A stochastic collocation approach to bayesian inference in inverse problems, Communications in Computational Physics, vol.6, issue.4, pp.826-847, 2009. ,
Identification of bayesian posteriors for coefficients of chaos expansions, Journal of Computational Physics, vol.229, pp.3134-3154, 2010. ,
URL : https://hal.archives-ouvertes.fr/hal-00684317
Surrogate and reduced-order modeling: A comparison of approaches for large-scale statistical 650 inverse problems, Large-Scale Inverse Problems and Quantification of Uncertainty, pp.123-149, 2010. ,
Spectral likelihood expansions for Bayesian inference, Journal of Computational Physics, vol.309, pp.267-294, 2016. ,
URL : https://hal.archives-ouvertes.fr/hal-01432170
, Computational statistics
, , 2013.
Adaptive calibration of a computer code with time-series output, Journal of Statistical Planning and Inference ,
URL : https://hal.archives-ouvertes.fr/hal-01794807
Inverse Problem for a TimeSeries Valued Computer Simulator via Scalarization, Open Journal of Statis-660 tics, pp.528-544, 2016. ,
Fast sequential computer model calibration of large nonstationary spatial-temporal processes, Technometrics, vol.55, issue.2, pp.232-242, 2013. ,
Quantification of the influence 665 of the track geometry variability on the train dynamics, Mechanical Systems and Signal Processing, vol.60, pp.945-957, 2015. ,
Sensitivity of train stochastic dynamics to long-time evolution of track irregularities, Vehicle System Dynamics, vol.54, issue.5, pp.545-567, 2016. ,
URL : https://hal.archives-ouvertes.fr/hal-01276447
Stochastic prediction of high-speed train dynamics to long-term evolution of track irregularities, Mechanics Research Communications, vol.75, pp.29-39, 2016. ,
URL : https://hal.archives-ouvertes.fr/hal-01325285
Development of railroad track degradation models, Transportation research record 939, pp.27-31, 1983. ,
Track irregularities stochastic modeling, Probabilistic Engineering Mechanics, vol.34, pp.123-130, 2013. ,
URL : https://hal.archives-ouvertes.fr/hal-00850645
Parameter identification for a TGV model, 2012. ,
URL : https://hal.archives-ouvertes.fr/tel-00731143
, Spatial variation, p.680, 1986.
The Correlated Knowledge Gradient for Simulation Optimization of Continuous Parameters using Gaussian Process Regression, SIAM Journal on Optimization, vol.21, issue.3, pp.996-1026, 2011. ,
,
Monte Carlo Sampling Methods Using Markov Chains and Their Applications, Biometrika, vol.57, issue.1, pp.97-109, 1970. ,
Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging, Journal of Engineering Mechanics, vol.133, issue.7, pp.816-832, 2007. ,
Transitional Markov Chain Monte Carlo: Observations and Improvements, Journal of Engineering Mechanics, vol.142, issue.5, p.4016016, 2016. ,
Efficient Global Optimization of Expensive Black-Box Functions, Journal of Global Optimization, vol.13, pp.455-492, 1998. ,
Adaptive Designs of Experiments for Accurate Approximation of a Target Region, Journal 695 of Mechanical Design, vol.132, issue.7, p.71008, 2010. ,
URL : https://hal.archives-ouvertes.fr/hal-00319385
The Design and Analysis of Computer Experiments, 2003. ,
Design and Experiments of Computer Experiments, Statistical Science, vol.4, issue.4, pp.409-423, 1989. ,
A review of design and modeling in computer experiments, Statistics in industry, vol.22, pp.231-261, 2003. ,
A Posteriori error and optimal reduced basis for stochastic processes defined by a finite set of realizations, p.705 ,
URL : https://hal.archives-ouvertes.fr/hal-01097139
, Journal on Uncertainty Quantification, vol.2, pp.745-762, 2014.