T. Belytschko, S. Xiao, G. Schatz, and R. Ruoff, Atomistic simulations of nanotube fracture, Physical Review B, vol.65, p.235430, 2002.

J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Physical Review B, vol.39, p.5566, 1989.
DOI : 10.1103/physrevb.39.5566

S. J. Stuart, A. B. Tutein, and J. A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, The Journal of chemical physics, vol.112, pp.6472-6486, 2000.

J. Los and A. Fasolino, Intrinsic long-range bond-order potential for carbon: Performance in monte carlo simulations of graphitization, Physical Review B, vol.68, p.24107, 2003.

J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous carbon, Physical Review Letters, vol.61, p.2879, 1988.
DOI : 10.1103/physrevlett.61.2879

J. Tersoff, Carbon defects and defect reactions in silicon, Physical review letters, vol.64, p.1757, 1990.
DOI : 10.1103/physrevlett.64.1757

J. Tersoff, Chemical order in amorphous silicon carbide, Physical Review B, vol.49, p.16349, 1994.
DOI : 10.1103/physrevb.49.16349

M. Tang and S. Yip, Atomistic simulation of thermomechanical properties of ?-sic, Physical Review B, vol.52, p.15150, 1995.

K. Nordlund, J. Keinonen, and T. Mattila, Formation of ion irradiation induced small-scale defects on graphite surfaces, Physical review letters, vol.77, p.699, 1996.

F. De-brito-mota, J. Justo, and A. Fazzio, Structural properties of amorphous silicon nitride, Physical Review B, vol.58, p.8323, 1998.

J. Titantah and D. , Lamoen, sp3/sp2 characterization of carbon materials from first-principles calculations: X-ray photoelectron versus high energy electron energy-loss spectroscopy techniques, Carbon, vol.43, pp.1311-1316, 2005.

L. Lindsay and D. Broido, Optimized tersoff and brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene, Physical Review B, vol.81, p.205441, 2010.

P. Angelikopoulos, C. Papadimitriou, and P. Koumoutsakos, Bayesian uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework, The Journal of chemical physics, vol.137, p.144103, 2012.

C. Kim, O. Borodin, and G. E. Karniadakis, Quantification of sampling uncertainty for molecular dynamics simulation: Time-dependent diffusion coefficient in simple fluids, Journal of Computational Physics, vol.302, pp.485-508, 2015.

S. Liu, A. Gerisch, M. Rahimi, J. Lang, M. C. Böhm et al., Robustness of a new molecular dynamics-finite element coupling approach for soft matter systems analyzed by uncertainty quantification, The Journal of Chemical Physics, vol.142, p.104105, 2015.

T. Le, J. Guilleminot, and C. Soize, Stochastic continuum modeling of random interphases from atomistic simulations. Application to a polymer nanocomposite, Computer Methods in Applied Mechanics and Engineering, vol.303, pp.430-449, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01158280

K. Farrell, J. T. Oden, and D. Faghihi, A bayesian framework for adaptive selection, calibration, and validation of coarsegrained models of atomistic systems, Journal of Computational Physics, vol.295, pp.189-208, 2015.

K. Farrell-maupin and J. T. Oden, Adaptive selection and validation of models of complex systems in the presence of uncertainty, Research in the Mathematical Sciences, vol.4, p.14, 2017.

R. Ghanem, D. Higdon, and H. Owhadi, Handbook of Uncertainty Quantification, 2017.

F. Rizzi, R. Jones, B. Debusschere, and O. Knio, Uncertainty quantification in MD simulations of concentration driven ionic flow through a silica nanopore. ii. uncertain potential parameters, The Journal of chemical physics, vol.138, p.194105, 2013.

F. Rizzi, H. N. Najm, B. J. Debusschere, K. Sargsyan, M. Salloum et al., Uncertainty quantification in MD simulations. part ii: Bayesian inference of force-field parameters, Multiscale Modeling & Simulation, vol.10, pp.1460-1492, 2012.
DOI : 10.1137/110853169

S. T. Reeve and A. Strachan, Error correction in multi-fidelity molecular dynamics simulations using functional uncertainty quantification, Journal of Computational Physics, vol.334, pp.207-220, 2017.
DOI : 10.1016/j.jcp.2016.12.039

URL : http://arxiv.org/pdf/1603.00599

C. Soize and C. Farhat, A nonparametric probabilistic approach for quantifying uncertainties in low-dimensional and highdimensional nonlinear models, International Journal for Numerical Methods in Engineering, vol.109, pp.837-888, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01353194

S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of Computational Physics, vol.117, pp.1-19, 1995.
DOI : 10.2172/10176421

URL : https://digital.library.unt.edu/ark:/67531/metadc1389173/m2/1/high_res_d/10176421.pdf

C. Lee and J. Chen, Proper orthogonal decomposition-based model order reduction via radial basis functions for molecular dynamics systems, International Journal for Numerical Methods in Engineering, vol.96, pp.599-627, 2013.
DOI : 10.1002/nme.4552

C. De-tomas, I. Suarez-martinez, and N. A. Marks, Graphitization of amorphous carbons: A comparative study of interatomic potentials, Carbon, vol.109, pp.681-693, 2016.

L. Sirovich, Turbulence and the dynamics of coherent structures. i. coherent structures, Quarterly of applied mathematics, vol.45, pp.561-571, 1987.

G. Kerschen, J. Golinval, A. F. Vakakis, and L. A. Bergman, The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview, Nonlinear dynamics, vol.41, pp.147-169, 2005.

K. Hoang, Y. Fu, and J. Song, An hp-proper orthogonal decomposition-moving least squares approach for molecular dynamics simulation, Computer Methods in Applied Mechanics and Engineering, vol.298, pp.548-575, 2016.
DOI : 10.1016/j.cma.2015.10.003

C. Soize and C. Farhat, Probabilistic learning for model-form uncertainties in nonlinear computational mechanics, International Journal for Numerical Methods in Engineering online, pp.1-25, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02052833

X. Zhou, D. K. Ward, and M. E. Foster, An analytical bond-order potential for carbon, Journal of computational chemistry, vol.36, pp.1719-1735, 2015.
DOI : 10.1002/jcc.23949

D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni et al., A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons, Journal of Physics: Condensed Matter, vol.14, p.783, 2002.
DOI : 10.1088/0953-8984/14/4/312

E. Cadelano, P. L. Palla, S. Giordano, and L. Colombo, Nonlinear elasticity of monolayer graphene, Physical review letters, vol.102, p.235502, 2009.
DOI : 10.1103/physrevlett.102.235502

URL : http://arxiv.org/pdf/1006.0594

C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, science, vol.321, pp.385-388, 2008.

J. D. Bernal, The structure of graphite, Proc. R. Soc. Lond. A, vol.106, pp.749-773, 1924.