≤ lj − 1, making use of the triangular inequality and of
(x1 + · · ·+ xn)2 ≤ n(x2

1 + · · ·+ x2
n), we obtain, for K,L large enough (depending on lj) :

K+L∑
k=K

∥∥∥∥αλ−kbj (1− λljnj
1− λnj

)
+ θk−ljnj − θk

∥∥∥∥2

≤ ljC ′. (4)
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Changing k into k + ljnj , we obtain, for K,L large enough (depending on lj) :

K+L∑
k=K

∥∥∥∥αλ−kbj (1− λ−ljnj
1− λnj

)
+ θk+ljnj − θk

∥∥∥∥2

≤ ljC ′. (5)

Let 1 =
∑

0≤j≤N ljnj be a Bezout relation and J ⊂ {0, · · · , N} be the subset of j where ljnj 6= 0,
equipped with its natural order. Using successively for j ∈ J either (4) or (5), according to the sign
of lj , we obtain with :

b :=
∑
j∈J

bjλ
∑
k∈J,k<j lknk

(
1− λljnj
1− λnj

)
, (6)

the following relation, for a new constant C ′ and all K,L large enough :

K+L∑
k=K

‖αλ−kb+ θk−1 − θk‖2 ≤ C ′.

Now, for any nj 6= 0, whatever the sign of nj is, we arrive at, for some constant C ′ and all K,L
large enough :

K+L∑
k=K

‖αλ−kb
(

1− λnj
1− λ

)
+ θk−nj − θk‖2 ≤ C ′.

Set b′ = b/(1− λ). Hence, for any 0 ≤ j ≤ N with nj 6= 0, for some new constant C ′ and all K,L
large enough, using (3) :

K+L∑
k=K

‖αλ−k(bj − b′(1− λnj ))‖2 ≤ C ′.

Let 0 ≤ j ≤ N , with nj 6= 0. If bj 6= b′(1−λnj ), then we deduce again (still by Cassels [3], chap. 8,
Theorems I and II) that 1/λ is a Pisot number and bj = b′(1− λnj ) + (1/α)µj , with µj ∈ T (1/λ).
The other case is bj = b′(1− λnj ). In any case, we obtain that for all 0 ≤ j ≤ N :

ϕj(x) = b′ + λnj (x− b′) + (1/α)µj , (7)

for some µj ∈ T (1/λ). Finally, remark that (7) says that the (ϕj)0≤j≤N are conjugated with the
(ψj)0≤j≤N , where ψj(x) = λnjx+ µj . Precisely ϕj = f ◦ ψj ◦ f−1, with f(x) = x/α+ b′.

- Case 2. Any ϕj with nj = 0 is the identity. The conclusion is the same, because there now
necessarily exists some 0 ≤ j ≤ N with nj 6= 0 and bj 6= b′(1−λnj ), otherwise b′ is a common fixed
point for all (ϕj)0≤j≤N .

This ends the proof of Theorem 2.3.
�
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4 Proof of Theorem 2.4

Let N ≥ 1 and affine maps ϕk(x) = λnkx + µk, for 0 ≤ k ≤ N , with 1/λ > 1 a Pisot number,
relatively prime integers (nk)0≤k≤N and µk ∈ T (1/λ), for 0 ≤ k ≤ N . Let p ∈ CN and denote by
(εn)n∈Z a two-sided family of i.i.d. random variables with law p, to which again the probability P
and the expectation E refer. We suppose that E(nε0) > 0. Without loss of generality, nN ≤ · · · ≤ n0

and in particular n0 ≥ 1. For general background on Markov chains, cf Spitzer [23].

Recall the cocycle notations for the (nεi)i∈Z introduced before the statement of the theorem
and denote by θ the formal shift such that θεl = εl+1, l ∈ Z. We have for all k and l in Z :

Sk+l = Sk + θkSl.

Then ν is the law of X =
∑
l≥0 µεlλ

Sl . We write Q ∈ Z[X] for the minimal polynomial of 1/λ,
of degree s + 1, with roots α0 = 1/λ, α1, · · · , αs, where |αk| < 1, for 1 ≤ k ≤ s. The case s = 0
corresponds to 1/λ an integer ≥ 2 (using then usual conventions regarding sums or products).
Recall that for any k ∈ Z,

∑
l∈Z µεlλ

k+Sl mod 1 is a well-defined T-valued random variable.

Step 1. In order to prove the convergence in law of (λ−nX,λ−n−1X, · · · , λ−n−sX) mod Zs+1, as
n→ +∞, it is enough to prove, for any (m0, · · · ,ms) ∈ Zs+1, the convergence of :

E
(
e2iπ

∑
0≤u≤smuλ

−n−uX
)

= E
(
e2iπ

∑
l≥0(αµεl )λ

−n+Sl
)
,

with α =
∑

0≤u≤smuλ
−u. Notice that αµj ∈ T (1/λ), for 0 ≤ j ≤ N . We make the proof when

α = 1, the one for α being obtained by changing (µj) into (αµj).

Since
∑
l<0 µεlλ

−n+Sl mod 1 converges a.-s. to 0 in T, as n → +∞, it is enough to consider
expectations with

∑
l∈Z µεlλ

−n+Sl mod 1 in the exponential. Let k ∈ Z be a fixed integer. For
n ≥ 0, that will tend to +∞, consider (Sl)l∈Z and the first q ∈ Z such that Sq ≥ n. We have :

E
(
e2iπ

∑
l∈Z µεlλ

k−n+Sl
)

=
∑

0≤r<n0

∑
q∈Z

E
(
e2iπ

∑
l∈Z µεlλ

(k−n+Sq)+(Sl−Sq)
1Sq−u<n,u≥1,Sq=n+r

)
=

∑
0≤r<n0

∑
q∈Z

E
(
e2iπ

∑
l∈Z µεlλ

k+r+θqSl−q
1θqS−u<−r,u≥1,θqS−q=−n−r

)
=

∑
0≤r<n0

∑
q∈Z

E
(
e2iπ

∑
l∈Z µεl−qλ

k+r+Sl−q
1S−u<−r,u≥1,S−q=−n−r

)
=

∑
0≤r<n0

∑
q∈Z

E
(
e2iπ

∑
l∈Z µεlλ

k+r+Sl
1S−u<−r,u≥1,S−q=−n−r

)
.

For each 0 ≤ r < n0, we now observe that we can move the sum
∑
q∈Z inside the expectation, using

the theorem of Fubini, if we first show the finiteness of :

∑
q∈Z

E
(
1S−q=−n−r

)
= E

∑
q≥0

1S−q=−n−r

+ E

∑
q≥1

1Sq=−n−r

 .
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This is true, since, as soon as n is larger than some constant (because of the missing term for
q = 0 in the second sum), this equals G−(0,−n − r) + G+(0,−n − r) < +∞, where G−(x, y) and
G+(x, y) are the Green functions, finite for every integers x and y, respectively associated to the
i.i.d. transient random walks (S−q)q≥0 and (Sq)q≥0. Let σ+

k , for k ∈ Z, be the first time ≥ 0 when
(Sq)q≥0 touches k. We have G+(x, y) = P0(σ+

y−x <∞)G+(0, 0). With some symmetric quantities,

one has G−(x, y) = P0(σ−y−x <∞)G−(0, 0).

We therefore obtain :

E
(
e2iπ

∑
l∈Z µεlλ

k−n+Sl
)

=
∑

0≤r<n0

E

e2iπ
∑
l∈Z µεlλ

k+r+Sl
1S−u<−r,u≥1

∑
q∈Z

1S−q=−n−r

 .

Let us now fix 0 ≤ r < n0 and consider the corresponding term of the right-hand side. First of all,
for n > 0 larger than some constant (so that S0 6= −n− r) :

E

(∑
q<0

1S−q=−n−r

)
= P0(σ+

−n−r <∞)G+(0, 0)→ 0, (8)

as n→ +∞, since (Sq)q≥0 is transient to the right. We thus only need to consider :

T (−n) := E
(
e2iπ

∑
l∈Z µεlλ

k+r+Sl
1S−u<−r,u≥1N(−n− r)

)
,

where N(−k − r) :=
∑
q≥0 1S−q=−n−r. Consider an integer M0, that will tend to +∞ at the end.

The difference of T (−n) with the following expression :

E
(
e2iπ

∑
l≥−M0

µεlλ
k+r+Sl

1S−u<−r,1≤u≤M0
N(−n− r)

)
is bounded by A+B, where, first :

A = E
[∣∣∣e2iπ

∑
l∈Z µεlλ

k+r+Sl − e2iπ
∑
l≥−M0

µεlλ
k+r+Sl

∣∣∣N(−n− r)
]

= E
[∣∣∣1− e2iπ

∑
l<−M0

µεlλ
k+r+Sl

∣∣∣N(−n− r)
]

≤
(
E
[∣∣∣1− e2iπ

∑
l<−M0

µεlλ
k+r+Sl

∣∣∣2])1/2 (
E(N(−n− r)2)

)1/2
≤

(
E
[∣∣∣1− e2iπ

∑
l<−M0

µεlλ
k+r+Sl

∣∣∣2])1/2 (
E(N(0)2)

)1/2
,

because N(−n − r) is stochastically dominated by N(0). Notice that N(0) is square integrable,
as it has exponential tail. The first term on the right-hand side also goes to 0, as M0 → +∞, by
dominated convergence. The other term B is :
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B = E
(
1S−u<−r,1≤u≤M0,∃v>M0,S−v≥−rN(−n− r)

)
≤ P(∃v > M0, S−v ≥ −r)1/2

(
E(N(−n− r)2)

)1/2
≤ P(∃v > M0, S−v ≥ −r)1/2

(
E(N(0)2)

)1/2
,

as before. The first term on the right-hand side goes to 0, as M0 → +∞, since (S−v) is transient
to −∞, as v → +∞. As a result :

T (−n) = E
(
e2iπ

∑
l≥−M0

µεlλ
k+r+Sl

1S−u<−r,1≤u≤M0N(−n− r)
)

+ oM0(1),

where oM0
(1) goes to 0, as M0 → +∞, uniformly in n. Now, when n > 0 is large enough,

N(−k − r) =
∑
q≥0 1S−q=−n−r =

∑
q≥M0

1S−q=−n−r, for all ω. Taking inside the expectation the
conditional expectation with respect to the σ-algebra generated by the (εl)l≥−M0

, we obtain :

T (−n) = E
(
e2iπ

∑
l≥−M0

µεlλ
k+r+Sl

1S−u<−r,1≤u≤M0G
−(S−M0 ,−n− r)

)
+ oM0(1).

Now, things are simpler because G−(S−M0
,−n − r) is bounded by the constant G−(0, 0). Hence,

for some new oM0(1), with the same properties :

T (−n) = E
(
e2iπ

∑
l∈Z µεlλ

k+r+Sl
1S−u<−r,u≥1G

−(S−M0
,−n− r)

)
+ oM0

(1).

Since G−(S−M0 ,−n − r) → 1/E(nε0), as n → ∞, by renewal theory (since the (nj) are relatively
prime and pj > 0, for all 0 ≤ j ≤ N ; cf Woodroofe [28], chap. 2, thm 2.1), staying bounded by
G−(0, 0), we get by dominated convergence and next M0 → +∞ :

limn→+∞T (−n) =
1

E(nε0)
E
(
e2iπ

∑
l∈Z µεlλ

k+r+Sl
1S−u<−r,u≥1

)
.

From the initial expression, the limit, if existing, had to be independent on the parameter k. So
this gives the announced convergence and invariance, hence proving item i) in Theorem 2.4.

Step 2. We now consider the proof of Theorem 2.4 ii) and suppose that ν is continuous. We first
show that m is a continuous measure. For a continuous f : T→ R+ and any k ∈ R, we have :∫

T
f(x) dm(x) ≤ 1

E(nε0)

∑
0≤r<n∗

E [f(Zk+r)] .

Letting k ∈ Z, we have Zk =
∑
l<0 µεlλ

k+Sl + λkX mod 1. Since L(λkX) on R is continuous,

L(λkX mod 1) on T is continuous. Since
∑
l<0 µεlλ

k+Sl mod 1 and λkX mod 1 are independent
random variables, the law of Zk on T is continuous. Thus m is a continuous measure (hence M).

More generally, if 0 6= n = (n0, · · · , ns)t ∈ Zs+1 and if Z is random variable with law M, then
the law of 〈Z, n〉 on T is mα, measure corresponding to m when replacing the (µj) by (αµj), thus
the (ϕj) by the (ψj), with ψj(x) = λnjx + αµj , where α =

∑
0≤u≤s nuλ

−u. Since α 6= 0, because
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(λ−u)0≤u≤s is a basis of Q[λ] over Q, the (ψj) do not have a common fixed point and thus mα is
continuous, by the previous reasoning.

Suppose now that the (ϕj) have a common fixed point c. Hence µj = c(1 − λnj ), 0 ≤ j ≤ N ,
and ν = δc. Necessarily c ∈ Q[λ], since the nj are not all zero. We shall show that λ−nc mod 1
converges to a rational number in T, as n→ +∞. First of all, for n large enough, for all 0 ≤ j ≤ N :

Tr1/λ(cλ−n)− Tr1/λ(cλ−n+nj ) = Tr1/λ(λ−nµj) ∈ Z.

Hence, for any fixed sequence (kj)0≤j≤N , for n large enough, for all 0 ≤ j ≤ N :

Tr1/λ(cλ−n)− Tr1/λ(cλ−n+kjnj ) ∈ Z.

Supposing that
∑

0≤j≤N kjnj = 1, using the previous expression successively n replaced by n, n−
k0n0, · · · , n −

∑
0≤j≤N−1 kjnj , respectively with j = 0, j = 1, · · · , j = N , and finally adding the

results, we obtain that for some large K > 0, for all n > K :

Tr1/λ(cλ−n)− Tr1/λ(cλ−n+1) ∈ Z.

Let Tr1/λ(cλ−K) = p/q. For n > K, there exists an integer ln such that Tr1/λ(cλ−n) = p/q + ln.
As a result, denoting by c = c0, c1, · · · , cs the conjugates of c corresponding to Q[λ] (reminding
that (αj)0≤j≤s are that of 1/λ = α0), we get :

cλ−n = p/q + ln −
∑

1≤j≤s

cjα
n
j .

Consequently λ−nc mod 1 converges to p/q in T, as n→ +∞, as announced.

Step 3. Consider the proof of Theorem 2.4 iii). We show that when ν is Rajchman, thenM = LTs+1 .
Fix any 0 6= (n0, · · · , ns)t ∈ Zs+1 and set β =

∑
0≤u≤s nuλ

−u. Again β 6= 0. We have :∑
0≤u≤s

nu(λ−n−uX) = βλ−nX.

Since ν is Rajchman, E(e2iπβλ−nX) → 0, as n → +∞. As a result, the Fourier coefficient of M
corresponding to (n0, · · · , ns) is zero. Hence M = LTs+1 . This implies that m = LT.

To complete the proof of iii), we show that ν ⊥ LR implies M ⊥ LTs+1 . Recall that Zk =∑
l∈Z µεlλ

k+Sl mod 1. For any f ∈ C(Ts+1,R) and k ∈ Z :

1

E(nε0)

∑
0≤r<n∗

E
[
f(Z−k+r, Z−k+r−1, · · · , Z−k+r−s)1S−v<−r,v≥1

]
=

∫
Ts+1

f(x) dM(x),

with n∗ = max0≤j≤N nj . We now fix k ≥ n∗ so that Tr1/λ(λ−lµj) ∈ Z, for 0 ≤ j ≤ N , l ≥ k − n∗.

For 0 ≤ j ≤ N , denote by (µ
(t)
j )0≤t≤s the conjugates of µj = µ

(0)
j corresponding to the field Q[λ].

Let 0 ≤ r < n∗. Taking any 0 ≤ u ≤ s and l < 0, we have :
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µεlλ
−u−k+r+Sl = Tr1/λ(µεlλ

−u−k+r+Sl)−
∑

1≤t≤s

µ(t)
εl
αu+k−r−Sl
t .

The role of the indicator function is now fundamental. On the event {S−v < −r, v ≥ 1}, we have
Tr1/λ(µεlλ

−u−k+r+Sl) ∈ Z, by our choice of k, since l ≤ −1. As a result, introducing the real
random variables :

Y (r)
u = λ−u

∑
l≥0

µεlλ
−k+r+Sl −

∑
1≤t≤s

αu+k−r
t

∑
l<0

µ(t)
εl
α−Slt , (9)

together with Y (r) = (Y
(r)
0 , · · · , Y (r)

s ), we obtain that for any f ∈ C(Ts+1,R) :

1

E(nε0)

∑
0≤r<n∗

E
[
f(Y (r))1S−v<−r,v≥1

]
=

∫
Ts+1

f(x) dM(x). (10)

Hence, for any f ∈ C(Ts+1,R+) :∫
Ts+1

f(x) dM(x) ≤ 1

E(nε0)

∑
0≤r<n∗

E
[
f(Y (r))

]
. (11)

Fix any 0 ≤ r < n∗ and let X0 =
∑
l≥0 µεlλ

−k+r+Sl and for 1 ≤ j ≤ s, Xj = −
∑
l<0 µ

(j)
εl α

k−r−Sl
j .

By definition, (Y (r))t = V (X0, · · · , Xs)
t, where V is the Vandermonde matrix :

V =


1 1 · · · 1
λ−1 α1 · · · αs

...
...

...
...

λ−s αs1 · · · αss

 .

The matrix V is invertible (since the roots of the minimal polynomial Q of 1/λ are simple). By
Cramer’s formula :

X0 =
∑

0≤i≤s

γiY
(r)
i ,

with γi = det(V (i))/det(V ), where V (i) is obtained from V by replacing the first column by ei,
denoting by (ei)0≤i≤s the canonical basis of Rs+1.

Notice now that each γi is real (first of all, 1/λ is a real root of Q; next, regrouping the other roots
in conjugate pairs, when conjugating γi one gets permutations in the numerator det(V (i)) and the
denominator det(V ), the same ones, so γ̄i = γi). As V is invertible, γ := (γi)0≤i≤s 6= 0.

We have X0 = 〈Y (r), γ〉. Since ν is singular with respect to LR, we also have L(X0) ⊥ LR, as
X0 = λ−k+rX. As γ 6= 0, we get that L(Y (r)) ⊥ LRs+1 . As a result, L(Y (r) mod Zs+1) ⊥ LTs+1 ,
for all 0 ≤ r < n∗. Finally, (11) implies that M⊥ LTs+1 , as announced.

This ends the proof of Theorem 2.4.
�
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5 Proof of Theorem 2.5

The context is the same as that of Theorem 2.4, but now the (ϕk)0≤k≤N are strict contractions.
Precisely, let N ≥ 1 and ϕk(x) = λnkx + µk, for 0 ≤ k ≤ N , with 1/λ > 1 a fixed Pisot number,
relatively prime integers (nk)0≤k≤N , with now n0 ≥ · · · ≥ nN ≥ 1, without loss of generality, and
µk ∈ T (1/λ), for 0 ≤ k ≤ N .

Step 1. We first show Theorem 2.5 i), using again the arguments appearing in the previous section.
If ν is absolutely continuous with respect to LR, then M = LTs+1 . The event {S−v < 0, v ≥ 1}
has this time probability one. Looking at (10) with r = 0, we get that the law of Y (0) mod Zs+1

is absolutely continuous with respect to LTs+1 , with a density bounded by E(nε0). Hence the law
of Y (0) on Rs+1 is absolutely continuous with respect to LRs+1 , with a density also bounded by
E(nε0). Since the (ϕk)0≤k≤N are strict contractions, the nj are ≥ 1, so the random variable Y (0)

is evidently bounded, cf (9). As a result the density of the law of Y (0) with respect to LRs+1 is
bounded and with compact support in Rs+1. Hence this is also the case of X0 = 〈Y (0), γ〉, where
γ = (γi)0≤i≤s 6= 0 is the first line of the inverse of the Vandermonde matrix V . Therefore this is
also verified for X = λk−rX0. This ends the proof of Theorem 2.5 i).

We turn to the proof of Theorem 2.5 ii). We shall focus on some Fourier coefficient m̂(n), thus
for some fixed n ∈ Z, of the measure m appearing in Theorem 2.4 i). We study its regularity as
a function of p ∈ CN , showing its real-analytic character. We then conclude the proof of Theorem
2.5 ii) using a theorem on the structure of the set of zeros of a non constant real-analytic function.

Step 2. Considering p ∈ CN , denote by (εn)n∈Z a sequence of i.i.d. random variables with law p.
Let us fix an integer n 6= 0, whose exact value will be precised at the end of the proof. We focus
on the Fourier coefficient m̂(n) of the measure m introduced in Theorem 2.4 i). Let us write mp

in place of m to mark the dependence in p ∈ CN . As nj ≥ 1, for 0 ≤ j ≤ N , we have the simplified
expression for this Fourier coefficient :

m̂p(n) =
1

E(nε0)
∆p, with ∆p = ∆p(k) =

∑
0≤r<n0

E
(
e2iπn

∑
l∈Z µεlλ

k+r+Sl
1nε−1

>r

)
,

where this last quantity is independent on k ∈ Z, by Theorem 2.4 i). The expectation E(nε0) also
depends on p, but to study the zeros of p 7−→ m̂p(n) we just need to focus on ∆p. We now consider
the regularity of p 7−→ ∆p on the domain CN .

For any k ∈ Z, observe first that ∆p(k) is well-defined, with the same formula as above, on the
closure C̄N . Fixing k ∈ Z, the map p 7−→ ∆p(k) is continuous on C̄N , as this function is the uniform
limit on C̄N , as L→ +∞, of the continuous maps :

p 7−→
∑

0≤r<n0

E
(
e2iπn

∑
−L≤l≤L µεlλ

k+r+Sl
1nε−1

>r

)
.

It follows that p 7−→ ∆p(k) = ∆p is well-defined on C̄N , continuous and independent on k. We
shall now prove using standard methods that it is in fact real-analytic in a classical sense, precised
below. Let us take k = 0 and fix 0 ≤ r < n0. Using independence, write :

E
(
e2iπn

∑
l∈Z µεlλ

r+Sl
1nε−1

>r

)
= E

(
e2iπn

∑
l≥0 µεlλ

r+Sl
)
E
(
e2iπn

∑
l≤−1 µεlλ

r+Sl
1nε−1

>r

)
.
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Call F (p) and G(p) respectively the terms appearing in the right-hand side. We shall show that
both functions are real-analytic functions of p. This property will be inheritated by p 7−→ ∆p. We
treat the case of p 7−→ F (p), the case of G(p) needing only to rewrite first the µεlλ

r+Sl , appearing
in the definition of G(p), as soon as l < 0 is large enough (depending only the (µj)0≤j≤N , since

nk ≥ 1, for all k), as −
∑

1≤j≤s α
−r−Sl
j µ

(j)
εl , quantity equal to µεlλ

r+Sl in T, where the (µ
(j)
k )1≤j≤s

are the conjugates of µk corresponding to the field Q[λ].

Fix now p ∈ C̄N . Let N = {0, 1, · · · } and the symbolic space S = {0, · · · , N}N, equipped with
the left shift σ. For x = (x0, x1, · · · ) ∈ S, we define :

g(x) = e
2iπn

(∑
l≥0 µxlλ

r+nx0
+···+nxl−1

)
.

Introducing the product measure µp = (
∑

0≤j≤N pjδj)
⊗N on S, we can write :

F (p) =

∫
S

g dµp.

Denote by C(S) the space of continuous functions f : S → C and introduce the operator Pp :
C(S)→ C(S) defined by :

Pp(f)(x) =
∑

0≤j≤N

pjf((j, x)), x ∈ S, (12)

where (j, x) ∈ S is the word obtained by the left concatenation of the symbol j to x. The operator
Pp is Markovian, i.e. f ≥ 0 ⇒ Pp(f) ≥ 0 and verifies Pp1 = 1, where 1(x) = 1, x ∈ S. The
measure µp has the invariance property

∫
S
Pp(f) dµp =

∫
S
f dµp, f ∈ C(S). For f ∈ C(S) and

k ≥ 0, introduce the variation :

Vark(f) = sup{|f(x)− f(y)|, (x, y) ∈ S2, xi = yi, 0 ≤ i < k}.

For any 0 < α < 1, let |f |α = sup{α−kVark(f), k ≥ 0}, as well as ‖f‖α = |f |α + ‖f‖∞. We denote
by Fα the complex Banach space of fonctions f on S such that ‖f‖α < ∞. Any Fα is preserved
by Pp. Observe now that g ∈ Fα for λ ≤ α < 1. We fix α = λ.

As a classical fact from Spectral Theory, cf for example Baladi [1], the operator Pp : Fλ → Fλ
satisfies a Perron-Frobenius theorem. Let us show this elementarily. For f ∈ Fλ, we have :

Pnp f(x) =
∑

0≤j1,··· ,jn≤N

pj1 · · · pjnf((j1, · · · , jn, x)).

This furnishes Vark(Pnp f − 1
∫
S
f dµp) = Vark(Pnp f) ≤ Vark+n(f). Therefore :∣∣∣∣Pnp (f)− 1

∫
S

f dµp

∣∣∣∣
λ

≤ λn|f |λ.

In a similar way, we can write :
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(Pnp f − 1

∫
S

f dµp)(x) = Pnp (f)(x)− 1(x)

∫
S

Pnp (f) dµp

=
∑

0≤j1,··· ,jn≤N

pj1 · · · pjn
∫
S

(f((j1, · · · , jn, x))− f((j1, · · · , jn, y))) dµp(y).

Consequently, ‖Pnp f − 1
∫
S
f dµp‖∞ ≤ Varn(f) ≤ λn|f |λ. Putting things together, finally :

‖Pnp (f − 1

∫
S

f dµp)‖λ ≤ 2λn‖f‖λ.

This shows that 1 is a simple eigenvalue and that the rest of the spectrum of Pp is contained in the
closed disk of radius λ < 1. Remark that this holds uniformly on p ∈ C̄N .

Fix some circle Γ centered at 1 and with radius 0 < r < 1−λ. By standard functional holomorphic
calculus, cf Kato [10], for any p ∈ C̄N , the following operator, involving the resolvent, is a continuous
(Riesz) projector on Vect(1) :

Πp =

∫
Γ

(zI − Pp)−1dz. (13)

Moreover Πp(Fλ) and (I −Πp)(Fλ) are closed Pp-invariant subspaces, with :

Fλ = Πp(Fλ)⊕ (I −Πp)(Fλ).

Also, in restriction to (I −Πp)(Fλ), the spectral radius of Pp is less than λ.

Recall that N ≥ 1. We view a function of p ∈ C̄N in terms of the first N variables (p0, · · · , pN−1) ∈
RN . Let η′ = (η0, · · · , ηN−1) and η = (η0, · · · , ηN−1,−(η0 + · · ·+ ηN−1)). For any p ∈ C̄N and any
η′ (even when p + η 6∈ C̄N ), we can define the continuous operator Pp+η : Fλ → Fλ by (12). It
always verifies the relation :

Pp+η = Pp +
∑

0≤j≤N−1

ηjQj ,

where Qj(f)(x) = f(j, x)−f(N, x). Denote by BN (0, δ) the open Euclidean ball in RN of radius δ.
Let λ < λ′ < 1− r. For any p in C̄N , there exists δ > 0 such that when η′ ∈ BN (0, δ), then 1 is still
a simple eigenfunction of Pp+η, with Pp+η1 = 1, the rest of the spectrum of Pp+η being contained
in the disk of radius λ′ and Πp+η, also defined by (13), is a continuous projector on Vect(1); this
follows from the implicit function theorem, cf Rosenbloom [16], Kato [10]. By compacity of C̄N , we
can choose δ > 0 uniformly on p ∈ C̄N . This defines some open δ-neighborhood CδN of C̄N .

When p ∈ C̄N , we have
∫
S
f dµp = 0, for f ∈ (I −Πp)(Fλ). Thus for any f ∈ Fλ :

Πp(f) =

(∫
S

f dµp

)
1.

Applying this to the function g of interest to us, we obtain that when p ∈ C̄N :
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F (p)1 =

∫
Γ

(zI − Pp)−1(g)dz.

The function F is next extended to CδN by the previous formula. Recall the following definition :

Definition 5.1
A function h : CδN → C, seen as a function of (p0, · · · , pN−1), admits a development in series
around p ∈ CδN , if there exists ε > 0 such that for η′ = (η0, · · · , ηN−1) ∈ BN (0, ε) and writing
η = (η′,−(η0 + · · ·+ ηN−1)), then h(p+ η) is given by an absolutely converging series :

h(p+ η) =
∑

l0≥0,··· ,lN−1≥0

Al0,··· ,lN−1
ηl00 · · · η

lN−1

N−1 .

A function is real-analytic in CδN if it admits a development in series around all p ∈ CδN .

Let us now check that p 7−→ F (p) is real-analytic on CδN in the previous sense. Let p ∈ CδN . For
z ∈ Γ and η′ small enough (and the corresponding η), we can write :

(zI − Pp+η)−1 =

I − (zI − Pp)−1
∑

0≤j≤N−1

ηjQj

−1

(zI − Pp)−1

=
∑
n≥0

∑
0≤j1,··· ,jn≤N−1

ηj1 · · · ηjn(zI − Pp)−1Qj1 · · · (zI − Pp)−1Qjn(zI − Pp)−1.

For small enough η′, uniformly in z ∈ Γ, this is absolutely convergent in the Banach operator
algebra. We rewrite it as :

(zI − Pp+η)−1 =
∑

l0≥0,··· ,lN−1≥0

Bl0,··· ,lN−1
(z)ηl00 · · · η

lN−1

N−1 ,

converging for the operator norm, uniformly in z ∈ Γ. Hence, for small enough η′ (and thus η) :

F (p+ η)1 =

∫
Γ

(zI − Pp+η)−1(g) dz =
∑

l0≥0,··· ,lN−1≥0

ηl00 · · · η
lN−1

N−1

∫
Γ

Bl0,··· ,lN−1
(z)(g) dz.

Applying this equality at some particular x ∈ S, we obtain the desired development in series around
p. This completes this step.

Step 3. Maybe restricting δ > 0, taking into account the finite number of functions appearing in
the expression of ∆p, we obtain that p 7−→ ∆p is real-analytic on CδN . We shall show that if n 6= 0
has been appropriately chosen at the beginning, then ∆p is not zero at some extremal points of C̄N .
The point will be that if ever ∆p has a zero on C̄N , then this will imply that either p 7−→ Re(∆p)
or p 7−→ Im(∆p) is non-constant on CδN .

Now if h : CδN → R is real-analytic and non-constant, Lojasiewicz’s stratification theorem (cf
Krantz-Parks [8], theorem 5.2.3) says that the real-analytic set {p ∈ CδN | h(p) = 0} is locally a finite
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union of real-analytic graphs of dimension ≤ N − 1 (points if N = 1). By compacity of C̄N , the set
{p ∈ C̄N | h(p) = 0} is included in a finite union of real-analytic graphs of dimension ≤ N − 1.

For the sequel, let us write x ≡ y for equality of x and y in T.

Lemma 5.2
Let d ≥ 1 and µ ∈ T (1/λ). The series

∑
l∈Z µλ

ld mod 1, well-defined as an element of T, equals
a rational number modulo 1.

Proof of the lemma :
Let l0 ≥ 1 be such that Tr1/λ(λ−lµ) ∈ Z, for l > l0. Denote by (µ(j))0≤j≤s the conjugates of µ,

with µ(0) = µ, and α1, · · · , αs that of α0 = 1/λ. We have the following equalities on the torus :

∑
l∈Z

µλld ≡ µλ−l0d

1− λd
+
∑
l>l0

µλ−ld ≡ µλ−l0d

1− λd
−
∑

1≤i≤s

µ(i)
∑
l>l0

αldi ≡
µλ−l0d

1− λd
−
∑

1≤i≤s

µ(i)α
(l0+1)d
i

1− αdi

≡ −

µλ−(l0+1)d

1− λ−d
+
∑

1≤i≤s

µ(i)α
(l0+1)d
i

1− αdi

 = −Tr1/λ

(
µλ−(l0+1)d

1− λ−d

)
∈ Q.

�

We complete the argument. Fixing 0 ≤ j ≤ N and pj = (0, · · · , 0, 1, 0, · · · , 0), where the 1 is at
place j, we have for k ∈ Z, recalling that 1 ≤ nj ≤ n0 :

∆pj = ∆pj (k) =
∑

0≤r<n0

e2iπn
∑
l∈Z µjλ

k+r+lnj
1nj>r =

∑
0≤r<nj

e2iπn
∑
l∈Z µjλ

k+r+lnj
.

Notice in passing that the invariance with respect to k is now obvious, as we sum over r on a full
period of length nj . Now, taking k = 0, we have :

∆pj =
∑

0≤r<nj

e2iπn(Aj,r/Bj,r),

for rational numbers Aj,r/Bj,r, making use of the previous lemma, since λrµj ∈ T (1/λ), for any r.
If for example n is a multiple of Bj,r for any 0 ≤ r < nj , we get ∆pj = nj ≥ 1, which gives what
was desired. This ends the proof of the theorem.

�

Remark. — Lojasiewicz’s stratification theorem, giving the local structure of {p ∈ CδN | h(p) = 0},
is a difficult theorem. In an elementary way, using the implicit function theorem, one can show
that the set of zeros of a real-valued real analytic non constant function is locally included in a
countable union of connected real-analytic graphs of codimension one.

Remark. — In the general case, when the (ϕk)0≤k≤N are not all strict contractions, the method
seems to reach some limit. Using the notation DN (r) of the Introduction, with r = (λnk)0≤k≤N , and
considering as in Step 2 the regularity of p 7−→ F (p) on DN (r), it is not difficult to show continuity,
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using some standard coupling argument. The real-analytic character, if ever true, a priori requires
more work. Still setting S = {0, · · · , N}N and µp = (

∑
0≤j≤N pjδj)

⊗N on S, we again have :

F (p) =

∫
S

g dµp,

with g(x) = e
2iπn

(∑
l≥0 µxlλ

r+nx0
+···+nxl−1

)
, but this function is only defined µp-almost-everywhere.

6 Complements

6.1 A numerical example

Considering an example as simple as possible which is not homogeneous, take N = 1 and the
two contractions ϕ0(x) = λx, ϕ1(x) = λ2x+ 1, where 1/λ > 1 is a Pisot number, with probability
vector p = (p0, p1). Then n0 = 1, n1 = 2 and ν is the law of

∑
l≥0 εlλ

nε0+···+nεl−1 , with (εn)n≥0

i.i.d., with common law Ber(p1), i.e. P(ε0 = 1) = p1 and P(ε0 = 0) = 1 − p1. We shall take
0 ≤ p1 ≤ 1 as parameter for simulations. Notice that E(nε0) = p0 + 2p1 = 1 + p1,

Taking n = 1, k ∈ Z and r ∈ {0, 1}, let us define :

Fp(k) = E
(
e2iπλk

∑
l≥0 εlλ

nε0
+···+nεl−1

)
, Gp(k, r) = E

(
e2iπ

∑
l≥0 εlλ

k−(nε0
+···+nεl )

1nε0>r

)
,

leading to ∆p = Fp(k)Gp(k, 0) + Fp(k + 1)Gp(k + 1, 1), for all k ∈ Z. Writing mp in place of m for
the measure on T in Theorem 2.4 i) (defined when 0 < p1 < 1), we get m̂p(1) = ∆p/(1 + p1). Let
us first discuss the choice of probability vector p = (1− p1, p1) and Pisot number 1/λ.

A degenerated example (the invariant measure being automatically singular with respect to
LR) is for instance given by λ = (3 −

√
5)/2 < 1/2. Nevertheless, it is interesting to notice that

λ−n ≡ −λn, n ≥ 0. Taking p1 = 1/2, one can check that ∆p = |Fp(1)|2 + |Fp(2)|2/2. Necessarily
∆p > 0. Indeed, k 7−→ Fp(k) verifying a linear recurrence of order two, the equality ∆p = 0 would
give Fp(k) = 0 for all k, but Fp(k)→ 1, as k → +∞. Notice that (3−

√
5)/2 is the largest λ with

this property (it has to be a root of some X2 − aX + 1, for some integer a ≥ 0). Mention that in
general ∆p is not real; cf the pictures below.

To study an interesting example, we take into account the similarity dimension s(p, r), rewritten
here as s(p, λ) :

s(p, λ) :=
(1− p1) ln(1− p1) + p1 ln p1

(1− p1) lnλ+ p1 ln(λ2)
.

The condition s(p, λ) ≥ 1 is equivalent to (1 − p1) ln(1 − p1) + p1 ln p1 − (1 + p1) lnλ ≤ 0. As a
function of p1, the left-hand side has a minimum value − ln(λ + λ2), attained at p1 = λ/(1 + λ).
As a first attempt, taking for 1/λ the golden mean (

√
5 + 1)/2 = 1, 618... is in fact not interesting,

as in this case λ+ λ2 = 1, giving s(p, λ) ≤ 1.

We instead take (as considered in Section 2) for 1/λ the Plastic number, i.e. the unique real
root of X3 −X − 1. Approximately, 1/λ = 1.324718.... For this λ :

24



s(p, λ) > 1⇐⇒ 0, 203... < p0 < 0, 907....

The other roots of X3−X−1 = 0 are conjugate numbers ρe±iθ. From the relations 1/λ+2ρ cos θ =
0 and (1/λ)ρ2 = 1, we deduce ρ =

√
λ and cos θ = −1/(2λ3/2), thus θ = ±2.43... rad. For

computations, the relations λ−n + ρneinθ + ρne−inθ ∈ Z, n ≥ 0, furnish λ−n ≡ −2(
√
λ)n cos(nθ).

Let us finally compute the extreme values of p1 7−→ m̂p(1), abusively written as m̂(1,0)(1) and
m̂(0,1)(1), since mp has only been defined for 0 < p1 < 1. We first observe that m̂(1,0)(1) = ∆(1,0) =
F(1,0)(0)G(1,0)(0, 0) = 1. At the other extremity :

∆(0,1) = F(0,1)(0)G(0,1)(0, 0) + F(0,1)(1)G(0,1)(1, 1)

= e2iπ
∑
l≥0 λ

2l

e2iπ
∑
l≥0 λ

−2(l+1)

+ e2iπλ
∑
l≥0 λ

2l

e2iπ
∑
l≥0 λ

1−2(l+1)

= e
2iπ
(

1
1−λ2

−2
∑
l≥0(
√
λ)2l cos(2lθ)

)
+ e

2iπ
(

λ
1−λ2

−2
∑
l≥0(
√
λ)2l+1 cos((2l+1)θ)

)
= e

2iπ
(

1
1−λ2

−2Re
(

λe2iθ

1−λe2iθ

))
+ e

2iπ
(

λ
1−λ2

−2Re
( √

λeiθ

1−λe2iθ

))
.

A not difficult computation, shortened by the observation that (1−λe2iθ)(1−λe−2iθ) = 1/λ, shows
that the arguments in the exponential terms (after the 2iπ) are respectively equal to 3 and 0,
leading to ∆(0,1) = 2 and therefore m̂(0,1)(1) = 1.

Recalling that p = (1 − p1, p1), below are respectively drawn the real-analytic maps p1 7−→
Re(m̂p(1)), p1 7−→ Im(m̂p(1)) and the parametric curve p1 7−→ m̂p(1), 0 ≤ p1 ≤ 1.

The first two pictures indicate that p1 7−→ m̂p(1) spends a rather long time near 0, with Re(m̂p(1))
and Im(m̂p(1)) both around 10−4. Let us precise here that one can exploit the product form (given
by the exponential) inside the expectation appearing in Fp(k) and Gp(k, r). Using a binomial tree,
we make a deterministic numerical computation of m̂p(1), with nearly an arbitrary precision. For
example, one can obtain the rather remarquable value :
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m̂(1/2,1/2)(1) = 0, 0001186...+ i0, 0000327...,

where all digits are exact. In this case, s((1/2, 1/2), λ) = 1, 64... > 1. The above pictures were
drawn with 1000 points, each one determined with a sufficient precision. This allows to safely
zoom on the neighbourhood of 0 of p1 7−→ m̂p(1), the interesting region. We obtain the following
surprising pictures, the one on the right-hand side containing around 500 points :

There are probably profound reasons behind these pictures, that would in particular clarify the
condition of non-nullity of the Fourier coefficient m̂p(1) and more generally of m̂p(n), n ∈ Z.
Further investigations are necessary, but we can conclude that the curve p1 7−→ m̂p(1) is rather
convincingly not touching 0. It may certainly be possible to build a rigorous numerical proof of
this fact, but this is not the purpose of the present paper. We informally state :

Numerical Evidence 6.1
Let N = 1, 0 < λ < 1, with 1/λ > 1 the Plastic number, and ϕ0(x) = λx, ϕ1(x) = λ2x+ 1. Then
for all p ∈ C1, the invariant measure ν is continuous singular and not Rajchman.

Remark. — For the same system, but taking for 1/λ the supergolden ratio, i.e. the fourth Pisot
number (the real root of X3 −X2 − 1), one essentially gets the same pictures.

Still taking for 1/λ the Plastic number, but for the system ϕ0(x) = λ2x and ϕ1(x) = λ3x + 1,
already mentioned in Section 2, recall that the invariant measure ν is continuous singular and not
Rajchman for all p ∈ C1, except when p = (λ2, λ3), in which case ν = 1

1+λL[0,1+λ]. We have drawn

below the real analytic curve p1 7−→ m̂p(1), with next a zoom at 10−3 near the origin. This is
also interesting, since this time the curve is not self-intersecting, being almost linear near zero and
passing at zero exactly for the sole parameter p1 = λ3.
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6.2 Applications to sets of uniqueness for trigonometric series

Let N ≥ 1 and for 0 ≤ k ≤ N affine contractions ϕk(x) = rkx+bk, with reals (rk) and (bk) such
that 0 < rk < 1 for all k. As a general fact, Theorem 2.3 has some consequences in terms of sets
of multiplicity for trigonometric series, cf for example Salem [18] or Zygmund [29] for details. As
in the Introduction, let F ⊂ R be the unique non-empty compact set, verifying the self-similarity
relation F = ∪0≤k≤Nϕk(F ). With N = {0, 1, · · · } and S = {0, · · · , N}N, one has :

F =

∑
l≥0

bxlrx0 · · · rxl−1
, (x0, x1, · · · ) ∈ S

 .

Let us place on the torus T and consider trigonometric series. Recall that a subset E of T is
a set of uniqueness (U -set), if whenever a trigonometric series

∑
n≥0(an cos(2πx) + bn sin(2πx)),

with complex numbers (an) and (bn), converges to 0 for all x 6∈ E, then an = bn = 0 for all n ≥ 0.
Otherwise E is said of multiplicity (M -set).

Theorem 6.1
Let N ≥ 1 and for 0 ≤ k ≤ N affine contractions ϕk(x) = rkx + bk, where 0 < rk < 1, with no
common fixed point. Suppose that the system (ϕk)0≤k≤N is not affinely conjugated to a family in
Pisot form. Then F mod 1 ⊂ T is a M -set.

Proof of the theorem :
Any p ∈ CN gives a Rajchman invariant probability measure ν supported by F ⊂ R. Hence F
mod (1) ⊂ T supports the probability ν̃, image of ν under the projection x 7−→ x mod 1, from R
to T. Then ν̃ is a Rajchman measure on T, so, cf Salem [18] (chap. V), F mod 1 is a M -set. �
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In the other direction, in general more delicate, we shall simply apply existing results. For the
following statement, fixing 0 < λ < 1 and integers nk ≥ 1, for 0 ≤ k ≤ N , notice that for any
(x0, x1, · · · ) ∈ S, we have

∑
l≥0 λ

nx0+···+nxl−1 (1− λnxl ) = 1.

Theorem 6.2
Let N ≥ 1 and suppose that the (ϕk) are affine contractions of the form ϕk(x) = λnkx + bk, with
bk = bak + c(1 − λnk), for some 0 < λ < 1 with 1/λ a Pisot number > N + 2, relatively prime
positive integers nk ≥ 1, 0 ≤ ak ∈ Q[λ] and real numbers b ≥ 0 and c. Then the non-empty compact
self-similar set F = ∪0≤k≤Nϕk(F ) ⊂ R can be written as F = bG+ c, where G is the compact set :

G =

∑
l≥0

axlλ
nx0+···+nxl−1 , (x0, x1, · · · ) ∈ S

 .

Assume that bG ⊂ [0, 1), so that bG and F can be seen as subsets of T. Then F is U -set.

Proof of the theorem :
Up to replacing b and the (ak) respectively by br and (ak/r), for some r > 1 in Q, we may assume
that 0 ≤ ak < 1/(1− λ), for all 0 ≤ k ≤ N . Then :

G ⊂ H :=

∑
l≥0

ηlλ
l, ηl ∈ {0, a0, · · · , aN}, l ≥ 0

 ⊂ [0, 1).

Since 1/λ > N + 2 is a Pisot number and all a0, · · · , aN are in Q[λ], it follows from the Salem-
Zygmund theorem, cf Salem [18], chap. VII, paragraph 3, on perfect homogeneous sets, that H is a
perfect U -set. Mention that in this theorem, one also assumes that max0≤k≤N ak = 1/(1− λ) and
that successive au < av in [0, 1) verify av − au ≥ λ. These conditions serve to give a geometrical
description of the perfect homogeneous set H in terms of dissection, without overlaps. They are
in fact not used in the proof, where only the above description of H is important (one can indeed
start reading Salem [18], chap. VII, paragraph 3, directly from line 9 of the proof).

As a subset of a U -set, G is also a U -set. This is also the case of bG, by hypothesis a subset of
[0, 1), using Zygmund, Vol. I, chap. IX, Theorem 6.18 (the proof, not obvious, is in Vol. II, chap.
XVI, 10.25, and relies on Fourier integrals). Hence, F = bG+ c is also a U -set, as any translate on
T of a U -set is a U -set. This ends the proof of the theorem.

�

Remark. — As a general fact, the hypothesis 1/λ > N + 2 ensures that H and F have zero
Lebesgue measure, which is a necessary condition for a set to be a U -set.
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