Skip to Main content Skip to Navigation
Conference papers

Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification

Abstract : We study the problem of fair binary classification using the notion of Equal Opportunity. It requires the true positive rate to distribute equally across the sensitive groups. Within this setting we show that the fair optimal classifier is obtained by recalibrating the Bayes classifier by a group-dependent threshold. We provide a constructive expression for the threshold. This result motivates us to devise a plug-in classification procedure based on both unlabeled and labeled datasets. While the latter is used to learn the output conditional probability, the former is used for calibration. The overall procedure can be computed in polynomial time and it is shown to be statistically consistent both in terms of the classification error and fairness measure. Finally, we present numerical experiments which indicate that our method is often superior or competitive with the state-of-the-art methods on benchmark datasets.
Complete list of metadata
Contributor : Mohamed Hebiri Connect in order to contact the contributor
Submitted on : Monday, February 3, 2020 - 9:51:30 AM
Last modification on : Saturday, June 25, 2022 - 10:43:57 PM



  • HAL Id : hal-02150662, version 2
  • ARXIV : 1906.05082


Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, Massimiliano Pontil. Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification. NeurIPS 2019 - 33th Annual Conference on Neural Information Processing Systems, Dec 2019, Vancouver, Canada. ⟨hal-02150662v2⟩



Record views


Files downloads