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Abstract

This paper presents a Bayesian calibration method for a simulation-based model with

stochastic functional input and output. The originality of the method lies in an adap-

tation involving the representation of the likelihood function by a Gaussian process

surrogate model, to cope with the high computational cost of the simulation, while

avoiding the surrogate modeling of the functional output. The adaptation focuses on

taking into account the uncertainty introduced by the use of a surrogate model when

estimating the parameters posterior probability distribution by MCMC. To this end,

trajectories of the random surrogate model of the likelihood function are drawn and in-

jected in the MCMC algorithm. An application on a train suspension monitoring case

is presented.

Keywords:

1. Introduction

The goal of this work is to perform the inverse identification of the input parameters

of an expensive computer code with functional input excitation and output response,

under uncertainty, from experimental data. The industrial application motivating the

work presented in this paper consists in monitoring high-speed train suspensions using5

acceleration measurements for maintenance purposes.

This identification problem can be seen as a calibration problem. The main pur-

pose of calibration is to fit a model to experimental data, in order to provide a good
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prediction for untested conditions. As long as the quality of the prediction is satisfy-

ing, the calibrated value of the parameters may not correspond to the ”real” physical10

value, in the case when the parameters have a physical meaning. The problem studied

in this paper differs in this point because the ”real” physical value of the parameters is

precisely what we are looking for.

Because the problem is affected by various sources of uncertainty (noise on the

measurements, model error, lack of knowledge about the model parameters), a prob-15

abilistic model of the system response is built based on the simulation code. The

Bayesian framework is well suited to combine a probabilistic model with experimental

data to obtain information about the model input parameters. A Bayesian calibration

approach is adopted.

However, except a few particular analytical cases, Bayesian calibration methods20

generally require the computation of the model response for numerous values of the

input parameters. Surrogate modeling is a solution to circumvent the numerical cost

induced by the numerous calls to an expensive computer code. It consists in replacing

the latter by an efficient algebraic approximation of the output response. Although it

is a classical approach for simulations with scalar output, surrogate modeling of func-25

tional output remains a complex task. Because we want to keep the whole information

provided by the measurements, we ruled out the possibility of condensing the output

into a few indicators of interest. The solution we propose in this paper is, instead of

relying on a surrogate model of the output response, building a surrogate model of the

likelihood function that is at the core of Bayesian calibration. The novelty of this work30

also lies in the consideration of the uncertainty introduced by the surrogate model.

We start this paper by recalling in Section 2 the main features of MCMC-based

Bayesian calibration, followed by two examples of calibration procedures. The ap-

proach we propose is then detailed in Section 3, with a particular focus put on includ-

ing the surrogate model uncertainty in the calibration procedure. The method is then35

applied on our industrial railway case in Section 4.
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2. Setting the calibration problem in a Bayesian framework

This section recalls the main principles of Bayesian calibration and introduces the

formalism that is used in the rest of the paper. Two calibration methods for cases

approaching the one treated in this paper are also presented.40

2.1. Bayesian calibration principle

We consider a system described by the model Y = H(W). Variable W gathers

the various input parameters of the model. In general, W can be defined as a vector

belonging to an admissible set CW. In the context of Bayesian calibration, the value

of these parameters is uncertain, hence vector W is random. The initial information45

about the parameters is given by the prior probability density function (PDF) pprior
W of

W. Variable Y is an observable output quantity of the system. The dependence of

Y to parameters W is modeled by the function H. Function H is considered random

(meaning that H(w0) is a random value even if w0 is deterministic), which makes Y

random as well. Various sources of uncertainty may account for H randomness: model50

error, approximation errors... A measurement ymes is provided as experimental data

that can be affected by measurement noise. It is considered as a realization of random

quantity Y.

The goal of the Bayesian calibration procedure is to determine the posterior PDF

ppost
W of parameters W. The latter represents the updated knowledge about the parame-

ters, according to the new information about the system brought by measurement ymes.

Mathematically, ppost
W corresponds to the conditional PDF of W knowing Y

ppost
W (w) = pW |Y(w |ymes), w ∈ CW. (1)

According to the Bayes formula, the conditional probability can then be decomposed

in the following way:55

ppost
W (w) =

pY |W(ymes |w) pprior
W (w)

pY(ymes)
(2)

∝ L(w) pprior
W (w) (3)

where, for a fixed ymes, the function L : w 7→ pY |W(ymes |w) is called the like-

lihood function. Its computation depends on the relationship Y = H(W). Because
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of dimensionality problems, the log-likelihood L : w 7→ log(L(w)) is usually used

instead.

From Eq. (3), Markov Chain Monte Carlo (MCMC) is a classical way to construct60

independent realization of posterior PDF ppost
W . This class of algorithms is briefly pre-

sented in the following section. It should be noted that calibration methods that do not

rely on MCMC have been developed, in order to avoid the numerous difficulties associ-

ated with the implementation of MCMC algorithms. Other approaches for constructing

surrogate models consist in using polynomial chaos expansions [1, 2, 3, 4].65

2.2. Estimation of the posterior density with MCMC

The purpose of Markov Chain Monte Carlo (MCMC, see [5]) is to draw a sample

according to a target PDF. It requires the ability to evaluate this PDF or a function pro-

portional to it anywhere in its definition set. MCMC algorithms perform this draw by

building a Markov Chain for which the invariant probability distribution is represented70

by the target PDF. For Bayesian calibration, the target PDF is posterior PDF ppost
W ; the

function injected in the algorithm is w 7→ L(w) pprior
W (w).

The drawn sample usually needs to be large in order to be distributed as the target

PDF. At least one call to the likelihood function is required for each point of the sample.

Once the sample is drawn, the target PDF can be studied by estimating its moments75

and quantiles for instance. The marginal PDFs can also be plotted using histograms or

kernel methods.

2.3. Calibration of an expensive computer code with scalar output

Let us first consider the case of a simulation-based model with scalar output, rep-

resented for example by the relationship

Y = h(W) + ε (4)

where the simulation is represented by the deterministic function h and ε that is an

additive noise representing the measurement noise and the model error, modeled by a

Gaussian centered random variable of variance σ2
ε . For a single measurement ymes, the

corresponding likelihood function is

L(w) = pN (ymes;h(w), σ2
ε), (5)
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where pN (.;µ, σ2) stands for the normal density of mean µ and variance σ2.

Using MCMC requires numerous evaluations of the likelihood function L and con-80

sequently numerous runs of the simulation represented by function h. An expensive

simulation makes the procedure unaffordable. A classical way of addressing such nu-

merical issue is to rely on surrogate models. In particular, Gaussian process (GP) mod-

els is a commonly used class of surrogate models, as it offers closed-form expressions

and an estimation of the approximation error. The principle of GP surrogate modeling85

is to represent a deterministic function by a conditioned Gaussian process. The mean

function of the process (also called the Kriging predictor) constitutes the best approx-

imation of the function anywhere in its definition set in a L2-sense, while its variance

represents the approximation error. More details, formulas and their mathematical jus-

tifications are provided in Appendix A.90

For the present calibration case, the simulation is replaced by a GP surrogate model:

for any w ∈ Cw, the simulation output h(w) is replaced by the random value ĥ(w) +

Z(w) where ĥ is the Kriging predictor andZ a centered GP of variance σ2
Z independent

from noise ε. The model then becomes

Y = ĥ(W) + Z(W) + ε (6)

and the associated likelihood function

L(w) = pN (ymes; ĥ(w), σ2
Z(w) + σ2

ε), (7)

As shown by this last equation, the interest of building a GP surrogate model of the

simulation output is that the surrogate model uncertainty can be readily introduced

in the likelihood function. The calibration procedure is not modified. The Bayesian

formalism is kept, which allows for a correct evaluation of the posterior uncertainty on

the parameters W.95

2.4. Calibration of an expensive computer code with functional output

We now consider a simulation-based model with an output which is no longer scalar

but functional. The method presented in the previous section can no longer be applied
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as such. Indeed, the surrogate modeling of functional quantities is a complex task and

remains a subject of current research (see for example [6]).100

For the calibration of expensive computer codes, the issue of functional outputs is

addressed in [7] and [8]. In both papers, the authors perform a scalarization of the

problem. They define a distance between the experimental and modeled output, based

on a L2-norm for [7] or on likelihood ratios for [8]. The distance being scalar, it can

be represented by a GP surrogate model. The calibration procedure then consists in an105

optimization problem. The GP model is used to minimize the defined distance. The

goal is to obtain the optimal parameters values that provide the best fit between the

experimental data and the model, according to the chosen distance.

Although both methods achieve interesting results, they cannot be considered as

Bayesian approaches. They do not take into account the uncertainties of the model to110

determine an uncertainty on the calibrated parameters. In [8], the authors propose to

estimate the distribution of the minimum of the GP model. This analysis allows for

evaluating the uncertainty on the parameters stemming from the approximation by a

surrogate model, but still ignores the other sources of uncertainty, such as model error

or measurement noise.115

3. Calibration with GP surrogate model of the likelihood function

The goal of this paper is the development of a Bayesian calibration method for ex-

pensive computer codes with functional output. As shown in [7] and [8], scalarization

combined with GP surrogate modeling is an efficient way of addressing high computa-

tional costs caused by a simulation-based model. In the Bayesian formalism, a natural120

scalarization is provided by the likelihood function. Hence we propose to perform the

calibration using a GP surrogate model of the likelihood function. The objective is to

remain in the Bayesian framework while taking advantage of GP surrogate modeling.

This approach raises various questions that will be addressed in this paper:

• how should a GP model of the likelihood function be built ?125

• how to perform MCMC with a random likelihood function ?
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• how to take into account the uncertainty associated with the approximation error

in the estimation of the parameters posterior probability distribution ?

3.1. GP surrogate modeling of the likelihood function

We choose to work with the log-likelihood function L instead of the likelihood130

function L. The first reason is the fact that the likelihood function has to respect pos-

itivity, while the log-likelihood function does not. Moreover, in some cases, the reg-

ularity of the log-likelihood function tends to be better, when the likelihood function

corresponds to a very peaked density for instance.

As explained in Appendix A, the computation of the real likelihood value on an135

initial training set is necessary to build the surrogate problem. This computation de-

pends on the problem and the function H chosen to model the output Y. It consists in a

probability calculation for a stochastic process that may become complex if H defines

a complex distribution.

The GP surrogate model of L is denoted as L(.; Θ). Random variable Θ explic-140

itly accounts for the randomness of the surrogate model. At any point w ∈ CW, the

Kriging predictor is denoted as the expectation EΘ{L(w; Θ)} and constitutes the best

approximation of L(w) in a L2-sense. The variance VarΘ{L(w; Θ)} quantifies the

approximation error of the Kriging predictor. If θ is a realization of Θ, then L(.; θ)

represents a deterministic trajectory of the GP model.145

MCMC must be applied on a deterministic likelihood function. The GP surrogate

model being random, it cannot be used directly as such. To perform the posterior

PDF estimation with MCMC, the most straightforward solution is to use the Kriging

predictor EΘ{L(.; Θ)} in place of L. In Section 4.5, we refer to this approach as the

KP (for ”Kriging predictor”) method. Once the GP model is built, this solution is easy150

to implement. It can provide useful results, especially if only the most probable value

or the mean value of the system parameters are needed. However, this solution does

completely ignore the uncertainty introduced by the use of a surrogate model, which

represents the approximation error intrinsic in such modeling. The uncertainty on the

calibrated parameters would only stem from the uncertainties considered in the model155

H.
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In the following sections, we propose a method that takes into account the uncer-

tainty of the GP surrogate model in order to estimate more correctly the calibration

error. In Section 4.5, we refer to this new approach as the MCT (for ”Monte Carlo on

the trajectories”) method.160

3.2. Monte Carlo on the GP model trajectories

If the deterministic log-likelihood function L is replaced by the random surrogate

model L(.; Θ), the corresponding posterior PDF becomes random as well. Random

variable Θ accounts for the randomness of the surrogate model; it is independent of

the other ”physical” random quantities involved in the calibration problem, such as the

system parameters W or the system response Y. The random posterior PDF corre-

sponding to L(.; Θ) can be expressed using the conditioning by Θ as

w 7→ pW |Y,Θ(w |ymes,Θ) . (8)

Yet, the quantity we are looking for remains unchanged: the conditional PDF of

parameters W knowing Y. The rule of conditional probabilities states that it is equal

to the expectation with respect to Θ of the previous PDF:

ppost
W (w) = pW |Y(w |ymes) (9)

= EΘ

{
pW |Y,Θ(w |ymes,Θ)

}
(10)

≈ 1

N

N∑
i=1

pW |Y,Θ(w |ymes, θi). (11)

Eq. (11) corresponds to the empirical estimate of the expectation using N realizations165

{θi}1≤i≤N of random variable Θ. This Monte Carlo approach requires the estimation

ofN PDF pW |Y,Θ(w |ymes, θi) by MCMC usingN deterministic trajectories L(.; θi)

of surrogate model L(.; Θ).

In practice, for each i, the MCMC algorithm provides a sample, subset of CW,

distributed as pW |Y,Θ(w |ymes, θi). If, for all i, these samples have the same number170

of points, their simple concatenation corresponds to a sample approximately distributed

as ppost
W .
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3.3. Approximation of the GP model trajectories

The Monte Carlo approach proposed in the previous section implies the ability to

draw a trajectoryL(.; θ) of the Gaussian surrogate model and to evaluate its value at any175

point w in admissible set CW. A classic way to manipulate a Gaussian process trajec-

tory is to compute its value on a fine grid spanning the entire admissible set. However,

this solution is not adapted to the calibration of more than two or three parameters,

because the number of points on the grid increases exponentially with the dimension

of the admissible set, equal to the number of parameters to calibrate. Moreover, since180

the MCMC algorithm randomly draws the points at which the likelihood needs to be

evaluated, computing the values of a trajectory in advance is not relevant. Another ap-

proach could consist in iteratively conditioning the Gaussian process by the previously

drawn points for each step of the MCMC. However, it implies the manipulation of a

full covariance matrix whose size would increase at each step.185

Instead of exactly computing the trajectory, we propose to approximate it in the

following way: first, the value of trajectory L(.; θ) is computed at the points of a con-

ditioning set Wc = {wc
j}1≤j≤Nc . It should contain only a limited number Nc of

points. The approximation L̃(.; θ) of L(.; θ) then consists of the expectation of the

surrogate model conditioned by the value of the trajectory at the points ofWc:

L̃(.; θ) : w 7→ EΘ

{
L(w; Θ) |L(wc

j ; Θ) = L(wc
j ; θ), 1 ≤ j ≤ Nc

}
. (12)

The deterministic function L̃(.; θ) can then be injected in the MCMC algorithm to

estimate PDF pW |Y,Θ(. |ymes, θ).

The crucial step of the method lies in the choice of conditioning setWc. The aim

of this conditioning approach is to decrease as much as possible the variance of the

surrogate model. Indeed, the lower the variance of a stochastic process, the closer any

trajectory is to the mean function. We chose to focus on the region of interest of CW,

where the relative value of the likelihood function is high. We define this region as the

set P where the surrogate model has a probability higher than a tolerance ρ ∈]0, 1[ to

be greater than at the point where its mean function is maximum:

P = {w ∈ CW |P (L(w; Θ) > L(wmax; Θ)) ≥ ρ} (13)
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with wmax = arg max
w∈CW

EΘ{L(w; Θ)}.

Conditioning set Wc is then built as a discrete set of Nc points space-filling in

P . First a large sample uniformly distributed in P is drawn using MCMC with the190

indicator function of P . Then several subsets of size Nc are randomly drawn in this

sample. The ”most space-filling” subset according to the maximin criterion defined in

Appendix A.6 is kept asWc.

4. Application: State health monitoring of high-speed train suspensions

4.1. Industrial context and objectives195

High-speed trains dynamic behavior strongly relies on suspensions that ensure the

train stability and thus the ride safety. The suspensions also filter most of the vibra-

tions for passengers comfort. Because the suspensions undergo damage throughout

their lifetime, regular maintenance is required. Maintenance is however performed

without having access to the real state of the suspensions, especially its (potentially de-200

graded) mechanical properties. Presently, it mostly relies on visual inspection and age

or mileage criteria. A monitoring solution providing the actual suspensions health state

would allow for implementing maintenance rules closer to the real needs. The work

presented here is part of a project developing a remote diagnosis method for high-speed

train suspensions. The method relies on on-track measurements of the train dynamic205

response performed thanks to embedded accelerometers. The objective of this work

is the development of the mathematical method required to determine the suspensions

health state from such measurements.

However, relying solely on measurements of the train dynamic response is not suf-

ficient, because of its strong dependence on the track geometric irregularities. The210

latter constitute the main excitation source of a rolling train and, consequently, have

a major influence on its dynamic behavior (see [9, 10, 11]). Track geometry is also

subject to damage caused by railway traffic (see [12]): it is gradually degraded and

regularly maintained. Consequently, the track geometric irregularities evolve through

time. Because of the high sensitivity of the system to these irregularities, their evolu-215

tion has to be taken into account to perform a correct monitoring of the suspensions
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state. Train dynamics simulation is thus necessary to include the excitation source in

the analysis. More precisely, we propose to build a simulation-based model of the train

dynamic response and to calibrate its parameters describing the mechanical properties

of the suspensions of interest. The experimental data used for this calibration consist220

of joint measurements of the track geometric irregularities and of the train dynamic

response.

4.2. Probabilistic model of the high-speed train dynamic response

This section presents how the train response model is built, based on simulation.

This construction is sketched in figure 1.225

X Simulation h(X;W) Y

W B

Figure 1: Diagram of the system quantities of interest

The railway dynamics simulation takes as input the track geometric irregularities

X. The model is parameterized by the q uncertain parameters W describing the me-

chanical properties of the monitored suspensions. The railway dynamics simulations

are performed with the commercial multibody software Vampire, used as a black-box

and represented by the deterministic mapping h. To take into account the model er-230

rors and the measurement noise, a random error B is added to the simulation output

h(X;W) to obtain the train dynamic response model Y. The following sections detail

the characteristics of these various quantities.

4.2.1. Description of the system input: the track geometric irregularities

The track geometric irregularities consist of the small scale displacements of the235

rails with respect to the track design. For a track stretch of length S, they are denoted

as {x(s) ∈ R4 , s ∈ [0 , S]}. An illustration of the four irregularities is provided in

figure 2. Combined with the track design and the train speed, they are used to compute

the time-varying displacement condition imposed at the wheel-rail interface for each

wheelset.240
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Figure 2: Track irregularities example. From bottom to top: lateral, gauge, vertical, cross-level irregularities.

It has been shown in [13] that the track geometric irregularities can be modeled

as a nonstationary R4-valued random field {X(s), s ∈ [0 , S]} indexed by curvilinear

abscissa [0 , S]. Though the irregularities are represented by random field X, the cal-

ibration procedure presented here does not make use of the model developed in [13].

Instead, the available irregularities measurements performed on various track stretches245

are considered as realizations of random field X.

The measurement method for the track geometric irregularities has shown a very

good reproducibility. Consequently, the measurement noise affecting these irregulari-

ties is considered negligible compared to the other sources of uncertainty.

4.2.2. Description of the high-speed train model250

The train multibody model consists of rigid bodies linked together by mechanical

joints (stiffnesses and dampers) with nonlinear behavior. The wheel-rail contact law is

also nonlinear. The flexible modes of the different bodies are not taken into account.

More details about the definition of the multibody train model can be found in [14].

Such multibody model contains numerous parameters : body masses and inertiæ,255

mechanical properties of the joints and relative positions of the bodies and the joints.

For this application, only q = 7 mechanical parameters are involved in the calibration

process. These parameters of interest have been chosen based on the criticity of the cor-

responding suspension element and on their influence on the train response. Moreover,
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for each bogie, all the suspensions of the same type depend on one single parameter.260

Indeed, we observed that we were unable to distinguish between the contributions of

the different elements of the same type with the available sensors. It also allows for

significantly decreasing the dimension of the problem.

The q parameters are gathered in the random vector W, belonging to the admis-

sible set CW ⊂ Rq . The randomness accounts for the fact that the actual values of265

these parameters are unknown. From the technical specifications of each type of sus-

pension, admissible intervals centered around the nominal value are defined for each

mechanical parameter. The admissible set CW simply consists of the product of these

admissible intervals. The initial knowledge we have about them is represented by the

prior probability density function pprior
W of random vector W. For this application, the270

prior PDF is set uniform on the admissible set. All the other parameters of the model

are set to their nominal values.

4.2.3. Description of the system output: the high-speed train dynamic response

The train dynamic response consists of n acceleration signals of specific points in

the train, along the vertical and lateral axes (in the axis system attached to the train).275

These points correspond to the location of the embedded accelerometers, on carbodies

and bogies near the carbodies junctions. These different accelerations constitute the

different components of the vector output signal.

The simulation is performed step by step in the time domain. The output signals,

also given in the time domain, are transformed in the frequency domain. More pre-280

cisely, in order to avoid systematic phase-shift between the measured and the simulated

signals, the studied quantity is the amplitude of the Fourier transform of the accelera-

tion time signals. This amplitude is taken in dB to characterize the system resonances

as well as antiresonances.

For 1 ≤ k ≤ n, {ak(t) , t ∈ [0 , T ]} denotes the kth-acceleration signal in the time

domain for a circulation of duration T ; the corresponding response in the frequency

domain {âk(ω) , ω ∈ Ω} is computed as:

âk(ω) = 10 log10

∣∣∣∣∣
∫ T

0

1√
T
ak(t)e−iωtdt

∣∣∣∣∣ . (14)
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Figure 3: Vertical (top curve) and lateral (bottom curve) accelerations in a carbody, in the time domain.

The set Ω is the frequency band of interest.285

Figures 3 and 4 present an illustration of the four accelerations signal in the time

domain. Figure 5 presents an illustration of one component of the measured train

dynamic response, in the frequency domain. The mean function and quantiles have

been obtained from measurements performed on multiple track stretches, each one

considered as an independent realization of the stochastic train dynamic response. No290

axes scales are indicated for confidentiality reasons.

The black-box simulation is represented by the deterministic mapping

h : ({x(s) , s ∈ [0 , S]};w) 7→ {â(ω) , ω ∈ Ω} . (15)

It associates the response â = h(x;w) in the frequency domain with the irregularity

signal x and vector w of parameters. If the quantities x and w are replaced by their

stochastic counterpart X and W, the simulation output h(X;W) becomes stochastic

as well.295

The multibody modeling and simulation necessarily contain inaccuracies and sim-

plifications compared to the real system. Numerical solving is also a source of errors.

To perform a robust calibration, a train model error has to be introduced, in order to

take into account the fact that the model cannot exactly represent the reality. Moreover,

the measurements of the train response performed by embedded accelerometers may300

contain a certain level of measurement noise. These two types of uncertainties (model
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Figure 4: Vertical (top curve) and lateral (bottom curve) accelerations in a bogie, in the time domain.
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Figure 5: Lateral acceleration in a carbody, represented in the frequency domain. The solid line represents

the mean function, while the filled area represents the 5% and 95% quantiles.
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errors and measurements noise) create a distance between the measured and simulated

train dynamic response. As explained at the beginning of Section 4.2, this distance is

taken into account and represented by a random output predictive error B that is added

to the output of the computational model in order to obtain the final model of the train305

dynamic response including the model and measurement errors.

We choose to define the error B as a Rn-valued Gaussian process {B(ω) , ω ∈ Ω}

indexed by frequency band Ω. This choice is made to simplify both the identification

of B and the computation the likelihood function values (see Section 4.3.2). Moreover,

since the amplitude of the train dynamic response is studied on a log-scale, it is not310

necessary to respect positivity. Its dimension and definition set are identical to those

of the response Y. The identification of this output predictive error is performed from

a reference set of measurements for which the model parameters W are known. This

approach relies on the strong hypothesis that the error is independent from the train

parameters and does not evolve with time. In the present case, this reference set corre-315

sponds to measurements performed after the renewal of the suspension elements. Their

mechanical characteristics are assumed to be nominal. The details of the identification

of process B from the reference set are given in Appendix B.

The train response model, denoted as {Y(ω), ω ∈ Ω} is a Rn-valued stochastic

process indexed by frequency band Ω. Each component corresponds to the accelera-

tion of a specific point in a specific direction. Its relationship to the model input and

parameters is summed up by the following expression:

Y = h(X;W) + B . (16)

4.3. Specificities of the calibration procedure for the applicative railway case

4.3.1. Experimental data320

The calibration is performed to determine the suspensions health state at a given

date. We are focusing on a single train, for which a model error has been identified. At

a given date, the experimental data consist of a set U of independent joint measurements

of the track geometric irregularities and of the corresponding train dynamic response,
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denoted respectively xmes,i and ymes,i, 1 ≤ i ≤ ν on ν different track stretches:

U = {(xmes,i,ymes,i)}1≤i≤ν . (17)

4.3.2. Calculation of the likelihood function

The calculation of the likelihood function presented in Section 2 is adapted to the

present railway case. We need to take into account measurements of the track geometric

irregularities. Consequently, the model parameters are not conditioned solely by the

output Y but also by the input-output couple (X,Y). It makes a difference to consider325

the probability of obtaining a certain dynamic response whatever the irregularities, and

to obtain the same response knowing the irregularities that have triggered it.

Moreover, since several independent measurements are used to perform the calibra-

tion, it is necessary to introduce a set {(Xi,Yi)}1≤i≤ν of ν independent and identi-

cally distributed copies of couple (X,Y). Eq. (1) giving the expression of the posterior330

PDF of parameters W then becomes (the PDF arguments are omitted for simplicity):

ppost
W = pW |X1,Y1...Xν ,Yν (18)

∝ pY1...Yν |X1...Xν ,W pW |X1...Xν (19)

∝
ν∏
i=1

pYi|Xi,W pprior
W . (20)

Eq. (20) is obtained by considering that:

• the track geometric irregularities X and the train parameters W are independent,

so pW |X = pprior
W ;

• for any (i, j) ∈ {1, . . . ν}2, Xi and Yi are supposed to be independent from Xj
335

and Yj if i 6= j. Indeed, the track has been divided into numerous stretches so

that the realizations of the track geometric irregularities and of the train dynamic

response can be considered independent on two different stretches.

The likelihood function is then given by

L : w 7→
ν∏
i=1

pYi|Xi,W(ymes,i|xmes,i,w) . (21)
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Using Eq. (16) the log-likelihood function can be written

L : w 7→
ν∑
i=1

log
(
pB(ymes,i − h(xmes,i;w))

)
. (22)

From the previous expression, one can observe that ν simulation runs are required for

each evaluation of log-likelihood L at each points w ∈ CW. The number ν of available340

measurements can typically be several hundreds in the present case, which explains the

high computational cost for each call to the likelihood function.

4.3.3. Parameters of the GP surrogate modeling

For this application, the number of suspension parameters to identify is q = 7 (see

Section 4.2.2). The number of parameters gives the dimension of random vector W345

and the dimension of the definition set of likelihood function L.

The size of training set is 500. The chosen form for the covariance function is

Matérn- 5
2 [15]. Moreover, we chose to build the GP surrogate model considering that

the observations of the log-likelihood function were noisy (see Appendix A.5). The

variance of this noise was optimized to fit the available data along with the other cor-350

relation parameters. This choice was made in order to improve the quality of the sur-

rogate model. Introducing a small noise improved its regularity. Indeed, it offers the

surrogate a certain margin of freedom around the observation. On the contrary, forcing

the surrogate model to be strictly interpolating by considering that the observations are

exact sometimes resulted in unexpected oscillations of the surrogate model.355

We tried to refine the Gaussian surrogate around the maximum of the likelihood

function following the KGCP policy proposed in [16]. However, no significant im-

provement of the calibration results were observed with the refined surrogate model. It

suggests that the initial training set is large enough to correctly know the behavior of

the likelihood function. The observations being considered noisy, adding new points to360

the training set does not significantly increase the accuracy of the maximum location.

4.4. Choice of the MCMC algorithm

In our preliminary tests, the posterior PDF appeared to be very peaked, which pre-

vents the classical Metropolis-Hastings algorithm [17] from correctly sampling from
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it. We also tried to run several chains in parallel, but the final results were too depen-365

dent on the initial choice of the chains starting points. Consequently, we chose to use a

different algorithm called Transitional MCMC [18, 19], more adapted to peaked target

PDF. Details about the algorithm are given in Appendix C.

4.5. Calibration results

This section presents the results obtained with the Bayesian calibration method for370

different cases:

• numerical experiments, that is to say using simulated data;

• with measurements performed at the reference date, which were used to identify

the model error;

• with measurements performed six month after the reference date.375

The goals of this section are to:

• validate the proposed method, using the numerical experiments and the measure-

ments at the reference date;

• show the impact of considering the uncertainty introduced by the use of a surro-

gate model of the likelihood function on the calibration results.380

It should be noted that the speed up provided by the use of a surrogate model

compared to an estimation of the parameters posterior distribution that would rely on

the computation of the exact likelihood is estimated of order 106.

4.5.1. Numerical experiments

In the present case, a numerical experiment consists of simulated train responses385

that are used as if they were experimental data. They are generated using actual mea-

surements of the track geometric irregularities on several track stretches and known

degraded suspension parameters. Moreover, an independent realization of the error B

is added to the response signal on each track stretch in order to generate a quantity

as close as possible to an actual measurement. The numerical experiments allows for390
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validating the calibration procedure: the procedure is applied on the artificial train re-

sponse, the calibration results can then be compared to the reference parameters used

to generate the response.

At a given date, we suppose that a set of ν1 track irregularities measurements

{xmes,i}1≤i≤ν1 is available. The validation procedure from a numerical experiment395

can then be summed up as follows.

1. Choose artificial parameters w1;

2. Run the simulation on the ν1 track stretches with parameters w1;

3. Generate ν1 independent realizations {bi}1≤i≤ν1 of output predictive error B.

Because B is Gaussian, this generation can be performed very easily from nor-400

mal independent samples using Eq. (B.6) ;

4. Add these realizations to the simulated response to obtain artificial realizations

of the train dynamic response

ynum,i = h(xmes,i;w1) + bi, 1 ≤ i ≤ ν1 ; (23)

5. Perform the calibration using input data

U1 = {(xmes,i,ynum,i)}1≤i≤ν1 (24)

to obtain the calibrated (random) parameters Wopt
1 ;

6. Compare Wopt
1 to w1.

The validation procedure has been performed with different values of the artificial

parameters w1. Figure 6 presents calibration results with w1 set to the nominal values.405

On this graph are displayed the marginal densities of the posterior PDF of Wopt
1 . It

also compares the results obtained with the KP method that solely uses the Kriging

predictor provided by the surrogate model of the likelihood function and with the MCT

method that also includes the uncertainty related to the surrogate model.

One can first observe that the distributions are close to the nominal value (corre-410

sponding to 0.5 on the graph). Except parameter 2, the difference between the maxi-

mum of the marginal PDFs and the nominal value is always lower than 5% of the size

of the admissible interval. The dispersion varies from one parameter to another. This
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Figure 6: Results of the numerical experiment with nominal parameters. The parameter values are also

normalized so that every parameter varies between 0 and 1; 0.5 then corresponds to the nominal value. The

curves represent the normalized posterior PDF marginals for each parameter, obtained using the KP (red or

dark gray) and MCT (orange or light gray) methods.
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can be explained by the initial choice of the admissible intervals, since the results are

rescaled according to their size, but more importantly by the sensitivity of the train415

dynamic response to the different mechanical parameters. The results for parameter 2

are a good illustration of this sensitivity question. Contrary to the other parameter, it

corresponds to a suspension that is not located on the same bogie as the sensors, but

at the other end of the carbody. Consequently, we expect this parameter to have less

influence on the train dynamic response measured by the sensors. This is coherent with420

the results: the distribution is further away from the nominal value, and its dispersion

is greater than for the other parameters. These considerations also highlight the in-

terest of Bayesian calibration: because we measure the uncertainty on the calibrated

parameter, we have a way to assess the accuracy of the calibration and the confidence

we can put on its results. The fact that the marginal PDFs are rather peaked comes425

from the large database that is available for the calibration. The comparison of the re-

sults obtained using the KP and MCT methods shows that the marginals PDF are more

spread with the MCT methods. With the KP method, a source of uncertainty, the error

introduced by the approximation of the likelihood function by a surrogate model, is

not taken into account. As a consequence, the uncertainty on the calibrated parameters430

is reduced. Using the KP method thus leads to an overestimation of the calibration

accuracy. Nevertheless, the marginals maxima appear to be located at very similar pa-

rameter values with the two methods. The KP method seems satisfying to determine

only the most probable parameter values. It also allows for estimating the proportion

of the calibrated parameters variance that stems from the system uncertainties.435

Figure 7 presents calibration for arbitrary degraded values of the artificial parame-

ters w1. Two different locations of the bogie are considered: at the head and the rear

of the train. The vertical and lateral accelerations the train undergoes at these two loca-

tions are indeed very different. One can also note on the bottom graph that we studied

the case of a parameter set at the boundary of the admissible interval. The calibrated440

parameters Wopt
1 show a good correspondence to the input parameters w1. The nu-

merical experiments results are conclusive for the validation of both the KP and the

MCT methods, with the limits previously noted for the KP method.
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Figure 7: Results of the numerical experiments with arbitrary parameters, using the MCT method, for a

bogie located at the head (top graph) and rear (bottom graph) of the train. The input parameters values w1

(black triangles) are compared to the mean of the posterior PDF marginals (orange dots). The orange lines

represents the 98% confidence intervals around these calibrated values. The parameter scale normalization

is identical to figure 6.
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Figure 8: Calibration results using the MCT method at time T0 (blue diamonds) and T1 (orange circles).

The graph layout is the identical to figure 7.

4.5.2. Results using actual measurements of the high-speed train dynamic response

This section presents calibration results obtained with actual measurements. The445

first set of measurements is the one collected at the reference date, which is used to

identify the output predictive error B, denoted as T0. The second set gathers measure-

ments performed at a date T1, six months after the reference date T0.

Figure 8 presents the calibration results obtained for these two dates using the MCT

method. As expected, one can observe that the parameter mean values for T0 are close450

to the nominal value (0.5 on the normalized scale). Indeed, the output predictive error

has been identified considering the parameters value is nominal at the reference date

T0. This good correspondence is a second way of validating of the method. The results

for the date T1 show a significant evolution compared to the nominal values. Except

for the second parameter, whose case has been treated in the previous section, we can455

observe a high confidence in the calibrated results. To obtain a complete validation

of the identification method, experimental tests need to be performed on the isolated

suspension elements in order to measured their mechanical characteristics. Such tests

have not been conducted yet.

Figure 9 compares the calibration results using the KP and the MCT method for460

date T1. The observations concerning the comparison of the two methods are similar
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Figure 9: Comparison of calibration results obtained at time T1 using the KP (red or dark gray curves) and

the MCT (orange or light gray curves) methods. The graph layout is identical to figure 6.
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to the ones made for figure 6. A difference that can be noted between the numerical

experiments and the calibration on the real measurements is the fact that the posterior

PDF is more dispersed for the latter. This higher dispersion highlights the limitation

of the chosen model for the output predictive error (a Gaussian additive error being465

independent of the parameter space). For the numerical experiments, by construction,

this model exactly matches the error artificially applied on the generated data, which

appears to be less true for the measured data. The use of a more complex, non-Gaussian

model for the output predictive error could be considered in future works.

5. Conclusion and perspectives470

We have proposed a method for the Bayesian calibration of expensive computer

codes. The main particularity consists in the surrogate modeling of the likelihood

function to address the computational costs. We then focused on evaluating the con-

sequences of this use of an approximation on the calibration results. The uncertainty

associated with the surrogate modeling is taken into account by estimating the parame-475

ters posterior PDF from trajectories of the random surrogate model. We thus make full

use of the variance of the GP model that evaluates the accuracy of the approximation.

The need to draw GP trajectories also made us develop an approximation method for

the latter, relying on a further conditioning of the GP model.

The procedure has been tested on an industrial case, the monitoring of high-speed480

train suspensions using acceleration measurements. In this application, the complete

MCT method appears to have little effect on the mean value of the calibrated parame-

ters compared to the simple use of the KP method. It however significantly increases

the variance of the calibrated parameters. This emphasizes the interest of the method

if importance is put on correctly estimating the confidence of the calibration.485
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Appendix A. Gaussian process surrogate model

Gaussian process surrogate modeling consists in representing a deterministic scalar

target function by a conditioned Gaussian process (GP). Information about the target490

function is provided by a set of observations of the function value at a few points in the

definition set. These points constitute the initial training set. Randomness is introduced

as a way to quantify the approximation stemming from the use of a surrogate model.

The objectives of GP surrogate modeling are for example to build an easy-to-compute

approximation of an expensive computer code or to model a phenomenon for which all495

observations are affected by a random noise.

The evaluation of the target function at the points of the training set is generally

the computationally expensive step of GP surrogate modeling. Consequently, this set

should contain only a limited number of points while maximizing the information pro-

vided. Therefore a common choice is to define a space-filling training set to get as500

much information as possible on the global behavior of the target function on its whole

definition set. Appendix A.6 provides an example on how to build a space-filling train-

ing set.

After this initial training phase, a second refining step (that will not be detailed

in this paper) can be performed in order to explore particular features of the target505

function. For instance, [20] proposes the EGO algorithm for the optimization of the

target function using an expected improvement criterion. In [21], an adaptive design of

experiment is proposed for a target function that needs to be accurately approximated

around a certain level.

In this appendix, we present the principle of GP surrogate modeling based on510

the Bayesian approach presented in [22]. Another approach giving equivalent results,

based on the minimization of the mean square error, can be found in [23].

Appendix A.1. Problem statement

The goal is to build a surrogate model of a given deterministic real-valued function

y defined on a subset X of Rq , whose value is known only at the n training points515

(xi)1≤i≤n in X . An illustration is provided on figure A.10.
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Function y is supposed to be a particular sample path of an underlying Gaussian

second-order real-valued stochastic process {Y (x), x ∈ X}, indexed byX . The surro-

gate model consists of this GP conditioned by the observations of y at the points of the

training set. The underlying process is defined according to a parametric formulation,

and denoted

Y | {β, σ,ψ} ∼ GP
(
f(.)tβ ; σ2R(., . |ψ)

)
(A.1)

where:

• GP(m; Σ) denotes the Gaussian process whose mean function is x 7→ m(x) =

E{Y (x)} from X into R and covariance function is (x,x′) 7→ Σ(x,x′) =

E{(Y (x)−m(x))(Y (x′)−m(x′))} from X 2 into R;520

• f : X → Rp gathers p deterministic regression functions on X ;

• β ∈ Rp is the vector of regression coefficients parameterizing the GP mean

function;

• R(x,x′ |ψ) gives the shape of the covariance function. It depends only on x−x′

and on a vectorψ of parameters (for example, correlation lengths). It is assumed525

that R(x,x |ψ) = 1. Consequently, σ2 is the variance of random variable Y (x)

for x fixed in X and is thus independent of x.

The mean function of the process is decomposed as a linear combination of regres-

sion functions chosen by the user, polynomials for example. The first parameter is thus

the vector of regression coefficients β. The second parameter is the GP variance. The530

shape of the correlation function R(., .) (exponential or Matérn for instance) is also

chosen by the user according to the expected regularity of y. The third parameter is

the vector of correlation parameters ψ. They depend on the shape of the correlation

function. Parameters (β, σ,ψ) are a priori unknown. They are not set by the user but

have to be determined using the information about y provided by the observations on535

the training set.
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Appendix A.2. Conditioning by the observations

Let yn and Yn be respectively the values of function y and of process Y at points

(xi)1≤i≤n:

yn =


y(x1)

...

y(xn)

 , Yn =


Y (x1)

...

Y (xn)

 . (A.2)

Yn | {β, σ,ψ} is a marginal of process Y | {β, σ,ψ}. As a consequence, for any

x ∈ X , the vector concatenating Y (x) | {β, σ,ψ} and Yn |β, σ,ψ is Gaussian:Y (x)

Yn

 | {β, σ,ψ} ∼ N
f(x)t

[F ]

β ; σ2

 1 r(x)t

r(x) [R]

 (A.3)

with

[F ] =


f(x1)t

...

f(xn)t

 , r(x) =


R(x,x1 |ψ)

...

R(x,xn |ψ)

 (A.4)

and [R]ij = R(xi,xj |ψ), 1 ≤ i, j ≤ n. Matrix [R] is assumed to be invertible.

The surrogate model is then obtained by conditioning process Y by Yn = yn.

When doing so, Y | {Yn,β, σ,ψ} remains Gaussian. Its mean function and variance

are immediately deduced from the formula of the conditioned Gaussian random vari-

ables:

Y | {Yn = yn,β, σ,ψ} ∼ GP
(
x 7→ f(x)tβ + r(x)t[R]−1(yn − Fβ) ;

(x,x′) 7→ σ2(R(x,x′ |ψ)− r(x)t[R]−1r(x′))
)

(A.5)

The following sections detail how to deal with the fact that parameters (β, σ,ψ)

are actually unknown by exploiting the information provided by the training set.540

Appendix A.3. Mean function parameter β

In this section, σ and ψ are supposed to be known. Only the regression coefficients

β are supposed to be unknown. The fact that no information is a priori available

about β is taken into account by following a hierarchical approach. Parameter β is

represented by a random vector with non-informative prior: pβ ∝ 1. The training545
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set is then used to learn about the distribution of β. The principle is to determine

the distribution of β |Yn = yn for a fixed value of σ and ψ. In this section, the

conditioning on σ, ψ is not systematically repeated for simplicity. Using the Bayes

formula, one can write:

pβ(b |Yn = yn) ∝ pYn(yn |β = b) pβ(b)

∝ exp

(
− 1

2σ2
(yn − [F ]b)t[R]−1(yn − [F ]b)

)
∝ exp

(
− 1

2σ2
(b− β̂)t[Q](b− β̂)

)
(A.6)

with [Q] = [F ]t[R]−1[F ] and β̂ = [Q]−1[F ]t[R]−1yn. Therefore

β | {Yn = yn, σ,ψ} ∼ N
(
β̂;σ2[Q]−1

)
. (A.7)

Knowing the probability distribution of β |Yn for a fixed value of σ andψ, process550

Y | {Yn,β, σ,ψ} can be statistically averaged with respect to random vector β. It

means that Y | {Yn, σ,ψ} can be used instead of Y | {Yn,β, σ,ψ}. This is achieved

by relying on the rule of conditional expectation. For x ∈ X , the mean value and

variance of Y (x) | {Yn = yn, σ,ψ} are:

E{Y (x) |Yn} = Eβ{E{Y (x) |Yn,β} |Yn}

= Eβ{f(x)tβ + r(x)t[R]−1(yn − [F ]β) |Yn}

= f(x)tβ̂ + r(x)t[R]−1(yn − [F ]β̂) ; (A.8)

Var{Y (x) |Yn} = Eβ{Var{Y (x) |Yn,β} |Yn}

+Varβ{E{Y (x) |Yn,β} |Yn}

= Eβ{σ2(1− r(x)t[R]−1r(x)) |Yn}

+Varβ{f(x)tβ + r(x)t[R]−1(yn − [F ]β) |Yn}

= σ2(1− r(x)t[R]−1r(x) + u(x)t[Q]−1u(x)) (A.9)

30



with u(x) = f(x)− [F ]t[R]−1r(x). This can be written as

Y | {Yn, σ,ψ} ∼ GP
(
x 7→ f(x)tβ̂ + r(x)t[R]−1(yn − F β̂) ;

(x,x′) 7→ σ2(R(x,x′ |ψ)− r(x)t[R]−1r(x′) + u(x)t[Q]−1u(x′))
)
. (A.10)

Appendix A.4. Variance and correlation parameters555

Parameters σ and ψ could be estimated using the same hierarchical approach, by

putting prior distributions on these variables. However, in this case, no closed form can

be determined in general for Y . Instead, parameters σ and ψ are determined according

to a criterion assessing how well the Gaussian process is fitting the data provided by the

training set. The criterion usually used is the Maximum Likelihood Estimation (MLE).

The principle of MLE criterion is to maximize the density

pYn |β,σ,ψ(yn | β̂, σ,ψ) =
(
(2π)n det(σ2[R])

)− 1
2

× exp

(
− 1

2σ2
(yn − [F ]β̂)t[R]−1(yn − [F ]β̂)

)
(A.11)

The value of σ maximizing this density can be determined explicitly:

σ2 =
1

n
(yn − [F ]β̂)t[R]−1(yn − [F ]β̂) (A.12)

With this value of σ, the previous maximization is equivalent to minimizing the quan-

tity σ2 det([R])
1
n in order to determine the optimal value of ψ. In general, no closed

form exists for the covariance parameter; this step has to be performed numerically.

Appendix A.5. Case with noisy observations

Building a surrogate model based on a conditioned Gaussian process is also possi-560

ble when the values of y on the training set are not computed exactly but affected by a

random noise. An example is shown on figure A.11. The noise is considered Gaussian,

of zero mean, of variance σ2
ε and uniform on the definition set X .

In such a case, the available data are not yn as previously defined, but rather ỹn

that gathers the observations of y at each point xi of the training set plus an unknown
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Figure A.10: 1-D example of GP surrogate model with exact observations: the solid black line represents

target function y, the red diamonds the points of the training set, the green dashed line the mean function of

the GP model and the green area its standard deviation.

realization εi of the random noise:

ỹn =


y(x1) + ε1

...

y(xn) + εn

 . (A.13)

The corresponding model is the random vector Ỹn = Yn + ε where ε is a centered

Gaussian vector with covariance matrix σ2
ε [In] , with [In] the identity matrix of dimen-565

sion n. Random vector ε is independent of Yn.

Y and β must now be conditioned by Ỹn = ỹn and not by Yn = yn. For x ∈ X ,

the joint probability distribution of Y (x) and Ỹn can be expressed as follows:Y (x)

Ỹn

 | {β, σ,ψ} ∼ N
f(x)t

[F ]

β ; σ2

 1 r(x)t

r(x) [R] + σ2
ε [In]

 (A.14)

The results of Appendix A.2 and Appendix A.3 hold, with covariance matrix [R] re-

placed by [R̃] = [R] + σ2
ε [In]. No closed form can be found anymore for the optimal

value of σ using the MLE criterion. Consequently, it has to be optimized numerically

along with parameter ψ. The variance σ2
ε of the noise can be set by the user or opti-570

mized along with parameters σ and ψ.
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Figure A.11: 1-D example of GP surrogate model with noisy observations (same legend as figure A.10).

Appendix A.6. Space-filling training set

This appendix presents one method for the generation of a space filling training set

in a setX consisting of the set product of bounded intervals of R. The chosen method is

the optimization of a Latin Hypercube Sample (LHS) according to a maximin distance575

(see [24]).

To build a N -points LHS, admissible set X must be divided into N cells along

each dimension. The points are then scattered in X so that in every dimension, each

cell only contains one point of the sample. The interest of a LHS is that if you consider

a particular dimension, the sample points are regularly spaced, with no redundancy.580

However, a LHS is not necessarily space-filling. We choose to measure the space-

filling property with the distance δ that consists of the smaller Euclidian distance be-

tween two points of the training set: for a finite discrete subsetW of X , distance δ is

defined as

δ(W) = min
(w1,w2)∈W2

w1 6=w2

‖w1 −w2‖2 (A.15)

The greater δ(W), the most space-fillingW is. In practice, numerous LHS candidates

are drawn. The one for which the value of criterion δ is the greatest is kept as the best

training set in X .

33



Appendix B. Identification of the output predictive error

In this section, we consider that all the functional quantities are discretized. The µ

discretization points (ωi)1≤i≤µ span the frequency band Ω. For the processes contain-

ing several components, the latter are concatenated to obtain a single column vector.

For instance, the discretized version of process {Y(ω), ω ∈ Ω} is the vector of size nµ

[Y1(ω1) . . . Y1(ωµ) . . . Yn(ω1) . . . Yn(ωµ)]t. (B.1)

Reference set U0 contains independent joint measurements of the track geometric

irregularities and of the train response, denoted respectively xref,i and yref,i, 1 ≤ i ≤

ν0, performed on ν0 track stretches:

U0 = {(xref,i,yref,i)}1≤i≤ν0 . (B.2)

For 1 ≤ i ≤ ν0, let then bref,i be the difference between the measured train response

and the simulated one (with nominal parameters) on the ith track stretch:

bref,i = yref,i − h(xref,i,w0) (B.3)

with w0 the nominal values of the train parameters W. The set {bref,i}1≤i≤ν0 is585

considered as a set of realizations of error B. As shown in Section 4.3.2, in order to

evaluate the likelihood function value, we need the ability to estimate the PDF of B.

Since random vector B is Gaussian, it is completely defined by its mean vector and its

covariance matrix.

From the realizations {bref,i}1≤i≤ν0 the empirical estimates of the mean function

m̂B and covariance function [ĈB] are computed:

m̂B =
1

ν0

ν0∑
i=1

bref,i (B.4)

[ĈB] =
1

ν0 − 1
[B̄][B̄]t (B.5)

where matrix [B̄] = [bref,1 − m̂B . . .b
ref,ν0 − m̂B] gathers the centered realizations.590

However, since ν0 < nµ, the estimate [ĈB] of the covariance matrix CB of B is not

invertible.
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Since we need the probability density function of B for the calculation of the like-

lihood function, we introduce the following representation of B

B = mB + [A]ξ (B.6)

where

• mB = E{B} is the mean vector of B whose estimate is m̂B;

• ξ is a centered Gaussian vector of dimension `, with ` ≤ nµ and the identity595

matrix as covariance matrix;

• [A] is a full-rank rectangular matrix of dimension nµ× `.

Keeping the same notation for ξ and its projection ξ = [A]−1
pi (B − m̂B) in which

[A]−1
pi = ([A]t[A])−1[A]t is the left pseudo-inverse of [A], the pseudo-PDF of B can

then be written as

pB(y) = pξ([A]−1
pi (y −mB)), y ∈ Rnµ (B.7)

with pξ the canonical Gaussian multivariate PDF:

pξ : z 7→ (2π)−
`
2 exp

(
−1

2
ztz

)
. (B.8)

Below, [A]−1
pi is calculated as a function of [ĈB].

In general, the identification of [A] is obtained from the spectral decomposition of

the covariance estimate [ĈB], which is equivalent to performing the Principal Compo-

nent Analysis (PCA) of random vector B. However, in the present case, the number ν0

of available realization is small compared to the dimension nµ of B, which may cause

a problem of overlearning. To limit it, a solution proposed in [25] is to perform the

spectral decomposition of a matrix [C̃B] obtained by partly stationarizing [ĈB]. Matrix

[C̃B] is defined as the linear combination

[C̃B] = α[ĈB] + (1− α)[Cstat
B ] (B.9)

where α ∈ [0, 1] is a weighting coefficient and [Cstat
B ] the stationarization of [ĈB].

Stationarizing consists in averaging on the diagonals of the matrix in order to obtain the
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covariance matrix of a stationary process. Process B has n components, concatenated

in the discretized version of the process as shown in Eq. (B.1). One should be careful

to apply the stationarization independently on each submatrix of [ĈB] corresponding

to each component or correlation between two components, in the following way:

[M stat]ij =


1

µ

µ−j+i∑
k=1

[M ]k,k+j−i if i ≤ j ,

1

µ

µ−i+j∑
k=1

[M ]k+i−j,k if i ≥ j ,
(B.10)

where [M ] stands for any square matrix of size µ × µ and [M stat] its stationarized

version.600

After the spectral decomposition of [C̃B], only them eigenvectors of highest eigen-

values are kept. They are gathered in columns in matrix [V ]; the corresponding eigen-

values are gathered on the diagonal of diagonal matrix [D]. The basis is truncated in or-

der to consider only the most statistically significant eigenvectors. Indeed, we observed

that as the value of the eigenvalues decreases, the eigenvectors display characteristics605

similar to white noise. We choose m ≤ ν0, which has the advantage to make the

estimated covariance matrix of the projection coefficients invertible (see Eq. (B.12)).

Coefficient α is determined by minimizing the Leave-One-Out error of projection

(see [25]) of the realizations {bref,i}i on the basis [V ] obtained by the spectral decom-

position of [C̃B], which depends on α.610

Random vector B can then be represented as

B = m̂B + [V ][D]
1
2γ (B.11)

where γ is the centered random vector gathering the projection coefficients of B. For

standard PCA, the components of γ are uncorrelated, but it is not the case here because

of the stationarization. Thus it becomes necessary to estimate the covariance matrix of

γ

[Ĉγ ] =
1

ν0 − 1
[γ][γ]t = [L][L]t (B.12)

where [γ] = [D]−
1
2 [V ]t[B̄] gathers the realizations of γ and [L][L]t corresponds to the

Cholesky factorization of [Ĉγ ].

Finally, we get [A] = [V ][D]
1
2 [L] and [A]−1

pi = [L]−1[D]−
1
2 [V ]t.
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Appendix C. Transitional Markov Chain Monte Carlo

The TMCMC algorithm [18, 19] is a MCMC algorithm designed to sample from

the posterior PDF knowing the prior PDF and the likelihood function in a Bayesian

framework. It is based on the following equation giving the relationship between these

quantities:

ppost(x) ∝ L(x) pprior(x) (C.1)

The particularity of TMCMC is to start from a sample distributed according the

prior PDF, and making it gradually evolve toward a sample distributed according to

the posterior PDF. The algorithms work in m steps by sampling successively from the

distributions pj defined for 0 ≤ j ≤ m and x ∈ X by

pj(x) ∝ L(x)qj pprior(x) (C.2)

where 0 = q0 < q1 < · · · < qm−1 < qm = 1. One can immediately notice that615

p0 = pprior and pm = ppost.

At the beginning of each step j, 1 ≤ j ≤ m, the sample of size Ns is distributed as

pj−1. Each point xj−1,k of the sample is then affected a weighting coefficient wj,k =

L(xj−1,k)qj−qj−1 , 1 ≤ k ≤ Ns. A new sample of size Ns is drawn from {xj−1,k}k
according to these weighting coefficients. This new sample is distributed as pj . In620

order to avoid the repetition of identical elements in the new sample, MCMC steps are

applied to disturb the sample while keeping the same distribution. The Metropolis-

Hastings algorithm is used to draw the proposals for the MCMC steps: a Gaussian

distribution around the previous point of the Markov Chain. Its covariance matrix is

estimated from the sample {xj−1,k}k. A factor β is introduced to control the step size.625

The algorithm can be summed up as follows.

Initialization: set j = 1, draw a sample {x0,k}1≤k≤Ns
of Ns distributed as pprior.

Iterations: while qj−1 < 1,

1. Determine the optimal value for qj by solving

qj = arg min
q∈]qj−1,1]

|CVj−1(q)− 1| (C.3)
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where CVj(q) is the coefficient of variation (equal to the standard deviation

divided by the mean) of set {L(xj,k)q−qj}1≤k≤Ns
. If qj > 1, set it to 1.630

2. For 1 ≤ k ≤ Ns, compute the weighting coefficient

wj,k = L(xj−1,k)qj−qj−1 (C.4)

and normalize it

w̄j,k =
wj,k∑Ns

`=1 wj,`
(C.5)

3. Compute the covariance matrix for the proposal distribution

[Σj ] = β2
Ns∑
k=1

w̄j,k(xj−1,k −mj)(xj−1,k −mj)
t (C.6)

with mj =
∑Ns

k=1 w̄j,kxj−1,k.

4. Initialize {xc
k}1≤k≤Ns

such that xc
k = xj−1,k for any k.

5. Build the sample {xj,k}1≤k≤Ns
by iterating as following : for k going from 1 to

Ns,

(a) Select index ` between 1 and Ns, with a probability given by the weight635

w̄j,`;

(b) Draw a proposal x∗ from a normal distribution N (xc
`; [Σj ]);

(c) Draw r from a uniform distribution on [0, 1];

(d) If r ≤ pj(x
∗)

pj(xc
`)

then set xc
` = x∗, otherwise do nothing;

(e) Set xj,k = xc
`.640

6. Increase j.
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