Y. Marzouk and D. Xiu, A stochastic collocation approach to bayesian inference in inverse problems, Communications in Computational Physics, vol.6, issue.4, pp.826-847, 2009.

M. Arnst, R. Ghanem, and C. Soize, Identification of bayesian posteriors for coefficients of chaos expansions, Journal of Computational Physics, vol.229, pp.3134-3154, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00684317

M. Frangos, Y. Marzouk, K. Willcox, B. Van-bloemen, and . Waanders, Surrogate and reduced-order modeling: A comparison of approaches for large-scale statistical 650 inverse problems, Large-Scale Inverse Problems and Quantification of Uncertainty, pp.123-149, 2010.

J. B. Nagel and B. Sudret, Spectral likelihood expansions for Bayesian inference, Journal of Computational Physics, vol.309, pp.267-294, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01432170

G. H. Givens and J. A. Hoeting, Computational statistics

. Sons, , 2013.

G. Perrin, Adaptive calibration of a computer code with time-series output, Journal of Statistical Planning and Inference
URL : https://hal.archives-ouvertes.fr/hal-01794807

P. Ranjan, M. Thomas, H. Teismann, and S. Mukhoti, Inverse Problem for a TimeSeries Valued Computer Simulator via Scalarization, Open Journal of Statis-660 tics, pp.528-544, 2016.

M. T. Pratola, S. R. Sain, D. Bingham, M. Wiltberger, and E. J. Rigler, Fast sequential computer model calibration of large nonstationary spatial-temporal processes, Technometrics, vol.55, issue.2, pp.232-242, 2013.

G. Perrin, D. Duhamel, C. Soize, and C. Funfschilling, Quantification of the influence 665 of the track geometry variability on the train dynamics, Mechanical Systems and Signal Processing, vol.60, pp.945-957, 2015.

N. Lestoille, C. Soize, and C. Funfschilling, Sensitivity of train stochastic dynamics to long-time evolution of track irregularities, Vehicle System Dynamics, vol.54, issue.5, pp.545-567, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01276447

N. Lestoille, C. Soize, and C. Funfschilling, Stochastic prediction of high-speed train dynamics to long-term evolution of track irregularities, Mechanics Research Communications, vol.75, pp.29-39, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01325285

A. J. Bing and A. Gross, Development of railroad track degradation models, Transportation research record 939, pp.27-31, 1983.

G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling, Track irregularities stochastic modeling, Probabilistic Engineering Mechanics, vol.34, pp.123-130, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00850645

S. Kraft, Parameter identification for a TGV model, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00731143

B. Matérn, Spatial variation, p.680, 1986.

W. Scott, P. I. Frazier, and W. B. Powel, The Correlated Knowledge Gradient for Simulation Optimization of Continuous Parameters using Gaussian Process Regression, SIAM Journal on Optimization, vol.21, issue.3, pp.996-1026, 2011.

W. ,

K. Hastings, Monte Carlo Sampling Methods Using Markov Chains and Their Applications, Biometrika, vol.57, issue.1, pp.97-109, 1970.

J. Ching and Y. Chen, Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging, Journal of Engineering Mechanics, vol.133, issue.7, pp.816-832, 2007.

W. Betz, I. Papaioannou, and D. Straub, Transitional Markov Chain Monte Carlo: Observations and Improvements, Journal of Engineering Mechanics, vol.142, issue.5, p.4016016, 2016.

D. R. Jones, M. Schonlau, and W. J. Welch, Efficient Global Optimization of Expensive Black-Box Functions, Journal of Global Optimization, vol.13, pp.455-492, 1998.

V. Picheny, D. Ginsbourger, O. Roustant, R. T. Haftka, and N. Kim, Adaptive Designs of Experiments for Accurate Approximation of a Target Region, Journal 695 of Mechanical Design, vol.132, issue.7, p.71008, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00319385

T. Santner, B. Williams, and W. Notz, The Design and Analysis of Computer Experiments, 2003.

J. Sacks, W. J. Welch, J. S. Mitchell, and P. W. Henry, Design and Experiments of Computer Experiments, Statistical Science, vol.4, issue.4, pp.409-423, 1989.

V. C. Chen, K. L. Tsui, R. R. Barton, and J. K. Allen, A review of design and modeling in computer experiments, Statistics in industry, vol.22, pp.231-261, 2003.

G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling, A Posteriori error and optimal reduced basis for stochastic processes defined by a finite set of realizations, p.705
URL : https://hal.archives-ouvertes.fr/hal-01097139

. Siam/asa, Journal on Uncertainty Quantification, vol.2, pp.745-762, 2014.