H. Alencar, M. P. Do-carmo, and &. H. Rosenberg, On the first eigenvalue of Linearized operator of the r-th mean curvature of a hypersurface, Ann. Glob. Anal. Geom, vol.11, pp.387-395, 1993.

L. J. Alias and &. M. Malacarne, On the first eigenvalue of the linearized operator of the higher order mean curvature for closed hypersurfaces in space forms, Illinois J. Math, vol.48, issue.1, pp.219-240, 2004.

C. Bär, Extrinsic Bounds for Eigenvalues of the Dirac Operator, Ann. Glob. Anal. Geom, vol.16, issue.6, pp.573-596, 1998.

J. L. Barbosa-&-a and . Colares, Stability of hypersurfaces with constant r-mean curvature, Ann. Global Anal. Geom, vol.15, pp.277-297, 1997.

M. Batista, M. P. Cavalcante, and &. Pyo, Some isomperimetric inequalities and eigenvalue estimates in weighted manifolds, J. Math. Anal. Appl, vol.419, issue.1, pp.617-626, 2014.

T. Branson, Differential Operators Canonically Associated to a Conformal Structure, Math. Scand, vol.57, pp.293-345, 1985.

D. Buoso and &. Provenzano, On the eigenvalues of a biharmonic Steklov problem, Integral Methods in Science and Engineering: Theoretical and Computational Advances, 2015.

D. Chen and &. Li, The sharp estimates for the first eigenvalue of Paneitz operator on 4-dimensional submanifolds

M. Dambrine, D. Kateb, and J. Lamboley, An extremal eigenvalue problem for the WentzellLaplace operator, Ann. I. H. Poincaré, vol.33, issue.2, pp.409-450, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00937113

Z. Djadli, E. Hebey, and &. Ledoux, Duke Math. J, vol.104, issue.1, pp.129-169, 2000.

M. C. Domingo-juan and &. V. Miquel, Reilly's type inequality for the Laplacian associated to a density related with shrinkers for MCF

, Une inégalité de type "Reilly" pour les sous-variétés de l'espace hyperbolique, Comment. Math. Helv, vol.67, issue.2, pp.167-181, 1992.

;. N. Gi and . Ginoux, Reilly-type spinorial inequalities, Math. Z, vol.241, issue.3, pp.513-525, 2002.

J. F. Grosjean, Upper bounds for the first eigenvalue of the Laplacian on compact manifolds, Pac. J. Math, vol.206, issue.1, pp.93-111, 2002.

E. Heintze, Extrinsic upper bounds for ? 1, Math. Ann, vol.280, pp.389-402, 1988.

S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudoRiemannian manifolds, preprint, 1983.

S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudoRiemannian manifolds, SIGMA, vol.4, p.36, 2008.

R. C. Reilly, On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space, Comment. Math. Helv, vol.52, pp.525-533, 1977.

J. Roth, Upper bounds for the first eigenvalue of the Laplacian in terms of anisiotropic mean curvatures, Results Math, vol.64, issue.3-4, pp.383-403, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00827340

J. Roth, Reilly-type inequalities for Paneitz and Steklov eigenvalues, Potential Anal
URL : https://hal.archives-ouvertes.fr/hal-01539128

A. Savo, On the first Hodge eigenvalue of isometric immersions, Proc. Amer. Math. Soc, vol.133, pp.587-594, 2005.

C. Xia and &. Q. Wang, Eigenvalues of the Wentzell-Laplace Operator and of the Fourth Order Steklov Problems, J. Diff. Equations, vol.264, issue.10, pp.6486-6506, 2018.

C. Xiong, Eigenvalue estimates of Reilly type in product manifolds and eigenvalue comparison for strip domains, Diff. Geom. Appl, vol.60, pp.104-115, 2018.

P. Yang and &. Xu, Positivity of Paneitz operators, Discrete Cont. Dyn. Syst, vol.7, issue.2, pp.329-342, 2001.

U. Laboratoire-d'analyse-et-de-mathématiques-appliquées, C. , and F. , , p.77454

M. ,