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EXTRINSIC EIGENVALUES ESTIMATES FOR

HYPERSURFACES IN PRODUCT SPACES

JULIEN ROTH

Abstract. We prove extrinsic upper bounds for the first eigenvalue of second

order operator of divergence type as well as for Paneitz-like operators and

two generalized Steklov problems on hypersurfaces of product spaces N × R.
Examples of equality cases are given.

1. Introduction and statements of the results

In his seminal paper [18], Reilly proved the following well-known upper bound for
the first non-zero eigenvalue of the Laplace operator on a closed n-dimensional
submanifold M of a Euclidean space Rm

(1) ?Reilly1? λ1(M) 6
n

V (M)

∫
M

‖H‖2dvg,

where V (M) is the volume of (M, g), dvg its volume element and H is the mean
curvature vector of the isometric immersion of (M, g) into Rm. This inequality
has been extended by many authors in different contexts: for other ambient spaces
[15, 12], in terms of higher order mean curvatures [18], other operators [1, 2, 4, 14,
20], in the anisotropic setting [19], for weighted ambient spaces [5, 11, 20] or for
differential forms [21] and spinors [3, 13]. Recently, Xiong [23] obtained extrinsic
estimates of Reilly type for closed hypersurfaces of product spaces (R×N, dt2⊕h),
where (Nn, h) is a complete Riemannian manifold. In particular, he proved that
the first eigenvalue λ1 of the Laplace operator and the first eigenvalue σ1 of the
Steklov problem for mean-convex hypersurfaces (bounding a domain for the second
one) satisfy respectively

λ1 6 nκ+(M)‖H‖∞ and σ1 6 κ+(M)
‖H‖∞
inf
M
H
.

In the present note, we prove extrinsic eigenvalue estimates for four types of eigen-
values, namely for divergence-type operators LT (Theorem 1.1), Paneitz-like op-
erators (Theorem 1.3), Steklov-Wentzell problem (Theorem 1.5) and biharmonic
Steklov problem (Theorem 1.6). These results are extensions for product manifolds
R×N of the estimates obtained by the author in [20] for hypersurfaces of Euclidean
spaces.
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2 JULIEN ROTH

1.1. LT operators. Let (Mn, g) be a closed connected and oriented Riemannian
manifold and consider T a symmetric, divergence-free and positive definite (1, 1)-
tensor over M . We associate with T the following second order differential operator
LT defined by LT f = −div(∇f) for any C2 function on M , where div and ∇ are
respectively the divergence and the gradient over (Mn, g). Under the above as-
sumptions on T , the operator LT is self-adjoint, elliptic and positive. In particular,
its spectrum is a increasing sequence of real numbers

0 = λ0 < λ1 6 · · · 6 λk 6−→ +∞.

The eigenvalue 0 is simple and corresponds to constant eigenfunctions. In the
sequel, we will consider the first positive eigenvalue λ1. Now, assume that (Mn, g)
is isometrically immersed into a Riemannian product R×N . We set

(2) defHT HT = tr (TS),

where S is the shape operator of the immersion.
For the well understanding of the statement of the result, we will introducre at this
point the following notations: if A is a (1, 1)-tensor over M , then we denote

A− = min{A−(x)|x ∈M}

where A−(x) is the smallest eigenvalue of A at the point x and

A+ = max{A+(x)|x ∈M}

where A+(x) is the biggest eigenvalue of A at the point x.
Now, we can state the first result of this note which gives an extrinsic upper bound
for the first eigenvalue of LT . Namely, we have the following

〈thm1〉
Theorem 1.1. Let (Nn, h) be a complete Riemannian manifold and (Mn, g) be a
closed oriented Riemannian manifold isometrically immersed into the Riemannian
product (R × N, dt2 ⊕ h). Moreover, let T be a symmetric, positive definite and
divergence-free (1, 1)-tensor over M and assume that HT is a positive function.
Then, the first eigenvalue λ1 of the operator LT on M satisfies

λ1 6
(TS)+

T−
‖HT ‖∞.

Moreover, if T and S commute, then we have

λ1 6 κ+(M)‖HT ‖∞.

Remarks 1.2. (1) Note that since HT = tr (TS) > 0, then (TS)+ > 0 and
the upper bound in the theorem is positive.

(2) We also want to point out that in the case where T and S commute, the
hypotheses that T is positive definite and HT is a positive function imply
that M has necessarily at least one positive principal curvature and so the
upper bound κ+(M)‖HT ‖∞ is positive.

(3) In particular T and S commute if T is one the tensors Tr associated with
the higher order mean curvatures Hr. They will be considered in the first
example of Section 3.
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1.2. Paneitz-like operators. On a 4-dimensional Riemannian manifold (M4, g),
the Paneitz operator, first introduced in [16] by Paneitz (see also [17]), is the fourth
order differential operator P defined by

Pu = ∆2u− div

(
2

3
Scal∇u− 2Ric(∇u)

)
,

for any C4 function u, where div is the divergence, ∆ = −div∇ the Laplacian, Scal
the scalar curvature and Ric the (1, 1)-Ricci tensor associated with the metric g. It
has been generalized in any dimension by Branson [6]. Namely, we have for n > 5,

Pu = ∆2u−−div

(
(n− 2)2 + 4

2(n− 1)(n− 2)
Scal∇u− 4

n− 2
Ric(∇u)

)
+
n− 4

2
Qu,

where Q is the Branson Q-curvature associated with the metric g. The Paneitz
operator is conformally covariant and plays a crucial role in the problem of pre-
scribing Q-curvature. In the last two decades, the Paneitz operator (and its links
with Q-curvature) has been intensively studied by many authors (see [10] and ref-
erence therein for instance).
Here, we are interesting in the spectrum of the Paneitz operator and more generally
of Paneitz-like operators (for which the classical Paneitz operator in dimension 4 is
a particular case). In [20] we obtain general Reilly-type upper bounds generalizing
previous estimates proved by Chen and Li in [8]. The Paneitz-like operators are
defined for some constants a and b with b > − n

n−1 by

Pa,bu = ∆2u− div(aScal∇u+ bRic∇u),

for any smooth function u on M . The fourth order operator Pa,b is elliptic and
self-adjoint so that it has a discrete real spectrum. In the sequel, we will restrict
to the case where Pa,b is positive. The positivity of Pa,b is ensured under some
curvature lower bounds (see [24] for more details). Here, we give upper bounds for
the first eigenvalue of Pa,b for hypersurfaces in products spaces R×N . Namely, we
prove the following

〈thm2〉
Theorem 1.3. Let (Nn, h) be a complete Riemannian manifold and (Mn, g) be a
closed oriented Riemannian manifold isometrically immersed into the Riemannian
product (R × N, dt2 ⊕ h). Let a and b two real constants with b > − n

n−1 and
na+b > 0. Moreover, assume that M has nonnegative scalar curvature and that the
Paneitz-like operator Pa,b is positive. Then, the first eigenvalue Λ1 of the Paneitz-
like operator Pa,b on M satisfies

Λ1 6 nκ+(M)‖H‖∞
(
nκ+(M)‖H‖∞ + (aScal Id + bRic)+

)
.

Remark 1.4. This result is of interest only if the operator Pa,b is positive. As
mentioned, see [24] for details about the positivity of Pa,b.

1.3. Steklov-Wentzell problem. Let Ω be a smooth domain of the Riemannian
product R×N with non-empty boundary M = ∂Ω and b a nonnegative constant.
We will denote by g the induced metric on M and denote by ∆ and ∆ the Laplacian
on Ω and M respectively. We consider the following Steklov-type problem for the
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Laplacian ∆ with the so-called Wentzell boundary condition. Namely, we consider

(SW) ?Wentzell?


∆f = 0 on Ω

−b∆f − ∂f

∂ν
= αf on M.

where
∂f

∂ν
=< ∇f, ν > is the derivative of the function f with the respect to the

inner unit normal ν. Here, ∇ is the gradient over Ω. Note that, if b = 0, then, we
recover the classical Steklov problem. The spectrum of this problem is an increasing
sequence (see [9, 22])

0 = α0 < α1 6 α2 · · · 6 αk 6 · · · −→ +∞.
The eigenvalue 0 is simple and the corresponding eigeinfunctions are the constant
ones. Here again, we prove a Reilly-type upper bound for the first positive eigen-
value of this problem. Namely, we have

〈thm3〉
Theorem 1.5. Let (Nn, h) be a complete Riemannian manifold and (Mn, g) be a
closed oriented Riemannian manifold isometrically immersed into the Riemannian
product (R×N, dt2 ⊕ h). Moreover, assume that M is mean-convex and bounds a
domain Ω in R×N . Then, the first eigenvalue α1 of the Steklov-Wentzell problem
satisfies

α1 6 κ+(M)‖H‖∞

 1

inf
M
H

+ bn

 .

1.4. Biharmonic Steklov problem. Let Ω be a smooth domain of the riemann-
ian product R×N with non-empty boundary M = ∂Ω and τ a positive constant.
We consider the following biharmonic Steklov problem.

(BS) Steklovbih



∆
2
f − τ∆f = 0 on Ω,

∂2f

∂ν2
= 0 on M,

τ
∂f

∂ν
− div∂M

(
P∂M ((∇2f)ν)

)
− ∂∆f

∂ν
= βf on M.

where P∂M is the projection over the tangent space of ∂M .This problem has a
discret spectrum consisting in an increasing sequence (see [7])

0 = β0 < β1 6 β2 · · · 6 βk 6 · · · −→ +∞.
The eigenvalue 0 is simple and the corresponding eigeinfunctions are the constant
functions. In the next theorem, we prove an extrinsic upper for the first positive
eigenvalue of this problem.

〈thm4〉
Theorem 1.6. Let (Nn, h) be a complete Riemannian manifold and (Mn, g) be a
closed oriented Riemannian manifold isometrically immersed into the Riemannian
product (R×N, dt2 ⊕ h). Moreover, assume that M is mean-convex and bounds a
domain Ω in R×N . Then, the first eigenvalue of the biharmonic Steklov problem
satisfies

β1 6 τκ+(M)
‖H‖∞
inf
M
H
.
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After giving the proof of these four theorems in Section 2, we will give some exam-
ples of their equality cases in Section 3.

2. Proofs of the results
〈sec2〉

2.1. Proof of Theorem 1.1. We recall that the variational characterization of λ1

given by

λ1 = inf


∫
M

〈T∇f,∇f〉dvg∫
M

f2dvg

∣∣∣u 6= 0,

∫
M

fdvg = 0

 .

Here, ∇u stands for the gradient of the function u overM and dvg is the Riemannian
volume form of M . Note that in the sequel, we will also use, without confusion, ∇
for the Levi-Civita connection of (M, g).
We will use as test function the function t which is the coordinate in the factor
R of the product R × N . First, obviously, M is invariant by translation in the

direction of R, so we can assume that

∫
M

tdvg = 0. Second, since the function

HT is positive, we deduce that t does not vanish identically. Indeed, if t vanishes
identically over M , then M is included in the slice {0} × N . Since M is a closed
manifold, this is possible if and only if M = N and so M is totally geodesic in the
product N × R. This is a contradiction with the fact that HT > 0. Hence, t does
not vanish identically and can be used as a test function.Thus, we have

λ1 6

∫
M

〈T (∇t),∇t〉dvg∫
M

t2dvg

.

Now, let us compute LT t. For more convience, let p ∈M and consider {e1, · · · , en}
be a normal frame at p. We have

LT t = −div(T∇t)

= −
n∑

i=1

〈∇ei(T∇t), ei〉

= −
n∑

i,j=1

〈∇ei(〈∇t, ej〉Tej), ei〉

= −
n∑

i,j=1

ei(〈∇t, ej)Tej , ei〉+

n∑
i,j=1

〈∇t, ej〉∇ei(Tej), ei〉

= −
n∑

i,j=1

ei(〈∇t, ej)Tej , ei〉,

where the second part of the right hand side vanishes in the last line since T is
divergence free. Hence, denoting by∇ the Levi-Civita connection of (R×N, dt2⊕h),
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and Ti,j = 〈Tei, ej〉, we have

LT t = −
n∑

i,j=1

〈∇ei∇t, ej〉Ti,j

= −
n∑

i,j=1

〈∇ei(∂t − 〈∂t, ν〉ν), ej〉Ti,j ,

where ν is a unit normal vector field. Moreover, since ∂t is parallel for ∇ and
−∇(·)ν is the shape operator S, we get

LT t = −
n∑

i,j=1

〈∂t, ν〉〈Sei, ej〉Ti,j

= −
n∑

i=1

〈∂t, ν〉〈Sei, T ei〉

= −HTu,

where we have set u = 〈∂t, ν〉. Then, we have

λ1 6

∫
M

tLT tdvg∫
M

t2dvg

6

(∫
M

tLT tdvg

)2

(∫
M

t2dvg

)(∫
M

〈T∇t,∇t〉dvg
)

But, since LT t = −HTu, we have from the Cauchy-Schwarz inequality(∫
M

tLT tdvg

)2

6

(∫
M

H2
Tu

2dvg

)(∫
M

t2dvg

)
and so

λ1 6

∫
H2

T dvg∫
M

〈T∇t,∇t〉dvg
.

On the other hand, we have uLT t = −HTu
2, which after integration gives

(3) intHT

∫
M

HTu
2dvg = −

∫
M

〈T∇u,∇t〉dvg =

∫
M

〈TS∇t,∇t〉dvg,

since ∇u =
∑n

i=1 ei(u)ei =
∑n

i=1 ei(〈ν, ∂t〉)ei = −
∑n

i=1〈Sei, ∂t〉ei = −S(∇t).
FInally, we get

λ1 6 ‖HT ‖∞

∫
M

〈TS∇t,∇t〉dvg∫
M

〈T∇t,∇t〉dvg
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and so

λ1 6
(TS)+

T−
‖HT ‖∞.

We recall that T− = min{T−(x)|x ∈M} where T−(x) is the smallest eigenvalue of
T at the point x. Note that T− is a positive number since T is positive definite
and M is compact. Also, (TS)+ = max{(TS)+(x)|x ∈ M} where (TS)+(x) is the
largest eigenvalue of TS at the point x. Since HT is a positive function, (TS)+ is
also a positive number.
Now, assume that T and S commute. Since T is positive definite and symmetric,
there exists a square root of T , denoted U which is also symmetric, positive definite
and which also commutes with S. Hence, we have

λ1 6 ‖HT ‖∞

∫
M

〈TS∇t,∇t〉dvg∫
M

〈T∇t,∇t〉dvg

6 ‖HT ‖∞

∫
M

〈SU∇t, U∇t〉dvg∫
M

〈U∇t, U∇t〉dvg

6 ‖HT ‖∞κ+(M).

This concludes the proof. �

2.2. Proof of Theorem 1.3. From the variational characterization of Λ1, we
obtain, using t as test function

Λ1

∫
M

t2dvg 6
∫
M

tPa,btdvg

6
∫
M

(
t∆2t− tdiv (aScal∇t+ bRic(∇t))

)
dvg

6
∫
M

(
|∆t|2 + aScal |∇t|2 + b〈Ric(∇t),∇t〉

)
dvg

6
∫
M

(
|∆t|2 + (aScal + bRic)+‖∇t‖2

)
dvg.

Note that from the assumption na + b > 0 and Scal > 0, then (aScal + bRic)+ is
nonnegative. Moreover, as we have seen in the proof of Theorem 1.1 (with T = Id ),
we have ∆t = −nHu, with u = 〈∂t, ν〉. Hence, we get

Λ1 6
n2

∫
M

H2u2dvg∫
M

t2dvg

+ (aScal + bRic)+

∫
M

‖∇t‖2dvg∫
M

t2dvg

6

n
2

∫
M

H2u2dvg∫
M

‖∇t‖2dvg
+ (aScal + bRic)+


∫
M

‖∇t‖2dvg∫
M

t2dvg

.(4) inegLambdafinal
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First, since t∆t = −nHut, we have∫
M

‖∇t‖2dvg = n

∫
M

Hutdvg(5) Hut

6 n

(∫
M

H2u2dvg

) 1
2
(∫

M

t2dvg

) 1
2

by the Cauchy-Schwarz inequality. Hence, we get∫
M

‖∇t‖2dvg∫
M

t2dvg

6
n2

∫
M

H2u2dvg∫
M

‖∇t‖2dvg

6 n‖H‖∞
n

∫
M

Hu2dvg∫
M

‖∇t‖2dvg

6 n‖H‖∞

∫
M

〈S∇t,∇t〉dvg∫
M

‖∇t‖2dvg

6 n‖H‖∞κ+(M)

where we have used (3) with T = Id . Thus, reporting in (4), we obtain

Λ1 6 nκ+(M)‖H‖∞
(
nκ+(M)‖H‖∞ + (aSId + bRic)+

)
,

which concludes the proof of Theorem 1.3. �

2.3. Proof of Theorem 1.5. First, we recall that the first eigenvalue α1 of
Steklov-Wentzell problem has the following variational characterization (see [9, 22])

(6) ?characalpha1?α1 = inf


∫

Ω

‖∇f‖2dvg + b

∫
M

‖∇f‖2dvg∫
M

f2dvg

∣∣∣∣∣
∫
∂M

fdvg = 0

 .

As in the proof of Theorem 1.1, we may assume that the function t satisfies∫
∂M

tdvg = 0 and thus use it as a test function. So, we get

α1 6

∫
Ω

‖∇t‖2dvg∫
M

t2dvg

+ b

∫
M

‖∇t‖2dvg∫
M

t2dvg

.

First, we have ∫
Ω

‖∇t‖2dvg = −
∫

Ω

t∆tdvg +

∫
Ω

divg(t∇t)dvg

Since ∆t = 0, using the Stokes theorem, we get∫
Ω

‖∇t‖2dvg =

∫
M

〈t∇t, ν〉dvg =

∫
M

tudvg,
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where u is defined as above by u = 〈∂t, ν〉 = 〈∇t, ν〉. Hence, by the Cauchy-Schwarz
inequality, we obtain∫

Ω

‖∇t‖2dvg 6
(∫

M

t2dvg

) 1
2
(∫

M

u2dvg

) 1
2

and thus ∫
Ω

‖∇t‖2dvg∫
M

t2dvg

6

(∫
M

u2dvg

) 1
2

(∫
M

t2dvg

) 1
2

.

On the other hand, we have

n inf
M

(H)

∫
M

u2dvg 6
∫
M

nHu2dvg

6
∫
M

〈S∇t,∇t〉dvg

6 κ+(M)

∫
M

‖∇t‖2dvg

6 κ+(M)

∫
M

nHutdvg

6 nκ+(M)‖H‖∞
∫
M

utdvg

6 nκ+(M)‖H‖∞
(∫

M

t2dvg

) 1
2
(∫

M

u2dvg

) 1
2

where we have used (3) with T = Id and (5) successively. Finally, we get∫
Ω

‖∇t‖2dvg∫
M

t2dvg

6
κ+(M)‖H‖∞

inf
M

(H)
.(7) lem1

Moreover, proceeding as in the proof of Theorem 1.1 with T = Id , we obtain
immediately that ∫

M

‖∇t‖2dvg∫
M

t2dvg

6 nκ+‖H‖∞

which gives finally

α1 6 κ+(M)‖H‖∞

 1

inf
M
H

+ bn

 .

�

2.4. Proof of Theorem 1.6. The boundary conditions in the biharmonic Steklov
problem (BS) are the natural one so that the weak formulation of this problem is
the following (see [7]):∫

Ω

(〈
∇2
f,∇2

φ
〉

+ τ
〈
∇f,∇φ

〉)
dvg = β

∫
M

fφdvg,
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Hence, the first positive eigenvalue β1 has the following variational characterization

(8) ?characbeta1?β1 = inf


∫

Ω

(
‖∇2

f‖2 + τ‖∇f‖2
)
dvg∫

M

f2dvg

∣∣∣∣∣
∫
M

fdvg = 0

 .

As previously, up to a possible translation, we use t as test function in the above
variational characterization so that

β1

∫
M

t2dvg 6
∫

Ω

(
‖∇2

t‖2 + τ‖∇t‖2
)
dvg

6 τ

∫
Ω

‖∇t‖2dvg,

since ∇2
t = 0. Thus, we have

β1 6 τ

∫
Ω

‖∇t‖2dvg∫
M

t2dvg

From the proof of Theorem 1.5, we have (7)∫
Ω

‖∇t‖2dvg∫
M

t2dvg

6
κ+(M)‖H‖∞

inf
M

(H)
,

which concludes the proof of Theorem 1.6. �

3. Examples of equality case

〈sec3〉
We finish this note by giving examples of equality cases for each of the four theorems.

Example 3.1. We consider here the well-known operators Lr associated to the
higher order mean curvatures. The higher order mean curvatures are extrinsic
quantities defined from the second fundamental form and generalizing the notion
of mean curvature. Up to a normalisation constant the mean curvature H is the
trace of the second fundamental form B:

H =
1

n
tr (B).

In other words the mean curvature is

H =
1

n
S1(κ1, . . . , κn),

where S1 is the first elementary symmetric polynomial and κ1, . . . , κn are the prin-
cipal curvatures. Higher order mean curvatures are defined in a similar way for
r ∈ {1, . . . , n} by

Hr =
1(
n
r

)Sr(κ1, · · · , κn),

where Sr is the r-th elementary symmetric polynomial, that is for any n-tuple
(x1, · · · , xn),

Sr(x1, . . . , xn) =
∑

16i1<···<ir6n

xi1 · · ·xir .
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By convention we set H0 = 1 and Hn+1 = 0. Finally, for convenience we also set
H−1 = −〈X, ν〉.

To each Hr we associate a symmetric (2, 0)-tensor, which is in coordinates given by

Tr = (T ij
r ) =

(
∂Sr+1

∂Bij

)
,

where Sr+1 is now understood to depend on the second fundamental form and the
metric. The relation between these two notions can be found in [4] for example.
These tensors Tr are divergence-free (see [14] for instance) and satisfy the following
relations:

tr (Tr) = c(r)Hr and HTr
= −c(r)Hr+1ν,

where c(r) = (n − r)
(
n
r

)
and HTr is given by the relation (2). The operator Lr

is defined as the operator LTr
associated with the tensor Tr. Note that in space

forms, if Hr+1 > 0, then Lr is a positive operator (see [4]).

Now, we consider the sphere Sn(R) of radius R into Rn+1 = R × Rn. The

first eigenvalue of Lr is c(r)
Rn+2 (see [1]). On the other hand, since Tr and B

commute, the bound of Theorem 1.1 is

κ+(M)‖HTr‖2∞ =
c(r)

Rr+2
,

since all the principal curvature are 1
R and ‖HTr‖ = c(r)Hr+1 = c(r)

Rr+1 . Hence
equality occurs in Theorem 1.1.

Example 3.2. Now, we consider the sphere S4(R) into R5 = R×R4 and P = P 2
3 ,−2

the Paneitz operator on S4(R). The upper bounds of Theorem 1.3 is

4κ+(M)‖H‖∞
(

4κ+(M)‖H‖∞ + (
2

3
Scal Id − 2Ric)+

)
=

24

R4
,

which is the first eigenvalue of the Paneitz operator on S4(R) (see [8]). Hence
equality in Theorem 1.3 is attained.

Example 3.3. For the Steklov-Wentzell problem, the same example provide the
sharpness of Theorem 1.5. Indeed, for the sphere Sn(R) of radius R into Rn+1, the
upper bound of Theorem 1.5 is

κ+(M)‖H‖∞

 1

inf
M
H

+ bn

 =
R+ bn

R2
.

On the other hand, in [20, Theorem 3.2], we prove that for the sphere

α1V (Sn(R)) =
1

R2

(
nV (Bn+1(R)) + bnV (Sn(R))

)
.

An immediate computation using the fact that V (Sn(R) = ωnR
2 and

V (Bn+1(R)) = ωnR
n+1

n+1 where ωn is the volume Sn, we obtain that α1 = R+bn
R2

and equality occurs in Theorem 1.5.

Example 3.4. Finally, for the biharmonic Steklov problem, we consider again
Sn(R) into Rn+1. In that case, the first eigenvalue is (see [20, Theorem 3.3])

β1 =
(n+ 1)τ

R2

V (Bn+1(R))

V (Sn(R))
=
τ

R
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which coincides with the upper bound of Theorem 1.6, that is, τκ+(M) ‖H‖∞
inf
M

(H)
.
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