Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, issue.11, pp.2278-2324, 1998.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, pp.1097-1105, 2012.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified, real-time object detection, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.779-788, 2016.

A. Davy, M. Havaei, D. Warde-farley, T. Lam, J. Pierre-marc et al.,

A. L. Hugo, B. Chris, Y. Biard, and A. , Brain tumor segmentation with deep neural networks, Proceedings of the MICCAI Workshop on Multimodal Brain Tumor Segmentation Challenge BRATS, pp.1-05, 2014.

S. Pereira, A. Pinto, V. Alves, and C. Silva, Deep convolutional neural networks for the segmentation of gliomas in multi-sequence mri, Proceedings of the MICCAI Workshop on Multimodal Brain Tumor Segmentation Challenge BRATS, pp.52-55, 2015.

D. Peter and . Chang, Fully convolutional neural networks with hyperlocal features for brain tumor segmentation, Proceedings MICCAI-BRATS Workshop, pp.4-9, 2016.

M. Ben-naceur and R. Saouli, Mohamed Akil, and Rostom Kachouri. Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in mri images, Computer methods and programs in biomedicine, vol.166, pp.39-49, 2018.

X. Zhao, Y. Wu, G. Song, Z. Li, Y. Zhang et al., A deep learning model integrating fcnns and crfs for brain tumor segmentation, Medical image analysis, vol.43, pp.98-111, 2018.

M. Havaei, A. Davy, D. Warde-farley, A. Biard, A. Courville et al., Brain tumor segmentation with deep neural networks, Medical image analysis, vol.35, pp.18-31, 2017.

G. Urban, . Bendszus, J. Hamprecht, and . Kleesiek, Multi-modal brain tumor segmentation using deep convolutional neural networks. MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winning contribution, pp.31-35, 2014.

K. Kamnitsas, E. Ferrante, S. Parisot, C. Ledig, A. V. Nori et al., Deepmedic for brain tumor segmentation, International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp.138-149, 2016.

K. Kamnitsas, C. Ledig, F. J. Virginia, J. P. Newcombe, A. D. Simpson et al., Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation, Medical image analysis, vol.36, pp.61-78, 2017.

M. Lai, Deep learning for medical image segmentation, 2015.

V. Badrinarayanan, A. Kendall, and R. Cipolla, Segnet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE transactions on pattern analysis and machine intelligence, vol.39, pp.2481-2495, 2017.

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical image computing and computer-assisted intervention, pp.234-241, 2015.

T. Brosch, Y. W. Lisa, Y. Tang, . Yoo, K. B. David et al., Deep 3d convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation, IEEE transactions on medical imaging, vol.35, issue.5, pp.1229-1239, 2016.

S. Seyed-raein-hashemi, . Sadegh-mohseni, D. Salehi, . Erdogmus, P. Sanjay et al., Asymmetric loss functions and deep densely-connected networks for highly-imbalanced medical image segmentation: Application to multiple sclerosis lesion detection, IEEE Access, vol.7, pp.1721-1735, 2019.

F. Milletari, N. Navab, and S. Ahmadi, V-net: Fully convolutional neural networks for volumetric medical image segmentation, 2016 Fourth International Conference on 3D Vision (3DV), pp.565-571, 2016.

H. Carole, W. Sudre, T. Li, S. Vercauteren, M. Ourselin et al., Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In Deep learning in medical image analysis and multimodal learning for clinical decision support, pp.240-248, 2017.

L. Fidon, W. Li, C. Luis, J. Garcia-peraza-herrera, N. Ekanayake et al., Generalised wasserstein dice score for imbalanced multi-class segmentation using holistic convolutional networks, International MICCAI Brainlesion workshop, pp.64-76, 2017.

T. Lin, P. Goyal, and R. Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection, Proceedings of the IEEE international conference on computer vision, pp.2980-2988, 2017.

X. Chen, J. Liew, W. Xiong, C. Chui, and S. Ong, Focus, segment and erase: An efficient network for multi-label brain tumor segmentation, Proceedings of the European Conference on Computer Vision (ECCV), pp.654-669, 2018.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed et al., Going deeper with convolutions, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.1-9, 2015.

S. Pereira, A. Oliveira, V. Alves, and C. Silva, On hierarchical brain tumor segmentation in mri using fully convolutional neural networks: a preliminary study, 2017 IEEE 5th Portuguese meeting on bioengineering (EN-BENG), pp.1-4, 2017.